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SUMMARY: A generic visualization framework should allow for the specification of arbitrary visualizations to 

be generated from Building Information Models. It has been shown before, how simple visualizations can be 

produced with mapping rule sets and how two simple visualizations can be combined into a more complex 

visualization using three different combination methods. Now these approaches are extended to arbitrary 

complex visualizations by nesting the combination methods hierarchically. Systematic analysis yields nine 

different nesting cases, which are evaluated and illustrated by use case examples. 
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1. INTRODUCTION 

1.1 Building information modelling and its implications for visual representations 

Building information modelling, the semantically explicite modelling of information related to construction 

projects, is primarily targeted towards the interoperability of computers. To achieve defined semantics, 

information was factored out of its previous close connection with its visual representation during the 

development of BIM. 

But visual representations have to be generated reproducibly and reliably to fulfil their communicational means. 

Furthermore, the growing amount of information contained in BIM requires new methods of visual 

representation, beyond traditional visualization methods. Domain experts should be involved in the creation of 

visualizations, but do currently not have the possibility due to technical obstacles. 

In parallel to the development of BIM, new media have opened up new perspectives for visual representations. 

Also, the efficient and repeated creation of multiple visual representations from the same information is only 

made possible by the separation of information and visual representation. 

1.2 Previous work on presentational issues in CAD and BIM 

Previous research on presentational issues with BIM dates back to the application of digital media technologies 

to pre-BIM CAD data. Visual presentation has always been of special relevance in the design related parts of the 

construction field, therefor applications for the presentation of architectural design are one research focus, such 

as the work of Abdelhameed (2005) or Balakrishnan et al. (2006). 

During the development of BIM the role and potential of visual representations where recognized and 

acknowledged. Liebich (1993) for instance introduces the concept of "monitors" to encapsulate certain 

visualization modes. Eastman et al. (2011) lists information visualization beyond 4D as one of the trends in BIM. 

However, visualization is rarely treated as a distinct topic in the context of BIM, but appears only as a side issue 

in other research or focusses on specific concrete task specific visualizations, such as visualization of the 

information flow in construction projects (Otjacques et al. 2006) or colour schemes for 4D construction progress 

visualization (Chang et al. 2009). 

1.3 Visualization specifications for BIM - a generic approach 

As opposed to the development and improvement of concrete task-specific visualization techniques the authors 

pursue the topic on a meta level, by investigating the relation between the information model and its manifold 

visual representations conceptually. The goal of this approach is a model of the visualization process, which can 

be instantiated to represent different concrete visualization techniques. A description of the intended 

visualization serves as configuration for the generic model. 
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FIG. 1: Generic visualization component 

An implementation as a generic framework for BIM visualization servers first of all as a proof-of-concept 

prototype, and second as the base for tool support, in order to foster the study of specific visualization issues. 

The framework generates visual representations not in a hardcoded way, but from a formal visualization 

description in addition to the building information (Fig. 1). In the process the visualization description or 

specification serves as configuration for the generic visualization component. The current implementation of the 
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framework is already able to generate simple visualization models from domain models using mapping rules 

(Tauscher & Scherer 2012). 

1.4 Question and working hypothesis: a structure for complex visualization 

specifications 

Our first approach towards this vision identified the general architecture of a respective visualization mapping 

framework based on the visualization pipeline (Haber & McNabb 1979), which describes the visualization 

process as a transformation from raw input data to the final image. The transformation is carried out in multiple 

steps - filter, map and render - creating intermediate transformation results from the input data in each step. 

The visualization specification configures each of these steps: Which subset of the information model to select 

for visual representation, how to map the data to visualization objects and finally how to present the visualization 

model on the display area. Mapping rules can capture the specifics of the central mapping step for a certain 

visualization, and implicitly also for the first step, selecting the input data for mapping rule application. 

As the amount of explicitly modelled information is constantly growing - for instance by combining multiple 

models into informational richer multi model assemblies (Fuchs et al. 2011), sophisticated and complex 

visualization methods are needed. Therefor the visualization description as well as the framework should support 

arbitrary complex visualization setups, which exceed the limitations of simple mapping rules. We have to answer 

the question: Which structure for visualization specifications is necessary to allow for the generation of every 

desired visual representation? 

