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SUMMARY: Construction planners on every project are faced with a unique task of spatially organizing site 
activities with effective space utilization. This is a crucial planning exercise that if effectively rehearsed then can 
attribute to increased workers productivity, minimized construction accidents, improved delivery of project on 
time. One of the major issues in traditional project management tools is that they do not convey workspace 
occupied as the project progresses as well as space availability and needs. 

This paper presents a research investigation based on using generic workspace strategies which extends related 
research and analytical tools dealing with project space-time planning. In particular, a 4D (3D + time) 
visualization system has been developed which embeds simple Genetic Algorithm (GA) to search for the best 
execution strategy to optimize workspace conflicts between activities. The optimization approach specifies the 
main structure of a simple GA model to derive solutions near optimal (i.e. best execution strategies). The main 
three semantics of a construction activity execution used in this work mainly: (1) execution of work direction, (2) 
the activity work rate distribution type, and (3) quantity of work per week. It should be mentioned that these 
semantics were encoded within the genetic string structure for the chromosomes to achieve the effect of altering 
the execution pattern in search of minimum workspace usage. Among the other generic space strategies included 
is the product Assembly Sequence Constraints (ASC) which governs the construction logic dependencies. 

The work presented here concludes that the definition of an activity’s execution pattern semantics is an 
important element in next generation 4D visualization tools. It plays a major part in facilitating realistic 
visualization and is an important feature to simulate interaction between site activities shaping the site in 
different ways. Further benefit of such approach is the ability to rehearse different ‘what if’ scenarios for 
coordinating site activities and to allow planners to better communicate project schedules. The difficulties and 
the opportunities that are addressed by the development of a visual planning 4D tool in this research are 
recognised. The paper presents an experimental execution patterns simulation run with results, and shows how 
they are used to minimize space-time conflicts. Finally, the paper highlights the added value from using the 
VRML approach, as there is greater demand for integrating CAD with VR technology 
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1. INTRODUCTION 
During the last decade, research and technology efforts in 4D visualization has emerged providing a number of 
useful applications with significant benefits in site management as well as construction projects. The aim in 4D 
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(3D + time) visualization is to create an environment for the user whereby 3D computer model is integrated to 
construction schedule data so that to generate visualization of the construction processes. As such, this 
visualization technique is shown to have a lot to offer especially to its target users – the project planner. This is 
true because the visualization environment is information-driven from the construction schedule and the project 
3D model in away that enhances the communication among involved project parties. 

A particular problem found on large or complex projects is the coordination and communication of construction 
work on site mainly through paper-based construction drawings. Considering the traditional Gantt chart schedule 
as one of the favourable communication techniques, planners are not capable of expressing the construction 
execution strategy in a correct presentation medium. In other words, schedules can be thought of as a ‘what to 
do’ list and sequence of assignments with data concerning the duration of each construction activity, assigned 
resource information and sequence relationships between the activities. Cheng and O’Connor (1996) claims that 
in field practice, construction planners have to interpret space information into poor paper-based drawings and 
diagrams. With this in mind, traditional Gantt schedules do not seem to convey the workspace-activity 
relationships and their relationships with the site-space usage change. 

Moreover, project planners communicate construction execution strategy based on highly generalised conceptual 
space terms such as North, South, East and West. For instance when a planner is addressing the execution of 
Concrete Floor Slabs activity to start from the East and progressing towards the West by 100m3 work-rate per 
week. The execution plan of such activity is left to the workmen on the job, and it does not specify a detailed 
spatial execution strategy in relation to other activities (Mallasi, 2004). With such statement, work-space 
interferences and work interruptions between site activities might occur on the site (Riley and Sanvido, 1997; 
Guo, 2002). These conceptual space terms used by industry vaguely defines for coordination of workmen on the 
job, especially in large complex construction projects where the site space may be constrained by a number of 
progressing construction activities. To determine the best execution strategy for construction activities is a 
problem as there are many possible alternatives while satisfying a set of layout constraints (Li and Love, 2000). 

How can this trivial problem be solved? On one hand, 4D (3D + time) visualization technique can be seen as the 
solution for simulating activities’ workspace relationships progression along the time dimension. Nowadays, the 
technique is widely used in construction project planning providing an interactive view of the construction 
progress. It can complement the 2D Gantt charts showing the spatial relationships between construction 
activities. On the other hand, a generic inclusion of dynamic space strategies with activity execution pattern 
might solve ‘the best execution strategy’ search problem. Due to the complexity of this search problem, Genetic 
Algorithm (GA) has been chosen as the optimization methodology. Indeed, the focus of optimisation in this 
work is to apply the theory of natural selection and evolution (Goldberg, 1989), in particular of GA. It goes a 
step further in integrating GA with 4D models as a goal-oriented approach. The computer simulation is used to 
identify the search solution space obtaining the best execution strategy looking for high performance solution 
(i.e. optimal or near-optimal space conflicts) for the problem under study. 

This paper contributes significantly in the construction industry towards increasing construction planners’ 
awareness especially when coordinating and planning site operations inside the building boundary. The paper is 
organized into the following section. Section 1 addresses the problem understudy. Section 2 describes the 
mechanics of natural evolution and key terminology. Section 3 presents the method for adopting GA model. 
Section 4 provides an illustrative example explaining the process of GA. Section 5 presents the numerical results 
obtained from the 4D visualization using the genetic algorithm system. A discussion and summary are given in 
Section 6. 

1.1  BACKGROUND AND PROBLEM UNDER STUDY 
Practical research projects in 3D graphical simulation area have utilised many optimisation techniques for their 
chosen domain problem. However, it is not an easy task to determine the suitability of any of these optimisation 
techniques to solve the research problem presented here. In a broad sense, GA is only one category or kind of 
optimisation search method that is known in computer programming. Why then choose a GA approach and apply 
it here in comparison to other optimisation techniques? Given the background to this research, a key to 
successful application of GA optimisation (also known as evolutionary programming) is the interpretation of 
different execution strategies for a given project schedule. In its most general application, the technique of GA is 
simply a computerised heuristics search method derived from natural life evolution and organic beings. It is 
striking how members of natural beings belonging to one species, such as human, animal, or plant, differ from 
one another (Rekiek, 2001). For instance, variability between breeds of animals assumes that ‘the condition of 
natural life diversity is exposed to non-uniformity.’ It seems that ‘the structure of genetics contained in the 
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biology of a living organism, to some extent, processes such phenomenon of variation.’ The famous naturalist, 
Darwin, confirmed that variation is continuous throughout several generations of an organism. 

 

According to Holland’s definition, GA describes a process for searching a large space of genotypes (or genes) 
based on natural selection and passing through surviving members from one generation to another. Even when 
all the members are exposed to certain environmental circumstances, the element of competition between such 
members’ genotype is attributed to their differential of survival (or fitness). The combination of the survival of 
the fittest and a structured randomised routine (McCombie and Wilkinson, 2002) guarantees a process to search 
for better solutions. Much of the backbone theory of GA, including a comprehensive description of the subject, 
is available in the magnificent work by Goldberg (1989). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 1:  Research focus using CAD systems for integrating design and construction information 

The way forward is to improve current 4D visualisation models and to simulate dynamically the space-
connectivity elements when visualising the construction of ‘time-based’ events and the three-dimensional space 
interactively. Space-connectivity in this context subsequently describes those elements affecting the success in 
translating both the status of building 3D productsprogress and the site-space utilisation and change over time. 
For example, AutoCAD utilises model and data integration (Fig. 1) through the Open Database Connectivity 
(ODBC) and stores the CAD graphical information in the project database (Mallasi and Dawood, 2002). Many 
research efforts reported the integration of 3D-CAD building components with schedule information. Songer 
(1997) investigated the area of 3D animation and how it can facilitate a clear evaluation of a project schedule 
better than the 2D-paper information. Other 4D systems have been covered thoroughly in: the OSCONCAD 
integrated construction environment (Marir et al. 1998) and the CONPLAN (Hassan, 1997), a knowledge-based 
system to identify and analyse buildability or constructability problems. While some systems improve on the 
concept of design-cost schedule integration, others 4D tools developed by CIFE automates the visualisation of 
construction schedules (McKinney and Fischer, 1998). 

