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SUMMARY: Due to increasing demands for the more accurate structural health monitoring of large-scale 

facilities, e.g. modern high-speed railways and bridges, there is a huge uptake in the development of optical sensor 

networks (OSN), which can help mitigate issues with conventional electric sensors, especially their sensitivity to 

electromagnetic interference and size. The existing fibre optic infrastructures are not widely used by OSNs, due 

to the lack of appropriate multiplexing techniques. Aiming at addressing the implementation issues of optical 

sensors in urban areas, this study proposes an efficient and cost-effective system for supporting the vibration 

sensing of unequally distributed points. The proposed system takes advantages of the spectral amplitude encoding 

optical code division multiple access (SAC-OCDMA) technique in providing differentiated services in the physical 

layer with varying code weights. This system utilises more wavelengths (i.e. higher power) in more distant sensing 

points in order to retrieve vibration signals properly. The mechanism of SAC for OSN is elaborated using 

simulation results, including the impact of transmission distance and the procedure for allocating codes to 

different zones. These results indicate the suitability of the proposed system for implementation in existing fibre 

optic infrastructures. Moreover, the numerical analysis shows a high capacity of the sensor network deploying 

SAC. The proposed system contributes to the construction research and practice by addressing the implementation 

issues of structural health monitoring of large-scale facilities in urban areas. 
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1. BACKGROUND OF THE STUDY  

Due to a myriad of advantages such as small and manageable size, accuracy, and immunity to electromagnetic 

noises, optical sensors have recently been advocated as prevailing solutions for structural health monitoring (SHM) 

(Majumder et al. 2008, Yi et al. 2011b). The use of optical multiplexing techniques had also improved the 

efficiency of optical sensing in distributed sensors networks in terms of their cost and system complexity (Li et al. 

2004). In such systems, fibre optic sensing is either implemented as intrinsic, in which the fibre is used as the 

sensing element or extrinsic, where fibre is a medium to communicate the sensed signal. Seminal literature report 

on the success of optical sensing in the construction industry, when used for various monitoring purposes including 

the gas leakage (Shabaneh et al. 2014), temperature (Woyessa et al. 2016), strain (Li et al. 2008), reinforced 

concrete beams (Lu & Xie 2007) and building cladding systems (Unzu et al. 2013).  

Accurate monitoring of vibrations is essential for assuring the structural health of large facilities in order to 

evaluate the structural condition and eventually mitigate risks of internal damages at very early stages, before they 

actually further develop and become irreversible (Li et al. 2004, Rinehart & Mooney 2008, Chae et al. 2012, Alavi 

et al. 2016). Since the use of traditional electronic sensors in measuring vibration is noticeably exposed to the 

electromagnetic interference, the practicality of these systems has always been only limited to a single-point 

simplex measurement. Researchers have taken the advantages of optical vibration sensors and their capability to 

eliminate the electromagnetic interference. These advantages of optical sensor networks make them more 

economical and allow an implementation of a broad range of essential applications for the real-time monitoring of 

large civil engineering structures (Barrias et al. 2016). 

In the last decade, various fibre-optic techniques and tools have been proposed for vibration monitoring. Takahashi 

et al. (2001) employed fibre Bragg gratings (FBG) with a minimum bandwidth for a narrowband reflection of the 

spectrum generated by a broadband light source. The vibration was then detected based on the intensity modulation 

produced by the vibration of the FBG. The main disadvantage of the FBG-based sensors is their temperature 

sensitivity, which hinders the vibration detection. Later, a temperature compensation technique for these sensors 

was introduced (Gu et al. 2005). Zhang and Bao (2008) assessed the practicability of a fully distributed vibration 

sensor based on a fibre diversity detection sensor. Talebinejad et al. (2009) proposed an accelerometer based on 

FBG by exploiting the stiffness of the optical fibre. The sensor was assessed for monitoring of vibration for an 

actual bridge. Thakur et al. (2011) applied FBG and photonic crystal fibre sensors for SHM of composite and 

found that the crystal fibre sensor is the better alternative, as it is less sensitive to the temperature. Zhang et al. 