We hypothesize, that this can be achieved using a recursive approach, where simple combination strategies are 

applied repeatedly to create complex visualizations from simpler mapping rule sets. In order to validate this, we 

first propose a set of combination strategies for visualizations. We then analyse a couple of well-known 

visualizations, seeing whether they would fit into the proposed classification. Further we defined a manageable 

scope of two nesting levels, and checked whether all specifications in that scope would yield sensible 

visualizations. 

2. COMBINATION METHODS FOR MAPPING RULE SETS 

We first show, how known visualizations for elementary models can be integrated to produce more complex 

visualizations from multi models consisting of the respective elementary models using three different 

combination methods: Blending, Embedding, Interaction. The combination methods where derived by 

combining two visualization pipelines at the different stages of the pipeline model. The analysis in (Tauscher et 

al. 2011) showed, that these methods involve different main HCI usages and can be correlated with the 

dimensions of the visualization model space. 

Blending combines information from the two different models into one visualization model and renders them 

into a single area. Information from the two input model is mapped to different objects in the shared 

visualization model or to different visualization properties of a shared visualization object. Blending represents 

information in a limited area at a specific point in time. The HCI resource involved most in the reception of 

blended visualizations is the recipient's cognition. A typical visual property used for blending is the color 

parameter, yielding chorophlet maps. We have also experimented with mapping to the size parameter (Tauscher 

& Scherer 2011). 

Embedding maps information from the two different models onto two visualization models which are then 

combined by sharing the rendering space. One of the models may act as the positioning frame, while the other 

provides the details for embedded areas. The HCI resource engaged most by this visualization is display space, 

as information is distributed in space. This concept is called "small multiples" (Roberts 2007), "worlds within 

worlds" (Feiner & Beshers 1990) or "facets" (Wilkinson 2005). 

Interaction also maps information from the two different models into two visualization models which do not, as 

opposed to Embedding, share their rendering space. Instead the visualizations are rendered in different points in 

time. The points in time may be defined either by a schedule or by user events. Similar to Embedding the 

distribution in time may be guided by information from one of the two models. Obviously the HCI resource 

engaged most with this method is reception time. Research for this type of integrated visualization is carried out 

in the area of coordinated multiple views (Roberts 2007), where also the formal description of update operations 

is studied (Boukhelifa & Rodgers 2003). 
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These different combination methods tackle different points in the visualization pipeline. The integration points 

in the pipeline correspond to a different strength of the integration. Blending integrates at an early point in the 

visualization pipeline, by creating a common visualization model from different input data sets. Nesting 

integrates at a later point, creating different visualization models and rendering these in separate areas of the 

image. Interaction finally integrates even later; separately rendered images are connected by synchronized 

changes. 

Implementation-wise, each successive combination method, beginning with the simplest one - Blending, adds a 

layer of complexity to the concepts implemented in the previous one: The Embedding mode introduces 

coordinate transformations and the Interaction mode requires a basic event system. 

Table 1 shows a simplified application example for the different integration methods and a diagrammatic 

illustration of the integration in the visualization pipeline. 

TABLE 1: Visualization combination methods 

Interaction 

  

Embedding 

 

 

Blending 

  

Previously we have analysed the correlation of these integration methods and the compositional characteristics 

of the multi model (Tauscher et al. 2011). Different types of elementary model pairs were contrasted with 

different methods to join single basic visualizations into a more complex visualization. We are now generalizing 

this approach to arbitrary parts of building information models, which do not necessarily have to be organized as 

multi models. This way the combination methods can be applied on different levels of detail in separating 

content for the visualization parts. For instance we can also think in smaller units than elementary models or 

group multiple elementary models into bigger units of information. Regarding the implementation in the 

framework this separation of content is done by selecting the input data for the respective visualization part, 

hence the subset of the information model which mapping rule set is to be applied to. 

Breaking something down into smaller pieces can be done with similar methods as combining the smaller pieces 

into a bigger unit. Thus, complex visualizations can be broken down into smaller units by using the same three 

different methods as for the integration of visualization parts: Blending, Embedding, Interaction/Animation. 

So far we described integration methods to combine two known visualization methods, expressed as mapping 

rule sets, into a more complex multi model visualization. However, we did not address the combination of more 

than two elementary or partial models. In general, the integration methods can easily be extended to 

accommodate more than two children. But there are two flaws with this naive approach: first, the visualization is 

limited to one single integration method and second, as the amount combined elementary models increases, it 

becomes difficult to maintain the visualization description. 