This successful automation in CAD is widely applied in many research, and lead into the development of next 
generations CAD systems. Kunigahalli et. al. (2002) generated the concrete placement process by extracting the 
topological relationships of floor slabs from CAD model of a given floor slab. Complete building geographical 
information can be retrieved from the CAD model like the components coordinates’ values, the components 3D 
dimensions, geometrical adjacency relationships, volumes, and location data. Other models used GIS for 
dynamic site layout planning (Zouin and Tommelein, 1999; Elbaltagi, et. al., 2001). Similarly, Deb and Gulati 
(2001) have utilised GIS software on top of CAD to acquire quantities of work takeoff and integrated cost 
estimates with material layout planning. Akinci et. al. (2000) formalised an approach for space-time conflict 
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analysis in 4D and defined construction workspace types, and taxonomy for classifying spatial conflicts during 
construction. Thabet and Belivau (1997) modelled the progress of construction processes by defining a hierarchy 
system of component blocks that in turn represents construction phases. Their model requires the planner to 
manually specify the components block and perhaps produce a detailed schedule of work. However, Akbas et. al. 
(2001) identified the need to improve the phasing approach to provide more effective 4D visualisations, i.e. 
‘construction zone generation’. He proposed a product model where spaces are combined together to represent 
the production rate for an activity. However, detailed geometry is necessary for visualising smaller areas within 
the zones. Hierarchical product space models were utilised to represent the level of detail in the project schedule 
(Xu and AbouRizk, 1999; Mallasi and Dawood, 2002) 

2.  MECHANICS OF NATURAL EVOLUTION AND KEY TERMINOLOGY 
Goldberg (1989) appears to have first suggested the subject of simple GA for problems optimisation. A simple 
GA technique is developed based on the mechanics of natural selection and natural genetic evolution. The 
general idea of this algorithm is straightforward and easy to implement in space-time conflict minimisation. It 
deals with the essence of the natural selection process and has an evolution analogy as in nature. McCombie and 
Wilkinson (2002) simplified the difference between simple GA and a conventional optimisation search in that 
the evolution of solutions towards optimal values only requires the objective function information. 

This research focuses on the efficiency of the optimisation process by utilising simple GA to achieve the genetic 
evolution. Building on Goldberg’s formation of the simple GA, a brief outline about the simple GA process is 
given here: 

1. The beginning of the adaptation process uses a non-overlapping population in the initialisation stage, 
which means in later GA runs the entire new populations replace the earlier ones. 

2. Following the generation of the initial population, the members are then evaluated and assigned a 
fitness value based on a multi-criteria function. 

3. A selection mechanism, such as the tournament selection is often used due to its popularity. The 
resultant strong members in an intermediate population are picked to be processed and produce the 
new population. 

4. A single-point crossover operation is applied to this intermediate population, with their expected 
probability value. Typically, this causes the best ‘mated’ members to converge more quickly towards 
better and better solutions (Rekiek, 2001). Therefore, the aim of applying the single-point on two 
individuals is ‘to produce new offspring where successful ones have already been found.’ The 
problem is, however, that if the crossover does not sustain good genetic material from crossed over 
mates to offspring members then the generic evolution will not execute more than a stochastic search. 

5. A small portion of the population is mutated by means of the natural evolution method. The existing 
mutated parents are likely to be modified, hence producing acceptable individuals to form the new 
generation. 

6. The algorithm then executes in repetitive loops (selection, reproduction, crossover and mutation), 
until it reaches the stopping criteria, such as a user-defined number of maximum generations, or until 
a satisfactory solution is arrived at. 

How does GA mechanise the natural evolution? How does it work? The answer is heavily established around 
constructing a representation of a domain problem in a simple chromosome-like data structure (in biological 
terms, it is the DNA structure). The designer of such a chromosome-like data structure is required to define the 
problem, the goal, and the method of reaching the goal. The GA mechanism, thereafter, works on the genetic 
structure of certain number of chromosomes, which facilitates the reproduction of each generation, as described 
by Rekiek (2001). For the benefit of the reader, such a mechanism is further introduced using the terminologies 
presented in Table 1. 
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Table 1: Terminology of natural life evolution and their correspondences in artificial computing models (Renner 
and Ekart, 2003) 

Terminology in Natural Life Equivalent in Computational Terms 
Individual Solution to a problem 
Population Collection of solutions 
Fitness Quality of solutions based on their fitness function 
Chromosome Representation of a solution 
Gene Part of representation of a solution 
Crossover Binary search operator 
Mutation Unary search operator 
Reproduction Reuse of solutions 
Selection Keeping good sub-solutions 

 

The strength of this mechanism lies in its ability to evolve near the optimal solution to a complex problem, 
without the need to search unnecessary spaces. Figure 2 illustrates this adaptive process. Then the genetic 
evolution targets the fitter individuals on the basis of their fitness measure. These fitter individuals are encoded 
as solution space represented and coded in genotypes or chromosomes (Renner and Ekart, 2003). 
Correspondingly, they are evaluated based on how well they are expected to perform in solving the designed 
problem. The next stage considers that the less fit individuals die and keeps the strongest ones. More precisely, 
strong individuals (better solutions to a problem) survive for the next generation and reproduction where they 
inherit their strong survival properties to the next generations. 

 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

FIG. 2:  Schematic of a Genetic Algorithms’ evolutionary process 
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3.  ADOPTING GA MODEL FOR WORKSPACE CONFLICTS 
The dynamic nature of rehearsing construction activities’ workspace has been demonstrated in research work 
shown its ability to evolve in many different interesting shapes. Mallasi (2006), elaborated on this topic 
explaining such ability is a result of the combining three variables associated with each activity. These variables 
are: the execution of work direction, three resource distribution types and weekly quantity of work which are 
part of the dynamic 4D simulation. This section describes the main approach for embedding these variables the 
genetic model which will evolve different activity workspace usages across time progression. 

To do this, the approach must specifically include the generic strategies belonging to a construction activity as 
the main design variables for the GA model structure. In technical terms, this seems to be a difficult task to 
undertake, as there are not so many research investigations to support this area. The only research studies that 
share similar views for constructing GA model for space-time analysis is of site layout and material delivery 
planning research. Cheng and O’Connor (1996), for example, developed spatial analysis of temporary facilities 
and as a result designed the site layout manually. Some spatial strategies were advised in the author’s work such 
as the proximity index as an objective function to assess the optimal layout location between the site facilities. 
Another example that Zouein and Tommelein (1999) addressed was the hard and soft constraints, by which the 
feasible positioning of resource objects and facilities was determined. 