(2016) also monitored vibration and identified deformation distribution of a long-span rigid-frame bridge using 

sensors. Ge et al. (2013) developed a particular intensity-modulated fibre-optic accelerometer for vibration 

monitoring of wind turbine blades. Brillouin scattering based sensors have also been introduced for examining the 

distributed vibration along the optical fibre. Systems operate based on the backscattered light from the sensing 

fibre affected by the vibration. Since each sensor point must be accessed at a certain time slot this approach might 

not be the best option for a real-time vibration sensing (Hotate & Sean, 2003).  Klar et al. (2014) evaluated a 

Brillouin scattering optical time domain analysis for monitoring of the tunnelling-induced ground displacements.  

Li et al. (2018) used distributed a fibre vibration sensor for monitoring pipe lines in China. They tested their 

approach on a system with a length of 131 km, and thousands of vibrations were detected daily. 

In addition, optical sensors provide the changing characteristics of transmitted light signal over a shared media 

(i.e., one optical fibre), which enables multiplex measurements from multiple points to form a distributed optical 

sensor networks (OSN). Used multiplexing techniques include time division multiplexing (TDM) (Li et al. 2004), 

wavelength division multiplexing (WDM) (Li et al. 2004), frequency modulated carrier wave (Li et al. 2004) and 

optical code division multiple access (OCDMA) (Taiwo et al. 2014). Various multiplexing techniques to collect 

data from sensors have already found applications in building monitoring. WDM has commonly been used in static 

strain sensing and also been integrated with each other, resulting in hybrid multiplexing systems (Noura et al. 

2013). In WDM, each sensor is assigned a given slice of the input spectrum, which is provided by a coherent 

optical source. WDM is mostly suitable for sensing a few points only, since by increasing the number of sensors, 

the system cost increases significantly due to the high cost of fabricating multi-wavelength lasers (Cheng et al. 

2011). In time division multiplexing approach, sensors transmit signals at different time slots that demand precise 

network synchronisation.  TDM can significantly expand the number of sensors in the time domain. Nevertheless, 

it endures from transmission loss and is restrained by light source power. Therefore, a few sensors (i.e. a maximum 

of 10 sensors) could be supported in this system (Dai et al. 2009). Wang et al. (2011) introduced a serial TDM-
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OSN based on FBG and concluded that achieving high signal quality is difficult due to the presence of twelve 

FBGs. 

Although these multiplexing methods facilitate the sensing of different structures using one shared medium, they 

generally fail in the utilisation of ever-growing fibre optic infrastructures in urban areas. The main reason is that 

OSN with current technologies are developed to monitor nodes spread over almost the same distances, so they 

require a separate fibre ‘wiring’ to avoid the retrieved vibration signals of varying powers. This results in high 

interference of signals. A solution must ensure received signals from different distances are with almost the same 

signal levels. Figure 1 illustrates an example of how sensing data from a structure can be transmitted over an urban 

fibre optic infrastructure.   

 

 

 

To address these issues, several studies advocate adopting OCDMA sensor network due to its random-access 

capabilities (e.g. Yang & Kwong 2002, Ko et al. 2010, Tseng et al. 2013). In a sensor network based on the 

OCDMA system approach, each sensor will be assigned with a unique address called a signature code. This unique 

feature enables an individual sensor identification and provides its location in the building (Taiwo et al. 2016). 

Yen and Chih-Ming (2016) proposed an optical CDMA system to increase the capacity of OSN by integrating 

hybrid wavelength and time multiplexing. 

The implementation of sensors in the construction industry can use either optical or electronic sensors. There have 

been several studies focusing on sensors placement in different structures including tower buildings (Yi et al. 