We are now addressing this gap and extend the visualization framework and description structure to more 

complex cases. In the next section we will lift the integration methods to a higher level by nesting their 

application; that means by applying them recursively. We refer to and draw inspiration from research in the area 

of UI specifications, which does however not focus on visualizations (Coutaz 1987; Markopoulos 1997; Cai et 

al. 2000; Greer 2007). 
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3. HIERARCHICAL STRUCTURES 

3.1 Handling complex issues with hierarchic structures 

Hierarchical structures are a proven way to handle complex issues. By organizing visualizations with 

hierarchical principles, the description of complex visual representations can be carried out by everyone who is 

familiar with the structure of the source information and the domain specific visualization / presentation 

conventions. 

Psychological studies have confirmed the limited capacity of human cognition of around seven entities in 

immediate memory. They concluded that to process more complex and larger amounts of information groups of 

entities have to be recoded into chunks (Miller 1955). These insights have been incorporated into research on 

user interfaces and have led to the pragmatic introduction of hierarchic modularity into the theoretical Model-

View-Controller (MVC) pattern. The concept of hierarchic modularity is orthogonal to the monolithic layers of 

the MVC model and splits these layers into smaller, more manageable chunks (Coutaz 1987). 

Using a hierarchical structure for the visualization specification we are repeatedly breaking a complex 

visualization into smaller more manageable parts using the combination methods described above. A visual 

representation is then constructed by recursively applying these modes to chunks of information, thus nesting 

visual representation parts and creating a hierarchical structure. 

By including methods for the application of hierarchical nesting strategies in the framework and the visualization 

specification, users of the framework are encouraged to organize their visualization descriptions in a hierarchical 

way. 

3.2 Tree representations 

 

FIG. 2: Hierarchical nesting of the combination methods 

Fig. 2 illustrates the application of the combination methods in a hierarchical manner. The hierarchical 

application yields a tree, with each sub tree representing a valid, simpler visualization. The example tree 

combines only two visualization parts on each level, yielding a binary tree. This is not a general restriction, but 

only made for the clarity of the example. 

The left part of the figure shows the direct combination of the integration methods described before: On the 

upper level the example consists of two sub trees combined by Interaction, hence the visualization represented 

by the first sub tree is shown initially and replaced by the visualization represented by the second sub tree in case 

of a specified event or at a specified time. Each of these sub trees is further constructed by combining two 

separate visualizations using the Embedding method. That means, that the two visualization parts are rendered in 

different parts of the visualization space. 

As opposed to Interaction and Embedding, integration by Blending does not create multiple visualization 

models. Instead the information from multiple input model parts is distributed to different properties of the same 

model. Because visualization properties cannot be further subdivided, as a consequence, Blending can only be 

the last integration. Blending does not take part in the hierarchical structure in the same way as the other 

methods. In the tree representation, Blending thus only appears as integration of leaf nodes. The final leaf nodes 

of the tree representation symbolize the mapping rule sets creating visualization objects. 
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3.3 Modifications to the initial integration methods 

The middle part of Fig. 2 shows a modified version of the visualization structure. Sub trees consisting only of 

Rule sets integrated by the Blending method have been collapsed into single leaf nodes, according to the specific 

role of Blending in the visualization structure. Distribution of information to different visualization properties of 

the same object will be described inside a rule set instead of as an explicit combination. 

Further, the Interaction integration method was divided into integration methods of two different subtypes: 

Animation and Interaction. Although both use time as the main HCI resource and are very similar from a 

technical point of view, differing only in the kind of trigger used to define the point in time for changes in the 

visualization model, the subsumption under a common label leads to constant confusion. 

These two modifications to the initial model are supposed to increase the intuitive comprehensibility of the 

visualization structure model. Finally, we introduce the following symbols and line types for the integration 

methods to allow for a compact notation of visualization structures in the following sections: 

• an arrow shaped pointer icon and dotted lines for the combination by interaction 

• an iconic clock symbol and dashed lines for the combination by animation 

• an iconic two-dimension coordinate system and dash-dot lines for the embedding method 

3.4 Tree map notation 

On the right side, the same tree is finally shown using a different type of representation: a tree map. Tree maps 

(Shneiderman 1992) are a means to lay out hierarchic structures in an area, subsequently dividing a given space 

according to the hierarchic structure. The original purpose of tree-maps was to encode values attached to tree 

nodes into the size property of the tree map areas, e.g. to visually represent the disk space used by an 

hierarchically organized file system. 