Table 2:Use of GA to minimise wastage of cut material in the manufacturing process 
The GA model and chromosome content after Babu and Babu (2001) 2D nested sheets 
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Sheet 3 

 
 

Area utilisation = 90% 

Sheet 3 

 
 

Area utilisation = 85% 

Sheet 4 

 
Area utilisation = 79% 

Sheet 4 

 
Area utilisation = 92% 

Table 2 illustrates these similarities between Babu and Babu (2001) approach and the one proposed in this work. 
It is noticed that the nested 2D shapes have different sizes, orientation, location, and sequence relationship, while 
occupying the same sheets. The material waste (area utilisation) is minimised by GA searching the optimum 
utilisation of sheet area. The case is similar to this research study - that is to reduce the site space-usage occupied 
by the activities’ execution workspaces. GA acts as a means for rehearsing different scenarios while evaluating 
the site space-usage and searching for best solutions in the genetic generations.  

One important shape optimization technique can be derived from the manufacturing industry. The approach of 
‘cutting 2D-shaped parts from 2D metal sheets with minimum wastage of material’ is addressed here (Babu and 
Babu, 2001). The researcher’s aim was to employ the GA model for minimising the wastage of cut material (see 
Table 2) based on the cutting process of the 2D parts of a metal sheet (Table 2). In manufacturing, the task of 
arranging the 2D parts on the metal sheet is known as nesting. In a way, there are two similarities between the 
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approach of the ‘nesting’ cutting process and the dynamic 4D space simulation proposed in this paper. They are: 

1. In the case of the irregular 2D part to be cut and arranged on the metal sheet, the best nesting (or 
gathering) sequence of the 2D parts is a similar process to the execution strategies of construction 
activities. While the cutting sequence and process is applied on the 2D metal sheets, the sequence of 
construction activities assembles the 3D product on the construction site. 

2. The 2D parts and sheets are represented in discrete form with integer genetic programming coding to 
make the GA optimisation faster in generating nested patterns of the parts and sheets. Equally, a one-
schedule multiple-execution strategies approach proposed in this work may provide different 
execution logic towards minimising site space-usage. 

The next section presents the site space-usage fitness function used in the GA model. 

3.1  Formulating site space-usage fitness function 
Efficient optimisation of the site-space usage (fA(scr)) problem is achieved by coding the problem in the 
chromosomes representing each expected construction execution strategy. Since the basic idea is to combine 
many what-if execution scenarios for a given schedule of activities, the site space-usage and utilisation is 
explored using a number of criteria to establish the fitness function and assess the quality of each scenario. The 
GA optimisation process calculates the associated fitness values with every chromosome that may correspond to 
either a good or bad construction scenario. The vast number of combined scenarios is explored through an 
efficient genetic search strategy. The GA optimisation process, for example, evaluates the fitness function 
fGA(scr) for chromosome ‘A’ and performs a space criticality assessment fA(scr) for the specific chromosome. 
Furthermore, through many generation runs, genetic evolution is able to find the best execution scenario for the 
executed construction activities. It also obtains the individual that processes the minimum conflicting space 
volumes (least space criticality). To achieve this minimisation, a space-usage to fitness transformation is applied 
according to the scaled finesses equation: 

 Minimise fGA(scr)= C(max) - fA(scr), when fA(scr) < C(max)   … (1) 

 Where: 

 fGA(scr): the fitness function value for chromosome ‘A’ 

 C(max): is coefficient to achieve the minimisation 

 fA(scr): is the project space criticality multi-criteria fitness function 

The strength of the fitness function fA(scr) contains an evaluation criteria with minimum conflicting activities. 
The individual that process the least space criticality is found by applying the following minimisation fitness 
function: 

 Minimise fA(scr) = f(co) + f(r) + f(no) + f(st) + f(cr)  …(2) 

 Where, during specific monitor date: 

 f(scr): is the project space criticality of activities n. 

 f(co): is the total conflicting space percentage of activities n. 

 f(r): is the total space clashes ranking for of activities n. 

 f(no): is the total number of activities conflicting. 

 f(st): is the total conflicting space types (e.g., product, storage, equipment path, etc) of activities n. 

 f(cr): is the critical activities n. 

As will be described in later sections, fitness values are obtained for each of these chromosomes based on 
Equation 1 above, which reflects their artificial performance and quality of the solution. The randomly generated 
GA execution scenarios that hold the minimum space criticality fA(scr) are considered as the strong ones with a 
higher fitness value (Babu and Babu, 2001).  
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3.2  Encoding what-if scenarios in the genetic model 
Computationally, it is crucial to formulate a proper representation when encoding a particular problem in a 
genetic model. In fact, most applications of GA to construction engineering problems describe the coding of the 
string as the critical task in genetic programming (Killmaier and Babu, 2003) because the entire process to solve 
the problem depends on it. Whether the representation is a string of bits, or integers, it must have the basic 
structure for GA operators to search in. In other words, designing the GA model needs to embed the defined 
activity spatial parameters to perform an intelligent search algorithm. The genetic approach constituted here, 
therefore, produces a chromosome that holds:  

1. Any of the twelve execution scenario for the given construction activities (Mallasi, 2006). 

2. An activity execution work direction. 

3. The activity work rate distribution. 

The chromosomes structure for a given construction schedule contain: the project activities, the assigned 
execution pattern, and the work rate distribution type, in the string code (Fig. 3). The idea is to encode only the 
little information needed to represent the solution to the space-time conflicts problem. This representation 
assumes that the set of precedence relationships are static as they are defined in advance in the project schedule 
and do not evolve. However, they can still constrain the corresponding execution pattern’s relationship between 
one activity and another. Figure 3, for instance, shows the chromosome mapping of the five project activities 
with their associated coded parameters. The ‘A1’ represents the activity name, ‘WE’ represents the execution 
pattern of type East-West, and ‘LH’ refers to the Low-High work rate distribution type. This way, each 
chromosome (a project schedule) is encoded as an alternate scenario for executing the site operations (execution 
strategy). 

 
 
 
 
 
 
 
 
 
 
 

FIG. 3: Representation of project schedule activities in the encoded chromosome structure 

3.3  Execution patterns semantics 
A stand-alone tool was developed to communicate with AutoCAD 2004 using VB.NET, to represent a universal 
methodology for modelling the activity execution patterns. As seen in Figure 4, the first semantic of an activity 
execution patterns is the Progress of Work (PW) direction and it is presented in the form of four cardinal 
directions such as North, South, East and West. The second semantic is the activity Execution of Work (EW) 
direction that is perpendicular to the Progress of Work direction. The combination effect of EW on the PW 
produces the rest of the eight sub-cardinal directions. For example, the execution pattern North-South-Access2 
forces the PW to commence from the North to the South, with priority access point for EW from the East. The 
spatial reasoning algorithm developed in the system generates a total of twelve execution patterns. It interprets 
geographically the location where activities are executed. The 3D geometrical components geodetic coordinates 
are classified approximately into longitude and latitude location (X and Y coordinates). Such classification is 
achieve by using ‘spatial indexing’ (Goyal, 2000) algorithm for X and Y values from the database paying 
attention to priorities for PW, EX, and access point. 
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FIG. 4: Illustration of the Execution Patterns semantics in the developed 4D system interface 

The third semantic considers the dynamic simulation of the Quantity of Work (QW) in a weekly basis. This 
semantic is included to overcome and automatethe tedious effort from manually breaking and grouping the 3D 
CAD model into building blocks or phases. More specifically, this approach graphically quantifies the amount of 
work required per week for an activity and visualises the appropriate number of building components in 4D. The 
unique feature in the system uses three types of quantity take-off they are: by area, by volume, and by unit. This 
semantic calculates the total QW for activities from the database and uses the QW per week formula as illustrated 
below in Eq.3 (Mawdesley et. al, 1997).  

 QW(pw) = QW(tot) / AD(tot)     …(3) 

 Where: 

 QW(pw): is the quantity of work calculated per week. 