2011a, 2012, 2014), bridges (Wan et al. 2013, Chen et al. 2014), railways (Filograno et al. 2010), tunnels (Li et 

al. 2008) and complex structures (Li et al. 2016). When it comes to sensor selection, for the vibrations monitoring, 

FBGs have been the choice of preference when it came to a sensor type in most OSNs, due to their low price and 

high performance. When it comes to a sensor placement topology, the focus has been on equally distributed sensor 

points. However, in SHM of structures having different distances from each other (i.e. near-far problem), it is not 

possible to set up the sensor network base on having equal distances from all the sensing points. The near-far 

problem is the inability of a receiver to hear a weak signal from a farther location in the presence of a strong signal 

which is transmitted from a more adjacent source. A distributed sensor network consists of varying fibre lengths 

connecting sensing points thus resulting in an uneven power attenuation, which makes it harder to detect the 

transmitting signals from faraway points with longer fibre lengths connection. 

FIG. 1: Schematic demonstration of using existing urban fibre optic infrastructure for transmitting sensor data 

in structural monitoring. 
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In order to address the research gap as mentioned above in supporting unequally disturbed sensors, this study 

proposes an optical sensing system based on a variable weight spectral amplitude coding (VW-SAC) network 

approach. In this system, higher weight codes (giving a better signal quality) are assigned to the nodes requiring 

higher quality (Prucnal 2006). The weight of the code is the number of wavelengths which are assigned to the user 

or sensing point. The more wavelengths will carry higher optical power. Hence, the signals from farther sensing 

points are carried by more power to be delivered distinguishably enough for detecting vibrations. The proposed 

system offers a cost-effective method for vibration monitoring of urban infrastructures such as tower buildings, 

bridges, tunnels. Moreover, because the SAC-OCDMA system is immune to most fibre effects (Seyedzadeh et al. 

2016b), it solves the problems of WDM and TDM regarding these issues. 

In this paper, a novel collimator-based VW-SAC sensor network is proposed, which is capable of supporting 

distributed vibration sensing while maintaining the desired signal level delivery from all monitoring nods in the 

network. The proposed system eliminates the demand for in-line signal amplification and thereby eases the 

implementation and reduces the maintenance cost of the sensing nodes located in farthest distances from the data 

collection point. The main advantage of this approach is that vibration monitoring of heterogeneous structures at 

different distances can be performed using a single sensor network by utilising inexpensive components. 

Furthermore, by noting the fact that optical fibres have large bandwidth, the proposed system in this study can be 

designed to take advantage of the possibility of using the already existing fibre infrastructure being already in 

place. Hence, this system presents a robust and practical vibration sensing network, ideal for monitoring of 

constructions in metropolitan areas where optical fibre infrastructures are readily available. 

This paper first provides an overview of OCDMA and SAC systems as well as the configuration of intended 

distributed sensor networks (Section 2). Then the architecture of the proposed VW-SAC based sensor system is 

explained in detail in Section 3 providing parameters used in performance analysis. The paper also presents the 

results of conducted OptiSystem (Optiwave Photonics Software) simulation of the proposed sensor network based 

on the assumption of 3 distinct sensing points located at different distances (Section 4). The outcome of the system 

is also illustrated as received signals of sensors in the radio frequency domain by considering three vibration levels. 

The results are then expanded for a system containing nine monitoring points to demonstrate the effect of 

transmission distance and allocation of the right weight set to each area. Section 5 presents the results of a 

mathematical model, which is developed in order to drive the signal to noise ratio of received signals for showing 

the capacity of the proposed system in supporting simultaneous active sensors. In this mathematical model, all 

assumptions are set to be the worst cases in calculating an upper bound for the noise level to guarantee simulation 

and real case scenarios. Section 5 also presents the expansion of mathematical model and the numerical result. 

Finally, Section 6 presents some concluding remarks. 

2. VW-SAC CODE AND ARCHITECTURE 

In our proposed system, all sensing points are grouped based on the distance from the monitoring unit, where a 

matrix with suitable code weight is assigned to them. This means the construction sites, which are located 

approximately in the same distance from the control unit, are clustered in one group or zone. For example, if we 

have nine sensors of which four are located at the distance of 14-15 km, three at 11-12 km and two at 7-8 km away 

from the control unit then we will have three zones. Next, we need to assign the highest weight to the farthest zone, 

a lower one to the zone with the medium distance and the lowest weight to the nearest zone.  In the proposed VW-

SAC system, sensing points with higher weights carry vibration signals using more wavelengths or chips, hence 

having higher optical power. In this approach, the attenuation caused by connecting optical fibres is compensated 

by the increasing transmitting power by way of adding additional wavelengths instead of signal amplification. 