The application of tree maps to hierarchical visualization structures allows to not only display the structure of the 

visualization, but also the content of the visualization leaf nodes in terms of the result of the exemplary 

application of the mapping rule set represented by the respective leaf node. Combined with the previously 

defined symbols and line types to encode the type of nesting, the tree-map representation provides a compact and 

intuitively understandable notation. It allows to represent animated and interactive visualizations in a static 

medium such as print. 

4. NESTING CASES WITH DOMAIN SPECIFIC EXAMPLES 

4.1 Evaluation strategy 

In this section we are evaluating the different scenarios emerging from this approach by nesting each mode into 

each other mode systematically. Simple examples representing these combinations reveal the potential of the 

approach. 

The systematic analysis was carried out by nesting two combination methods in each case, running through all 

possible ordered pairs of combination methods. Since blending can only be applied to the leaf nodes it was left 

out of the matrix. Instead animation and interaction were treated as two different cases, expecting them to result 

in substantially different visualizations. The resulting combinations are shown in Table 2, with the outer 

combination method in rows and the inner combination method in columns. 

Each nesting case consists of a tree with two levels. The arity of each node in the example cases is kept minimal 

while still producing useful visualizations. In particular, not all lower nodes do have children at all, but in 

general only one has children. 

In the reminder of this section we are showing and explaining the cases in more detail. When converting the 

example visualizations for each case to a format suitable for print, animation and interaction had to be replaced 

by appropriate compensatory representations. Animation steps and interaction results are therefore laid out in the 

image area. Although not to be confused with the Embedding method, the resulting similar appearance confirms 

the interchangeability of the combination methods. 
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TABLE 2. Matrix of nesting cases, outer combination method in rows, inner combination method in columns 

 embedding animation interaction 

embedding 

   

animation 

   

interaction 

   

The examples use different visualization configurations, as specified by the combination method application 

matrix, but all examples are derived from the same building information model input. The building information 

is available as a multi model with 3D object data, a linked milestone schedule and progress information incurred 

during construction management. These elementary models are connected using a link model as proposed by 

Fuchs et al. (2011). 

4.2 Case examples 

      

FIG. 3: Nesting case Embedding/Embedding (left) and Embedding/Interaction (right) 

Embedding/Embedding: The first nesting case, shown in Fig. 3 on the left, features a classic architectural 

visualization method for the inner embedding: An axonometric exploded view of the building storeys and their 

floor plans. The outer embedding adds a perspective view of the full building with 3D-navigation features. 

 

FIG. 4: Nesting case Embedding/Animation 
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Embedding/Animation: In the example for this case the visualization is divided into two parts, which are 

combined via Embedding. While one of the two parts stays fixed, the other part hosts an animation. The fixed 

top part consists of a Gantt chart with milestones and the bottom part consists of a nested animation showing a 

3D view for the state of the construction progress at each of the milestones. The resulting visualization is shown 

in Fig. 4. 

 

 

FIG. 5: Nesting case Animation/Embedding, similar to Interaction/Embedding 

Embedding/Interaction: In this case only one part of the visualization is sensible to interaction changes. This 

sensible part is combined with a fixed part with the Embedding method. Note that the interaction combination 

refers to the part of the visualization which is changed as a result of the interaction and not to part of the 

visualization which is triggering the event. Fig. 3 (right) shows a respective example: One part of the 

visualization stays fixed, while the other part reacts to a query and hides all elements except the result set. 

Animation/Embedding: For this case the outer combination method, an animation, contains at least one part with 

a split view, where multiple visualization parts are combined by Embedding. In contrast, the other parts of the 

animation are not split. The use case for this animation, shown in Fig. 5, compares the planned and the actually 

reported state of construction progress. The split view shows both sides of the comparison separately while the 

single view shows an overlay of the two. 

       

FIG. 6: Nesting case Animation/Animation (left) and Animation/Interaction (right) 

Animation/Animation: In this case to separate animations are nested into each other. The outer animation of the 

example in Fig. 6 (left) covers different states of the building progress while the inner animation executes a 360° 

rotation of the whole scene for each step of the outer animation, in order to show all details of the 3D building. 
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Animation/Interaction: This case implies that only part of an animation is reacting to interaction requests. Hence 

the user or other external triggers would have to hit a certain time slot in the animation. The example in Fig. 6 

(right) shows an animation of the building progress, with an additional highlighting in the third frame. The 

usefulness of this example is restricted. However, that does not render the nesting case illegitimate. 