 QW(tot): is the total quantity of work value obtained from the database. 

 AD(tot): is the total activity calendar duration obtained from the schedule Information. 

The QW semantic is useful for identifying per week the amount of finished work, progressing work, and the 
unfinished quantity of work, and hence visualises the occupied space graphically (refer to Eq. 4,5, and 6). 

 QW(fin)= QW(pw) (MonWeek - Week )   …(4) 

 QW(prog) = QW(pw)      …(5) 

 QW(unfin )= QW(tot) - (QW(fin) + QW(prog))   …(6) 

 Where: 

 QW(fin): is the quantity of finished work calculated at monitoring week (MonWeek). 

 QW(prog): is the quantity of progressing work. 

 QW(unfin) : the quantity of unfinished work calculated at monitoring week (MonWeek). 

3.4  Activity-product assembly sequence constraints 
There are many techniques for identifying components’ assembly models in the manufacturing industry that 
might be useful for the 4D visualisation development in this research. A summary of these techniques is found in 
Liao et al. (1995) where: one utilises a graph-based assembly relationships based on the geometrical edges of 
components; another generates a tree-like structure model exemplifying the mating features between a 
mechanical components; and the third proposes a hierarchical structure describing the assembly-properties for an 
automated assembly planning. An example of applying components’ assembly is found in the manufacturing 
computer-aided planning system proposed by Zhiliang et al. (2002), which uses the geometrical features input 
from a database to represent the assembly of the cladding panels and the construction process in high-rise 
building facades.  

Although the above techniques vary and are application-specific to their domain area, the underlying concepts 
show the benefits of developing the Assembly Sequence Constraints (ASC). In this research, ASC differs from 
the above in that it allows control of the assembled products. While a scheduled programme of work represents 
the dependency logic and relationship (e.g. finish-to-start) between activities, all products belonging to an 
activity can be further represented in many different assembling sequences. The developed ASC considers both 
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the technical schedule-related and geometrical spatial-related constraints when treating the building as a whole 
product.  

This work, therefore, proposes to use an ASC model that is built on the product’s physical constraints and 
reasoning about its geometrical attributes input from the database. ASC is a geometrically robust algorithm 
implemented to constrain the construction of products and logic dependencies. The principal concept separates 
the assembly relations into two types of configurations: the first is for major support-to-support types such as the 
columns supporting a floor slab, and the second is for minor support-to-support types, like main steel beams 
supporting the sub-beams’ structure. These two configurations are clarified by studying the example in Figure 5 
by showing a simple steel frame structure. The example shows how the products’ assembly relies on the 
supportability configuration, where the support_by elements are reasoned to the availability of their support_to 
element. Firstly, reasoning such as: if the pad foundation activity is finished, then it satisfies the relation to 
support_to the steel columns elements (foundation-column relationship). Secondly, when the steel beams 
activity is progressing then the support_by relation should be satisfied by the progressing/finished steel columns 
activity (main beam-column relationship).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. 5: Geometrical adjacency algorithm for ten support-to-support types 

 

Although previous research used geometrical constraints in AEC modelling and designs, this research utilises the 
constraints detection to verify adjacency relationships between building components (such as a column-beam or 
foundation-column). Anderl and Mendgen (1995) believe that the supportability detection can sometimes be 
problematic due to the following reasons: 

1. The number of elements required for checking the adjacency relationships is vast and could reach to 
tens of thousands. 

2. In the 3D CAD model, with components numbering tens of thousands, the possibilities for confusing 
the supportability detection is very high and might not be required. 

3. The variations of the overlapping adjacency detection box (the dashed box in Figure 5) depend on the 
tolerance factor around each component in the 3D CAD model and could generate a number of 
undesirable supportability classifications. 

 

Column-column 
support type 

Column-beam 
support type (a) 

Column-beam 
support type (b) 

Foundation-column 
support type 

Adjacency algorithm for support types 

Outside support     
(1) IF P1 ≤ P1c ≤ P2 

AND                       
P1 ≤ P2c ≤ P2  

North support     
(2) IF P1c ≤ P2 ≤ P2c     

 
East support     

(3) IF P1 ≤ P1c≤ P2 
 

South support     
(4) IF P1c ≤ P1 ≤ P2c      

 
West support     

(5) IF P1 ≤ P2c ≤ P2 
 
 
 

North support     
(6) IF P1 ≤ P21c ≤ P2 

 
East support     

(7) IF P1c ≤ P2 ≤ P2c 
 

South support     
(8) IF P1 ≤ P2c ≤ P2 

 
West support     

(9) IF P1c ≤ P1 ≤ P2c 
 
 
 

Inside support     
(10) IF P1c ≤ P1 ≤ P2c 

AND                           
P1c ≤ P2 ≤ P2c  

 Key: Support_by element Support_to element Extended box with tolerance for 
adjacency detection 
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In order to solve such supportability detection problems, the geometrical reasoning algorithm is simplified here 
to find out only major and minor support-to-support types. The implementation of this algorithm is described 
above in Figure 5. 

4.  APPLICATION OF THE EVOLUTIONARY OPERATOR 
The genetic optimisation cycle introduces new solutions within the search space and is carried out by the 
application of standard genetic operations. In many of its aspects, these operations, in turn, imitates a step-by-
step natural genetic evolution. The use of these genetic operations is defined here through the population 
initialisation, crossover, and mutation operations, specific to the represented optimised problem. Moreover, the 
specific characteristics of the selection mechanism between the surviving individuals are also specified. 

4.1  Application of the evolutionary operator 
Osman et al. (2003) indicates that initialisation of the first population would tremendously influence the success 
of the GA in searching its goal. From this perspective, it is vital to consider two particular aspects in the 
population initialisation: one is the population size (number of individuals) and the other is the generation 
strategy. Firstly, regarding the population size, research that utilised GA in site space planning (Marasini, 2002) 
showed that a higher population size (100 to 300) converges the objective function faster at the first 50 
generations. The research here follows the approach proposed by Killmaier and Babu (2003) where a small size 
of generations is chosen as the rehearsed activities in the given construction schedule. Research in GA (Marasini, 
2002) acknowledged that working with a very large number of population sizes might bring about the following 
consequences on the GA evolutionary search process: 

• It greatly increases the time required for generating a new population. 

• It makes the GA reach more optimum solutions and the convergence rate would be very slow. 

For the GA in this work to perform its blind search, the evolutionary process is founded on the user-input of GA 
parameters (user-defined) and incorporated at the beginning of the GA run (Osman et al., 2003). The GA global 
search starts by randomly initialising a number of genetic individuals in the initial population. Although the large 
population size from 100 to 300 ‘has great effect on converging the problem to optimal value’ (Killmaier and 
Babu, 2003), the computational run time is enormous (Mallasi and Dawood, 2003). In this study, the size of a 
small population is accepted and generated at random, but optionally; either the user-input number of 
individuals, or what is considered as equal to the length of the coded string (Killmaier and Babu, 2003). In the 
present work, the length of a coded string containing ten activities is considered ten. Consequently, a small 
generation size is expected to range between 20-50 individuals, which ‘may provide an adequate visualisation of 
the GA’ while abiding by the computer resource available (Babu and Babu, 2001). The element of randomness 
ensures the complete freedom for the blind search in formulating solutions that suit the optimisation process of 
the problem. An example of data related to each individual (or chromosome of scenario) is stored in the Initial 
Population Pool table within the MS Access database (see Table 3).  
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 Table 3: Description and data types of the Initial Population Pool table 
 Initial Population Pool table 