Therefore, the system can be utilised in any existing infrastructure, and without the need for any additional electric 

power in any given sensing location. The design of the system and choice of the codes are in a way to retrieve 

almost the same power from all sensing distances to overcome the near-far problem. 

To determine how available chips are designated for different nodes, one needs to use one of the codes developed 

for SAC-OCDMA system. These codes are differentiated by their characteristics such as maximum cross-

correlation (maximum number of wavelengths shared between two pairs of codes), length and supportable weight.  

The cross-correlation is the maximum number of overlapping wavelengths between codewords, which determines 

the interference level of a system. A code family with high cross-correlation provides higher information security 

but lower performance.  The importance of using codes for sensing application rather than assigning consecutive 
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wavelengths to the nodes is then to provide security in the transmission layer while maintaining maximum 

bandwidth utilisation. The code length defines the total wavelength required for supporting the all sensing point 

in different zones. Generally, higher weights increase the overall code length. It is true that higher code weight 

intensifies the quality of one group of sensing signals, however, due to the higher length, the overall performance 

of the system is decreased. Therefore, to construct a system with higher capacity and still providing minimum 

security, it is essential to select the right code.   

From several VW-code families available (Djordjevic et al. 2004, Kwong & Yang 2004, Liang et al. 2008, Anas 

et al. 2016, Seyedzadeh et al. 2017), this study uses VW Khazani-Syed (VW-KS) code, which was initially 

developed based on the single weight KS code (Ahmad Anas et al. 2009). KS code is based on matrix construction, 

where the two sub-codes A = [110] and B = [011] are used to construct the basic matrix. The structure of this code 

is such that a cross-correlation (the number of the overlapping chip(s) between two different users’ codes), R, is 

either zero or one which results in the reduction of multiple access interference (MAI) effects. Figure 2 shows the 

basic KS code matrix with the weight of a 4. The overlapping chips between each pair of codes are depicted with 

blue dotted lines. 

 

 

The number of rows KB, also known as a basic number of users and number of columns NB (basic code length), are 

calculated by the following equations: 

 

 

 

(1) 

and 

  

 

 

 

(2) 

For more details on constructing VW-codes for a large number of nodes refer to Appendix A. 

2.1 Recovering Signals from Multiple Distances 

When each sensing node’s wavelengths are identified, upon a vibration exposure, these coded signals are 

modulated by collimators installed on the site. As all signals from all nodes travel over a shared medium, the signal 

in the proposed system must be optically differentiated (coded). This means that chips or wavelengths dedicated 

to each node should be retrieved while cancelling the effect of signals from other nodes. Then optical signals are 

converted into the electrical domain to obtain the vibration frequency. The more intense oscillation will result in 

retrieving higher frequency. This procedure will be discussed more in Section Simulation Results. Here, the 

approach for receiving the correct spectrum and cancelling noise is elaborated. 

Among several detection techniques developed for SAC system to cancel MAI and decode the desired signals, 

three widely used ones are complementary subtraction (CS) detection (Zaccarin & Kavehrad 1993), AND 

subtraction detection (Hasoon et al. 2008) and direct decoding (DD) (Abdullah et al. 2008). Both CS and AND 

utilise balanced detection in which two decoders (upper and lower) are required in a single receiver to eliminate 

FIG. 2: Construction of the basic matrix for KS code with weight of 4. 
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the effect of MAI. The upper decoder detects the desired code. Using AND detection, the lower retrieves the binary 

logical AND of the desired and interfering code (the interfering signal from other nodes having an overlapping 

chip with the desired code). It recovers the complement of the upper decoder in the case of CS. DD only deploys 

one decoder, which reduces the number of filters and the receiver complexity. 