Interaction/Embedding: This nesting case produces subdivided visualization area where the subdivision is 

changed by user interaction. For instance an area is split into two parts to show several versions. This is similar 

to the Animation/Embedding case shown in Figure 5. While the animated case is of restricted usefulness, this 

nesting case is more common. Splits of the visualization area should generally be introduced intentionally, as the 

result of a user interaction. Splitting during an animation may be hard to understand and could easily confuse the 

recipient. 

     

FIG. 7: Nesting case Interaction/Animation (left) and Interaction/Interaction (right) 

Interaction/Animation: When the combination methods are nested in this way, then Interaction activates the 

nested animation or changes the parameters of the nested animation. This case is a common useful nesting case. 

An example is shown in Fig. 7 on the left side. 

Interaction/Interaction: This nesting case makes sense when the inner interaction depends on the outer 

interaction having taken place before. In the example the outer interaction changes the way how the inner 

interaction works, it triggers different modes of highlighting changes. Fig. 7 (right) shows the results of applying 

the same inner interaction, a filter query, to the visualization after having chosen different highlighting modes in 

the outer Interaction combination. On the left side highlighting is done by marking the objects with a different 

colour, while on the right side highlighting is done by hiding all irrelevant objects. 

4.3 Observations 

While creating and examining these cases, we made the following observations in addition to the intended 

verification of the nesting approach. 

The cases Embedding/Embedding, Animation/Animation and Interaction/Interaction have the special property 

that the outer and inner combination methods used for the nesting case are of the same kind. In these cases the 

nesting becomes a pure matter of giving structure to the visualization description. It is not absolutely necessary 

to use the combination methods twice. Instead, the nested solution could be expanded or resolved to a single 

application of the combination method with more elementary visualizations combined. 

The example used for the case Animation/Animation is an exception where the same combination method is 

applied to all child nodes resulting in a tabular visualization structure. This case needs special coverage in the 

visualization structure to prevent high redundancy in the visualization description. Note also that this particular 

nature of the nesting results in a symmetric parent-child-relationship, which is invertible, a property not given in 

the other cases. 
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5. CONCLUSIONS 

5.1 Summary 

First, we clarified the requirements of the structure sought after. Second we described methods to combine two 

elementary model parts at a time. Third, we proposed a hierarchical nesting structure to extend the combination 

methods even further. Finally we analysed nesting cases systematically, supporting each case of two different 

combination methods with a construction related example. 

The main contribution of this paper is a concept for the construction of complex visualization setups based on 

the nested application of combination methods. The combination methods allow for the construction of 

combined visualizations from simpler ones which are defined with mapping rule sets. 

We further adapted the classification of the integration methods used for the specification: We have ruled out the 

Blending method as unreasonable on nesting levels other than the lowest level and we have separated the time 

based integration methods animation and interaction. 

We have shown, that a hierarchical structure with nested mapping rule sets based on the basic combination 

methods Blending, Embedding and Interaction/Animation is a viable way to create arbitrary complex 

visualization specifications for a generic visualization application. Examples were produced as a proof of 

concept. The examples cover the whole space of nesting cases and thus allow for a systematic analysis. 

It could be shown that the nesting cases do not produce unreasonable visualizations. However, two of the cases 

do not seem obviously useful in the first place and may not be needed often. However, all cases have to be 

supported in order to not restrict the possibilities of the visualization specification. 

5.2 Outlook 

We also wanted to show, that all possible visualizations can be produced with this approach, but this claim is 

only supported by the fact, that we did not find counterexamples so far. Because we systematically applied all 

combination methods, any edge cases should have occurred in the process. A set theoretic analysis could lead to 

further clarification. 

From the exploration we concluded a suggestion for the further development and implementation of a special 

type of nested combinations, where the nesting is of a tabular form. 

In a next step we can now integrate the nesting model into the visualization framework and create a domain 

specific language building upon the nesting model. 

As another potential application of the model, visualizations described in terms of the proposed nesting structure 

could be assessed regarding the balance of information distribution in the different dimensions of the 

visualization space and thus the demands of different HCI resources for a given specific visualization could be 

analysed based on the description. 
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