Field Name Data Type Description Example 

ID Integer number Individual ID number 1 

PopulationNo Integer number Generation ID number 1 

Act_1 Text First activity name in the encoded chromosome 00-In situ concrete pad 
and strip 

Act_1_Pattern_Name Text The execution pattern name East-West 

Act_1_Work_Rate Text The work rate distribution type High-low 

Act_n Text Activity ‘n’ name in the encoded chromosome -- 

Act_n_Pattern _Name Text The execution pattern name -- 

Act_n_Work_Rate Text The work rate distribution type -- 

Max_Space_Conflict Integer number Calculated volume of the conflicting space 200 m3 

Max_Critical_Space Integer number Percentage of space criticality calculated based on 
the multi-criteria function % 40 

Monitor_Start_Date Calendar date The start date of the GA simulation run 8/31/1999 8:00:00 AM 

Monitor_End_Date Calendar date The end date of the GA simulation run 9/27/1999 5:00:00 PM 

Fitness Integer number The fitness of each individual based on the multi-
criteria function transformation % 40 

ProbSelect Integer number The probability for selecting individuals of solutions 3 

ExpecCount Integer number The expected count for each individuals of solutions 
from the Roulette Wheel 

2 

4.2  Selection mechanism for replacing generations 
The natural selection mechanism of individuals takes place effectively, as a consequence of generating the initial 
population (including the new generations) and measuring the fitness function of all the individuals. In general, 
GA considers the Roulette Wheel technique as the most popular of the other selection mechanisms, including: the 
stochastic methods, the tournament selection, and the ranking method (Goldberg, 1989). The Roulette Wheel 
technique inherited its name from the cash slot on the wheel and is used in this research work. The shared 
perspective between the Roulette Wheel mechanism and natural selection is that large slots in the Roulette Wheel 
corresponds to individuals with high fitness values in GA, which follows the Darwinian survival of the strongest 
theory. A number of strings are therefore selected from each generation for replicating a new generation 
(reproduction).  

The process of selecting the strings to the reproduction pool (often cited as the mating pool) is proportional to the 
strings’ probability count (Pcount) of each individual. The Pcount is calculated using Equation (7) below, where the 
fitness value fGA(scr) of each individual n is divided by the average of finesses in a population. The selection 
mechanism of candidates for reproduction commences once the Pcount of each individual in the entire population 
has been computed based on the Roulette Wheel. In fact, as Babu and Babu (2001) explained in their approach 
for using GA in the 2D sheets’ nesting problem, ‘the main purpose of reproduction is to preserve the good 
individuals in the population.’ In this operation, a higher priority of the selection of individuals is expected for 
strings with higher fitness values. The subsequent procedure, after replicating a generation, applies a crossover 
operation on each pair of strings. 

 

  

€ 
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n =  1

n
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n

∑ Individual)   … (7) 

4.3  Crossover and mutation adjustment of chromosomes 
In the current research, each pair of chromosomes is crossed over to generate two offspring chromosomes 
(children). Then, a mutation operation is applied to add a modification to the given offspring. Figure 6 shows the 
sequence of steps for reproducing the new offspring and necessary changes to the chromosome structure. These 
two basic operators are applied on pairs of chromosomes by utilising user-defined crossover and mutation 
probabilities. This mechanism corresponds with the scenario of a natural evolution of life. A simple single-point 
crossover is employed in order to ‘minimise the disruption of the genetic schemata,’ explained Osman et al. 



ITcon Vol. 14 (2009), Mallasi, pg.  

 

166 

(2003). The schemata theory (after Goldberg, 1989), mainly refers to the parts of the solution that, increasingly, 
receive a number of copies over many generations. It is observed that a crossover operation provides close 
schemata across the solution space. 

 

The construction schedule 

 

- Compact Earth 
Filling activity 
(A4) has no 
dependency 
constraints.  
Therefore, the 
execution strategy 
is flexible. 

Step No. Adjustment applied to string structure Description 

1) Single-
point 
crossover 
site 

 - Parents 1 & 2 are 
subjected to single 
crossover operation at 
site 4 
 
- Project activities are 
shown in the bold boxes 
part of the chromosome 
(e.g. A1) 
 
- Execution patterns and 
resources distribution 
values are shown in the 
light boxes (e.g. SN for 
South North, and U for 
Uniform distribution) 

2) Children 
(offspring) 

 
- An example of child as 
result from crossover 
operation 

3) Mutation 
operation  

- Two mutations applied 
on A4 and A5 depending 
on their construction 
execution logic and 
activities dependency 
constraints obtained 
from the construction 
schedule 

FIG. 6: Example chromosome structure, subjected to crossover and mutation operations 

As indicated above, the mutation operator checks the individuals in the offspring to satisfy both spatial and 
schedule constraints. This means that mutation applies on a single individual at a time. Numerous researches 
claim that mutation plays a major role in natural evolution, being a sub-level of crossover. Furthermore, mutation 
is very important to preserve diversity in the population and sometimes produces different children from their 
parents. It is noticed that, in such cases of producing new children, new genetic information is passed into the 
population (Osman et al., 2003). 
The step-by-step illustration in Figure 6 above begins by a single-point crossover applied on mates (see Step 1) 
with a randomly selected probability value. The result of the crossover operation produces a new execution 
pattern sequence for the construction project. The selection operator is applied here to effectively create children 
solutions from parent ones (Figure 6, Step 2). A single-point crossover, for example, is applied on parents 1 and 
2, at site 4. It is assumed that the invalid pairs selection resulting from crossover of the same parent as 

A1 NS U A2 NS U A3 NS U A4 NS U A5 NS U 

A1 SN U A2 SN U A3 SN U A4 SN U A5 SN U 

Site 4 

Site 4 
Parent 2 

Parent 1 

A1 NS U A2 NS U A3 NS U A4 SN U A5 SN U 

Child 1 

A1 NS U A2 NS U A3 NS U A4   A5   

A1 NS U A2 NS U A3 NS U A4 SN U A5   

A1 NS U A2 NS U A3 NS U A4 SN U A5 NS U 

Mutation 1 Site 

Mutation 2 site 
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‘unhealthy’ chromosomes. These solution children from crossing-over (strings) are mutated allowing only a 
correct (healthy) solution to remain in the reproduction pool. In other words, the mutation operator checks the 
activity execution pattern logic constraints. As illustrated in Step 3 of Figure 6, A4 is considered free of 
constraints (construction dependency logic), and therefore accepts the new applied execution pattern of type SN. 
However, A5 is constrained to A3 by finish-to-start dependency according to the construction schedule. As a 
result of the mutation process, A5 is assigned a similar execution pattern type as A3. When the 4D visualisation 
is executed, then A5 inherits the same execution strategy as A3. It is noticed in this example that the mutation of 
children applied here preserves both the validity of the construction activities’ execution logic, and the scheduled 
activities’ dependency logic. 

4.4  Illustrative example: three schedulled activities’ representation 
To illustrate the application of the proposed genetic model, an example of a construction schedule during one 
week showing three activities is considered. The example in Figure 7 is ‘classical’ and enhances the explanation 
of the problem because it is suitable for general representation purposes of the modelled genetic information. It 
attempts to illustrate the dynamic visualisation of the what-if execution scenarios for a given schedule. In this 
example, the specifications are: (1) the construction schedule including three activities (Steel Columns, Compact 
Earth, and External Brick Walls), (2) the 3D CAD construction/product model, and (3) the core activities’ 
dependencies relationships. 