Generally, FBGs are employed to filter the coveted wavelengths within both encoder and decoder. After forming 

the code words for each sensor point, the signals which have been modulated by vibration sensors travel over the 

fibre. In order to avoid power splitting to grab all dedicated wavelengths of the codeword, FBGs are consecutively 

structured in the encoder. However, such an arrangement causes unequal losses in different chips (due to the FBGs 

insertion loss affecting passing signals). Therefore, to prevent power reduction of various chips, in the receiver 

part the FBGs are arranged in the opposite order when compare to the encoder. This technique also eliminates the 

delay imposed by FBGs at the decoder. 

The choice of deployed detection technique is dependent on the utilised code family (Seyedzadeh et al. 2013, 

2016a). It has been shown that codes with high cross-correlation values (≥ 3) such as integer lattice optical 

orthogonal code (Djordjevic et al. 2004) are best decoded via balanced detection based methods, while DD is 

much appropriate for lower cross-correlation codes (e.g. VW-KS and VW-MS (Seyedzadeh et al. 2017)). Hence 

this study uses DD detection technique for retrieving the vibration modulated optical signals. The hardware 

experiment of a VW-OCDMA system using DD transmitted over optical fibre has been successfully demonstrated 

(Seyedzadeh et al. 2014). 

3. SYSTEM DESCRIPTION 

This study assumes that sensing points are distributed in different zones and the nodes residing inside the same 

zone have almost the same distance from the base control unit and that different zones are located unequally from 

the base unit. Figure 3 shows three zones with different sensing nodes and the base control unit. The main idea of 

this work is to assign a specific code weight for each zone where higher weights are allocated for zones with farther 

distance from the base. In this case, nodes are categorised into zones as equivalents to services in communication 

systems, according to their distances from the control unit. It should be noted that dividing nodes into the zones 

does not mean they are near each other but have logically distributed with similar span. 

 
FIG. 3: Configuration of optical sensors for monitoring structures distributed over three zones with different 

distances from control unit. 

Based on the assumed three sensing zone and nine sensing points the weight assignment technique is used to 

construct the desired code with weight of 6, 4 and 2. 

The code structure and wavelengths assigned to individual chips are depicted in Figure 4. Nine codewords are 

generated using the VW-KS code with a chip spacing of 0.4 nm and a code length of 30. These codes support four 

sensing points in zone 3 (with the longest distance), 3 in zone 2 (with the medium distance) and 2 points in zone 

1 (the nearest to the control unit). 
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FIG. 4: Code construction for vibration system and used wavelengths for each chip in OCDMA system. 

Figure 5 shows the architecture of a VW-SAC OCDMA system designed for multiple sensor nodes. Amplified 

spontaneous emission broad-band source (ASE-BBS) is used as the optical source. The spectrum of BBS is sent 

through an optical circulator and a 1×3 optical coupler (for supporting three zones). Each coupler port is then 

connected to a 1×N coupler (N is the number of sensing point in each zone) after transmission over a single mode 

fibre (SMF) with different lengths of 8, 12 and 15 km, respectively. Then output ports of secondary couplers are 

connected to sensing points to collect vibration signals. The encoder of VW-SAC comprises a collimator, vibration 

box and a series of FBGs. Due to the property of VW-KS code in being double weighted, the two wavelengths can 

be reflected using one FBG with bandwidth twice the chip spacing. The generated vibration causes a modulation 

that can be detected by decoders. In conducted simulation set-up, the study uses a Mach Zehnder modulator to 

mimic the behaviour of the collimator in sensing the vibration. Three different frequencies of 70, 140 and 210 

MHz are used to represent low, medium and high vibration, respectively. It should be noted that these values are 

examples from previous experimental researches Taiwo et al. (2016) and are used to demonstrate the operation of 

the proposed system. In a real-world implementation, first, the intensity of vibration is not discrete and second the 

range is determined by the type of the structure and variation of the quiver. 

 

FIG. 5: VW-SAC OCDMA system structure of fibre vibration sensor for monitoring three nodes in different areas. 