There are three selected demonstrations considered in the working example of execution scenarios (see Figure 7 
demonstrations 1, 2, and 3).  Three objectives are examined in each case such as: the encoding of scenarios in the 
genetic string, the approximate evaluation of the site space-usage for each case, and highlighting the solution 
with minimum space criticality. As the site spatial configuration keeps changing with each established case, the 
focus is on the simple volumetric workspace conflict detection. From an evolutionary genetic perspective, the 
effect of altering the execution pattern and representing this alteration in the genetic code is considered in the 
illustration. Some conflicting workspaces are invalid because they belong to the same activity. For example, the 
conflict between an occupied plant-workspace associated with activity A occupied workspace. That is, some 
solutions might be depicted in the scenarios and are excluded for their unacceptable activity-to-activity 
construction relationship. The string encoding refers to the transformation of the selected three activities in a 
graphical depiction.  

The example in Figure 7 exhibits varied strings encoding for each scenario. In case one, an approximate space 
criticality fA(scr) value of 0.2 (non-critical space) is indicated as a result of the genetic structure of String 1, 
which is the best solution when interpreted graphically in 4D simulation. In the second case, String 2 is another 
alternative scenario of executing the given schedule, but with the highest space criticality value of close to 0.7 
(critical space). The main reasons for such an increase of space criticality are because of the increase of 
conflicting volume between occupied workspaces and the increase in the number of conflicting activities (three 
construction activities in this case).  The genetic minimisation is capable of finding the best execution scenarios, 
by altering the different combinations of scenarios in the genetic structure. At the same time, this results in an 
alteration in the site spatial configuration and minimise the fA(scr) formulated earlier. 
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FIG. 7: One construction schedule encoding in different dynamic scenarios 

Graphical and non-graphical specifications required for critical space dynamic optimisation 

General arrangement of the 2D floor 
plan 

 
 

Detail of occupied 
construction 
workspace 

 
 

Construction Schedule 
A1 

 

A1 
 
A2 
 
A3 
 
A4 
 
A5 
 

Generations of site space usage plans (what-if 
scenario) and evaluations 3D CAD construction 

model 

Steel Columns NS U Compact Earth NS U External Walls SN U String 1 (solution encoding) 
 

String 2 (solution encoding) Steel Columns NS U Compact Earth NS U External Walls SN U 

String 3 (solution encoding) Steel Columns WE U Compact Earth EW U External Walls EW U 
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5.  EXPERIMENTATION METHOD AND EVALUATION 
Evaluation techniques applied to decision support systems have evolved among current research projects (Yu 
and Skibniewski, 1998) and produced a number of evaluations. In a broad sense, these techniques are classified 
under two categories: qualitative and quantitative.  On one side, the qualitative technique focuses on the quality 
of the results involved in the evaluation. Further merit of this type of evaluation is that it ‘may provide an 
explanation for evaluation results.’ However, the evaluation is considered to be subjective and unstable because 
many external conditions have impact on the user perception. On the other side, the quantitative technique 
mainly provides an analysis of statistical or data comparison against the test case. It is understood, however, that 
a formal quantitative technique does not provide an explanation for the human decision-making process. This is 
mainly due to the lack of human expert evaluation. Nonetheless, quantitative methods found admiration amongst 
researchers, in evaluating construction technologies, including those utilising simulation techniques and artificial 
intelligence, for the following reasons: 

• It is sufficient for technology assessment and selection. 

• It enables specific appraisals of how the technology performs, or is being used in terms of the 
time/effort required by users and assessing the speed of task achievement. 

• Its objective is towards the decision-making, which helps in evaluating alternative technologies 
easily. 

• It facilitates an understanding of complex systems, even for individuals with limited experience or 
knowledge of the designed system. 

From the above insight into the evaluation techniques, it is anticipated to conduct a quantitative evaluation of a 
context to experiment with GA model implementation. 
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FIG. 8: The School of Health case study project 

5.1  Compiling empirical data for the case study 
The School of Health project data was utilised throughout the execution of the 4D system prototype evaluation. 
The project construction mainly consisted of four levels of steel frame structure. The in-situ concrete hollow ribs 
are utilised in the flooring. Figure 8 shows a 3D CAD representation and the base project schedule. The project 
is chosen because it exemplifies common types of construction projects in the UK. All project information was 
obtained from different resources such as: 2D-CAD design/construction drawings, method statements, bills of 
quantities, project specifications, historical progress reports and the actual construction schedule. 
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The original contract documents were compiled to develop an integrated 4D model components in accordance 
with this research framework presented in chapter three. The following two points sum up the output of the 
compilation process of project data, which is required as the primary data input for experimenting with a case 
study project: 

• A populated relational project database: This holds the core of the project construction 
information and is saved in the relational database tables. The proposed UNICLASS (Mallasi, 
2004) standard serves as the product and processes classifier (unique ID). The database also 
includes the extracted geometrical and non-geometrical information to exemplify all product and 
process details. All product information was obtained from the 3D CAD model, and process data 
was retrieved from the MS Project schedule. The standard space resource for each construction 
activity was also assigned in the original project schedule then saved in the relational database. 
The 3D model components are modelled by utilising the extrusion technique of the 2DPolyLine 
and all the product components are organized in layering convention, in accordance with BS 1192-
5. 

• Project resources: Information of plant and equipment supplied by the contractors and sub-
contractors associated with each process were collected. The 3D model included abstract graphical 
representation of plant (such as mobile crane, concrete pump, fork lifts), associating their relation 
to each construction activity (resource allocation). In order to visualise the impact of support 
operations on the space analysis, prefabrication compounds, staging and storage areas have also 
been provided and predefined in the 4D model. 

5.2  Evaluation of GA application 
The GA model described in the previous sections is applied here to investigate how well the genetic model 
performs in minimising the space-time conflicts. It was suitable to choose a specific period during the original 
construction schedule of the case study, compare its actual space criticality value and measure the output of the 
developed genetic operations against the generated what-if, execution scenarios. Table 4 summarises the 
information regarding this case study, showing the part of the schedule that includes the activities being 
rehearsed and the corresponding 3D-CAD graphical layers data. In this work, the proposed evaluation method is 
built upon the characteristics of GA test-runs, established in Killmaier and Babu (2003) and Babu and Babu 
(2001). The authors’ method, in association with the GA method of this research yields the following important 
facts for the optimisation phase: 

• Size of the initial population: In each GA test run this is considered less or equal to the number 
of project activities being rehearsed. A maximum number of eight individuals in each population 
is chosen for all GA test runs according to Babu and Babu (2001). This is certainly suitable in the 
GA test-runs because it has a certain influence on the convergence to solutions and the 
computational processing expense. 

• Number of generations: On initial test runs, it is decided that this should be between 50 to 100 
generations. This choice of a small size for generations is, arguably, endorsed by the fact that an 
experimental 4D weekly simulation is computer-power hungry. It lasts around three minutes to 
simulate a five-week construction scenario (see Table 4). 
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Table 4: The School of Health case study project 
Part of the scheduled activities and their associated CAD product data 

Processes view 

 
A-F134_G221_G311-JE051-M-010G-_-F-Floor 

A-F134_G261_G311-JG10-M-010G-_-F-Columns 

A-F13601_G222_G311-JE051-M-0101-_-F-Floor 

A-F13601_G261_G311-JG10-M-0101-_-F-Columns 

A-F13601_G262_G311-JG10-M-0101-_-F-Beams 

A-F137_G222_G311-JE051-M-0102-_-F-Floor 

A-F137_G261_G311-JG10-M-0102-_-F-Columns 

A-F137_G262_G311-JG10-M-0102-_-F-Beams 

The 3D –CAD products layers (BS 

1192-5 and UNICLASS) 

A-G21_G311-JE051-M-0100-_-F-FoundationPads 

Proposed Approach for AG Runs 

General Run 1 Run 2 Run 3 

   - Total execution patterns:  12 randomly 12 randomly 12 randomly 

   - Resource distribution: Uniform type 3 Combined types 3 Combined types 

   - Space resource standard: Maximum Maximum Minimum 

   - Number of generations: 60 80 80 

   - Randomisation of generation: Every 10 Every 3 Every 7 

   -  Approximate total CPU processing time: 20 hours 26 hours 26 hours 

   - Mutation probability: 0.3 0.4 0.6 

   - Crossover probability: 0.6 0.2 0.5 

General 

   - Simulation start/end date: 22/ 09/ 1999 to 20/ 10/ 1999 

   - Approximate total simulated weeks: 5 weeks 

   - Approximate CPU time per generation: 20 minutes 

   - Initial population size: 8 individuals 

   - Combined multi-criteria function ( ) weights: = 0.3, = 0.1, = 0.25, = 0.15, = 0.2 

 

• Three GA test-runs: This is applied to achieve near-optimal solutions. To meet this goal, the 
information included in the genetic programme picks up the relevant dynamic workspace planning 
variables and heuristics for the best execution strategy. These test runs are consequently executed 
on the three GA simulations by altering the variables as presented in Table 4. 
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1. The first run attempts to rehearse the twelve execution patterns, keeping resource distribution 
uniform and the space resource standard to maximum. 

2. The second run utilises different resource distributions assigned to the construction activities, 
but still maintains the maximum value for the space resource standards. 

3. The third run, basically, analyses the effect of changing the resource standards to their 
minimum values to optimise the spatial conflicts. 

• The weighting values: For each coefficient in the CSA multi-criteria function value, fA(scr) is 
made as illustrated in Table 4. It should be noticed that different values are estimated measures for 
each criterion governing a priority scheme (both workspace and schedule related). By doing so, the 
optimisation of the space-time criticality function fA(scr) is assessed. Although these coefficients 
could be obtained through trial and error, they are assumed here, for the purpose of evaluation 
(user defined values); 

5.3  The best execution strategy 
From one point of view, the optimisation results at first inspection indicate that the best execution strategies have 
already existed in the designed problem, when compared with the original case study plan of execution. 
Technically speaking, the creative process involved in the optimisation strategy, triggered the best execution 
strategies for performing the construction activities, by utilising the process of genetic evolution. Moreover, the 
normalised weights values (equals to 1) have been assigned to the CSA multi-criteria function fA(scr) and had 
relevant measurement where the population converges. 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 9: Variety in space criticality values and convergence in populations for the three GA test runs 

Based on the general input from the case study project, the three GA test runs were processed continuously until 
a convergence state is reached. The prototype system’s automated GA runs completed the analysis tasks in 
approximately 26 hours, running on a Pentium IIII 1k MHz processor. It was discovered after the testing of the 
CSA approach and optimisation to space conflicts between construction activities, that a near-optimum solution 
with a 0.41 space criticality value is reached in the second GA run (see Figure 9). A population size of 8 
individuals was used and the maximum number of executed generations was 80. In addition to the reproduction 
operations, crossover and mutation were applied in the GA process. The probability of crossover and mutation 
was 0.6 and 0.3 respectively. The above general characteristics of the second GA run have direct influence in 
minimising the space criticality value to 0.41. In contrast to the original space criticality value of 1.46 for the 
case study, the evolutionary algorithm brought the original space criticality near to its minimum 

 

1.46 CSA value for the original case study (severe critical space) 

0.41 minimum CSA value (non-critical 
space) at generation 45 and 46 
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(optimum) based on the imposed spatial constraints (see GA run 2, in Figure 9). The convergence state also took 
place because of the randomisation condition assigned at every three generation runs. Hence, the optimisation 
process is accelerated.  

It is interesting how the GA convergence varies once the satisfactory spatial constraints are represented properly 
in the GA chromosomes.  Some expected discrepancies were closely monitored in test runs two and three 
by producing more  optimised  solutions.  The  fact  that  random  inclusion  of  both  execution patterns  and 
resource distribution types, in the genetic search and content, adds flexibility to reach the minimum value 
for space criticality. The dynamic configuration of the workspace occupying the site area, for example, is 
detected  during  the  optimisation  process  to  achieve  a  tangible  minimum  for  site  congestion.  The 
evolutionary  process  gradually  formulates  acceptable  solutions  and  eliminates  the  ones  with 
inappropriate genetic material. This is mainly reflected in the minimisation of the CSA fitness function that 
is at the same time abiding to the spatial constraints carried out by the construction activities execution 
strategy. 

 
Critical Space Analysis:  original project schedule vs. the best schedule (i.e. chromosome) 
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FIG. 10: Comparing values for  and f(co) between the original project schedule scenario and the best 

execution strategy, with minimum CSA value 

The best execution logic expected for activities and the mix of spatial variables has been continuously handled 
and analysed during the 4D space-conflicts minimization process. In fact, the applied genetic evolution 
implemented within the 4D simulation system increases its practicality for use. This effect is demonstrated by 
minimizing the CSA multi-criteria function (Figure 10), during the second and third GA runs. The combined 
assignment of spatial strategies in each rehearsed execution scenario conforms to the designed multi-criteria 
function in this study, and has an acceptable representation for the nature of construction activity execution 
workspace and nature. This is an indication, therefore, that the formulated multi-criteria function consists of the 
proper criteria governing a good performance for GA populations. 

 

 

 

Severe critical space (more than 1) Critical space (0.5-1) Non-critical space (0-0.5) Key: 

 

 

Original schedule 

The best gene 

Original schedule 

The best gene  

Severe critical space 
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5.4  Understanding the best gene with minimum space conflicts 
Given the simple approach for associating genetic algorithms in CSA optimisation, a significant difference in 
performance is shown between the original encoded genes of the case study and the evolved genes.  This was an 
anticipated difference and is explained by understanding the structure of the best gene detected throughout the 
GA simulation. As the GA is more consistent in finding the genes with better spatial properties, those genes have 
provided a sensible improvement to CSA values. As will be seen next, the demonstration seems to agree with the 
idea that dynamic activity workspace analysis involves observing the dynamic change of static occupied 
workspace in space and time. By comparing the original case study simulation result against the best gene (see 
Figure 10 above), it is then possible to make a realistic judgment on how each execution scenario behaved in 
spatial manifestation. 