As indicated in Figure 5, vibration modulated signals traveling back are first recombine by the couplers and then 

guided to the detection section by an optical circulator. Here, the combined signals are split by a 1×N coupler and 

fed into decoder. Here, FBGs are used to filter out the desired wavelengths for the receiver. As mentioned, DD is 

used for recovery of sensor signals in which only the non-overlapping wavelengths (chips without cross-correlation 

with other codes) are detected at the receiver for the desired ‘users’. As the node with weight 2 uses only one filter 

in both encoder and decoder, the order is not important. 

The decoded optical signals are finally converted into the electrical domain employing PIN photodetectors and 

sent to three channel oscilloscopes with fast Fourier transform capabilities. 
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The proposed system is simulated using OptiSystem version 12 software and default values are used for optical 

and electrical components. 

4. SIMULATION RESULTS 

Three different vibration scenarios are considered to demonstrate the performance of the system as shown in Table 

1. To illustrate the vibration sensing in the system from each zone one sensing point is selected. Nodes N1, N2 and 

N3 are respectively located 8, 12 and 15 km far from the base control unit. The frequencies of other nodes are 

randomly assigned from 0 to 210 MHz. 

Table 1: Configuration of vibration frequencies for three nodes indicating various vibration scenarios for these 

points 

Node EXP 1 (MHz) EXP 2 (MHz) EXP 2 (MHz) 

N1 (W =2) 70 0 210 

N2 (W =4) 140 70 70 

N3 (W =5) 210 210 70 

Figure 6(a) to 6(c) illustrate the power represented in a radio frequency (RF) domain received from three nodes in 

experiments 1 to 3, respectively. As it can be observed low, medium and high vibration signal is constantly 

retrieved at frequencies of 66.3, 139.8 and 207.1 MHz at the encoder. Moreover, the signals of all nodes in different 

configurations are revived at almost the same peak power (±1 dB). The configuration of utilised weights are based 

on the selected distances and different combination can be applied for desired results. 

  

(a) (b) 

 

(c)  

FIG. 6: The RF signal power received for three nodes for experiments (a )1 - (c) 3 indicated in Table 1. 
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Hence, the weight of each zone is selected in a way that sufficient optical power for delivery of a noiseless signal 

could be received by the base station when all signals are collected, and the vibration is monitored. 

To make it clear, another experiment was conducted to check the scenario in which different weights are applied 

to the same distance. Here, the fibre length for all nodes is set to 20 km and the vibration frequencies are adopted 

from experiment 1 in Table 1. Figure 7 depicts the signal power for different frequencies. The signal for node N3 

which is received with a power of -33.4 dBm, so the vibration is distinctly detectable. The signals from node N1 

and node N2 are obtained with peak power of -47.6 and -41.8 dBm, respectively. The power retrievals are lower 

than for node N3 as they are assigned lower weights. This shows that it would be impossible to recognise vibrations 

happening in node N1 with its present configuration. 

 

FIG. 7: The RF signal power received for distance of 20 km for all nodes. 

4.1 Effect of Transmission Distance 

In order to evaluate the performance of the proposed system under the influence of the transmission medium, a 

set-up with nine nodes (two points in the nearest zone with the allocated weight of 2, three points in zone 2 with 

the weight of 4 and four-point at the farthest zone with weight 6) is investigated. The codes are generated using 

the fixed mapping technique (cf. Appendix A). The plot of the signal to noise ratio (SNR) against the average 

transmission distance is presented in Figure 8. The different length of optical fibre for each zone is represented by 

the x-axis. 

 

FIG. 8: SNR of received signals from three zones vs transmission distance. 
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It can be seen that below the transmission distance of 56 km, SNRs of all nodes satisfy the minimum value of 15 

dB. The reason why SNRs for nodes with higher weights decrease with a faster rate depends on fibre properties 

(Seyedzadeh et al. 2016b). To obtain robust results, the worst-case scenarios are selected for investigations. Since 

in the practice, the vibration frequencies are far lower than the test cases in this study the chirping effect due to 

fibre dispersion will not be detrimental. Therefore, for the metropolitan area size networks, not in-line boosting, 

nor dispersion compensation is needed. 