Original schedule gene structure 

 

Critical space-time conflicts analysis and visualisation  

FIG. 11: Actual bottleneck of workspace conflicts in 4D visualisation for the original schedule of the case study 

The ability to evolve activity workspace properties requires a dynamic exchange of genetic material among the 
encoded gene. It is difficult to see how such a requirement minimises the space criticality value without 
introducing the example of genes and their coded structure. These examples provide a comparison between two 
encoded genes for the simulation period from 22/ 09/1999 to 20/ 10/1999: 

• The first gene: This represents the original case study schedule (Figure 11). It is noticed that the 
execution of all construction activities in this gene commences from the north to the south and progresses 
in a Uniform work-rate distribution. Although the sequence of activities in the schedule might be 
appropriate, the consequence is that the construction activities seem to share the same total occupied 
construction execution workspace, hence, maximising the space criticality value. The Space Criticality 
Chart (Figure 10) indicates that as the simulation time progresses, the bottleneck of space congestions 
(1.46 CSA value) happen on the week dated 13/10/1999. At this point, the Steel Structure activity is 
progressed above the occupied workspace area by the Earth Filling activity. The effect of these large 
volumetric interferences (approximately 65 m3) is indicated in the Conflict Volumes Space Chart (refer to 
Figure 10 earlier). 
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FIG. 12: Minimised workspace conflicts utilising the best gene of GA runs 

• The second gene: This shows an individual gene evolving in population number 41 of the second GA 
test run and is classified as the ‘best gene’ (Figure 12). In this, the evolved (emerged) gene has 
maintained variety between the execution patterns and the resource distribution types. In this case, a 
natural selection mechanism allowed the population to select an execution pattern of West-East-Access4 
and was assigned to the Steel Structure activity. On the other hand, the Earth Filling activity was given 
South-North-Access3 as an execution pattern. More interestingly, the resource distribution for the Earth 
Filling activity was of Low-High type, which effectively reduced the spread of occupied workspace that 
intersects with the Steel Structure activity occupied workspace. The results from this change in the 
genetic data is: 

1. Less volumetric interference (approximately 30 m3) between the construction products occupying the 
three-dimensional site area (reduced site-space utilisation). 

2. Elimination of Work Obstruction of the clash types, which occurred due to the Earth Compactor Plant 
workspaces interfering with the Steel Structure workspace. In other words, the interferences between 
the physical space types (such as, plant space, material space, and storage space) are resolved hence 
the space criticality is reduced. 

5.5  Technique to combine Virtual Reality visualization with 4D-CAD 
The developed 4D visualization system extends the 4D-CAD visualization to Virtual Reality by embedding 
CORTONA ® VRML browser. In this way, users can utilise the VRML interface to export and visualise ‘on the 
fly‘ the weekly 4D-CAD simulation of a particular construction stage as well as the space conflicts. This 
enhances the user’s level of realisation as they find more freedom to explore the 4D in VRML. The focus on this 
paper is to report the outcome of the visualization but the technique proposed in this research to translate the 
AutoCAD graphical environment and data into a realistic VRML visualisation, with the help of 
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converter libraries and algorithms is explained in detail in Mallasi (2004).  

As the main challenge was to enhance the original 4D-CAD simulation, the development of a high level of detail 
in VRML allows evaluators to explore the visualisation more interestingly (Figure 13). In particular, it gives the 
ability to review the construction progress status from different views and interactively. The virtual world in 
conjunction with the 4D-CAD simulation allows the user to explore the proposed construction method in a VR 
way and have a sense of presence, in a dynamic virtual environment. If the VRML files are stored in a web 
server, then the approach achieves portability and distribution over the web for collaborative visualisation for a 
project team. The shared files can be stored in the server database as a sequence of VR visualisation. The 
approach benefits those users in the AEC who intend to visualise their complex construction projects in a 4D 
virtual world.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 13:  Improving the construction workspace visualisation using VRML interface (source: www.iconviz.com) 

6.  DISCUSSION AND FUTURE IMPACT 
This paper has addressed a scheme for incorporating GA optimization method to solve the problem of space-
time conflicts between construction activities, especially the interior space of buildings. The inclusion of the 
developed generic spatial algorithms increases the planner’s strategic awareness for planning and becomes more 
confidence when using 4D visualisation for communicating the project plans. One could argue that the 
advancements in 4D space-time conflict analysis lies on capturing the dynamic nature of construction activities 
workspace. Taking on this challenge, we identified a stronger concept for space-time continuity in minimising 
space conflicts. The proposed spatial strategies with generic spatial reasoning have improved the GA search in 
minimising the conflicted workspaces, which are difficult to solve by conventional methods. As describe 
throughout the paper, the optimisation success depends on the alteration rules for the activities execution pattern. 
The system can be extended to include random, top-down, spiral execution patterns that can be defined indirectly 
in the project schedule. The results suggest possible future use of the proposed technique in construction space 
planning, as the level of 4D realism is desired. 

Experiment results from simulation runs indicated how the system may fulfil the needs of the user and fit the 
practical and professional context for the usability of the 4D system in real practice. Spatial strategies with 
generic spatial reasoning have improved the GA search in minimising the conflicted spaces. As shown in the 
example, the optimisation success depends on changing the three dynamic activity workspace variables: the 
execution of work direction, work rate distribution types, and quantity of work per week. There were unexpected 
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results regarding why GA achieved the optimisation goal. Firstly, the random nature of genetic search and 
convergence to find best solutions (best execution logic). This allows the GA to search for strong individuals 
with strong fitness function fA(scr). Secondly, the structure of the chromosomes (coding of workspace variable) 
was seen to have substantial consequence on the quality of the solution obtained.  

This chapter has also contributed by performing user and system evaluation of the developed prototype system. 
The initial evaluation was based on a real world case study designed and conducted to show the soundness of 4D 
visualisation, and obtained expert-users’ opinion on the feasibility of the 4D space planning and analysis 
approach. In summary, the integrated 4D space planning system provides an effective tool that improves 
traditional space planning, while maintaining a more acceptable level of realism than the Gantt chart. The 
developed tool functions well in the standard Windows environment by allowing planners to evaluate and 
validate different construction scenarios.  

One of the primary limiting factors for adapting this technology in practice is the amount of required information 
and its availability to set-up the 4D visualisation. The developed 4D space-planning approach has shown the 
requirement for developing and maintaining a standard 3D intelligent product model, which is still a new 
concept in the AEC industry. The industry and AEC businesses are now moving towards BIM that encompass 
different conceptual and physical attributes from architectural design. This will be useful when attempting the 
visualisation of complex construction assemblies. This is an issue where the components’ topological data may 
synthesise sufficient information about the on-site assembly sequence of construction products. Construction 
engineers and architects should think towards collaboration when considering how the facility is going to be 
built. This 4D visualisation system may be used together during the development of the design and construction, 
to verify buildability or sequencing problem before construction starts. 

Organising the project schedule, according to the WBS scheme specified in this paper, introduces the question of 
how ready practitioners are to embrace a proper WBS standard in the development of schedules (e.g. Uniclass, 
Master Format, etc.). The proposed WBS scheme may require the availability of specific construction and 
planning information (construction methods and resources) and if necessary, a lower level of detail activity 
scheduling may be required.  

Applying the 4D visualisation to other construction project types may highlight new development issues and 
improve the simulation technique further. One of the difficulties that may rise is the dynamic visualisation of 
additional construction-structural constraints within the 4D environment. If necessary, further support-to-support 
types should then be modelled to show the visualisation of the construction assembly in a dynamic way. Another 
insight into the system application would be the construction of different building project types (bridges, road 
works, refurbishment works, and so on), which may change the simulation logic. Obviously, the strategy for the 
construction of a bridge project will differ from an office building. Similarly, applying 4D simulation to 
refurbishment work and demolition are other areas for future research work. 

Finally, the limitation of generalising the 4D technology to the whole profession is a critical issue. From one 
point of view, some construction managers encounter problems in appreciating the whole technology that 
replaces their traditional planning and scheduling techniques. This is a multi-dimensional problem where people, 
culture, and technology interrelate, while the utilisation of 4D technology becomes cumbersome in its present 
stage. From another point of view, some contractors embraced the application’s potential for developing some 
components of this 4D visualisation system to enhance their project scheduling. As far as this study is concerned, 
the business of the AEC industries are moving quickly forward to having project teams contribute to a BIM 
database information, and also changing the contractual terns to enable its use. Especially contractors, from a 
business perspective they are expanding their work scope to balance the scope of 3D modelling using BIM tools 
and identify with teams at early stage different level of detail when creating 4D production models. 
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