To elaborate on the determination of the right weight for different distances, this study assumes that the zone 3 

(zone 2) is located at a distance which is 2 and 2.5 times larger than the zone 1 distance from the control unit, 

respectively. The aim is to assign weights for these three zones located at 36, 72 and 90 km from the data collection 

point. Figure 9 demonstrates two sets of weights allocated for 9 sensor points distributed in different zones. The 

first set (i.e. 6, 4 and 2) cannot deliver good enough signal quality for nodes located in zone 2 and 3. Utilising the 

second set by including weights 10, 8 and 2, signals from all nodes are received with a sufficient power level and 

acceptable SNRs. That means the second set of weights allows for monitoring of vibrations of structures located 

at the targeted distances. Hence in summary, the selection of weights for each zone depends on distances of all 

zones from the signal collection point, and the number of sensing points located in each area. 

 

FIG. 9: SNR for different combination of code weights against transmission distance. 

5. VW-OCDMA SENSOR SYSTEM CAPACITY 

In order to determine the approximate capacity of VW-OCDMA sensor system, a mathematical model based on 

the upper bound calculation (Smith et al. 1998) is developed. In this model, shot and thermal noises are taken into 

account to derive the SNR of the received signals. It should be noted that as DD detection is used, the phase-

induced intensity noise is avoided. 

The noise variance of a photocurrent emitted from the optical source as a result of the detection of an ideally 

unpolarised thermal light can be calculated as (Wei et al. 2001): 

 

(3) 

Where Ishot and Ithermal represent the shot and thermal noise, respectively. The coherence time of the thermal source, 

τc is given by (Smith et al. 1998) 
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(4) 

Where G(v) is the source power spectral density (PSD). 

This mathematical model considers following assumptions: 

a) Each power spectral component has an identical spectral width. 

b) Each node receives equal amount of the total power. 

c) Each vibration is considered as a modulated signal at a frequency of 210 MHz. 

d) The number of nodes in every zone is almost the same 

The PSD of the received signals can be expressed as (Yang et al. 2004): 

 

(5) 

Here Psr is the effective power of the source at the receiver, ∆v is the bandwidth of the optical source, K and N are 

the number of sensor nodes and total code length, respectively, dk is the modulated information of k-th vibrated 

node which is either “1” or “0”,  ( ) is the i-th element of the k-th KS code sequence and Π(i) is a 

function written as: 

 

(6) 

and u[v] is the unit step function expressed as: 

 

(7) 

 

The code properties using DD is expressed as 

 

(8) 

The photocurrent of the desired node’s signal is therefore 

 

(9) 
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Where ℜ represents the receiver responsivity, and Psr is the received power. It is assumed that the configuration of 

the VW-OCDMA sensor system guarantees that signals arriving from nodes at different distances are received 

with almost the same power, therefore Psr × Wk remains constant for all nodes and can be replaced by Pc. Indeed, 

this is the main idea of varying weights for the unequally distributed sensors. For longer distances Psr is decreased; 

however, different higher weights, Wk, ensure that the same received power will be attained from these nodes. The 

noise level in all signals carried by different wavelengths is not the same even with equal optical power. However, 

as this model gives an upper bound approximation of SNR, this issue can be ignored. 

The variance of shot noise in the photocurrent can be calculated as 

 

(10) 

The thermal noise is given as 

 

(11) 

where B is the electrical bandwidth, Kb is Boltzmann’s constant, Tn is received noise temperature and RL represents 

the receiver load resistance. 

Hence, the SNR for VW-SAC-OCDMA can be written as 

 

(12) 

The parameters for the mathematical analysis are listed in Table 2. 

Table 2: The mathematical parameters adopted from (Kakaee et al. 2014, Smith et al. 1998, Shalaby 2012) used 

in the evaluation of system capacity. 

Symbol Parameter Value 

Symbol Parameter Value 

η Photodetector quantum efficiency 0.6 
∆v The linewidth of the broadband source 3.75 THz 
λ0 Operating wavelength 1550 nm 
Pc Received optical power -10 dBm 
Tn Receiver noise temperature 300 K 
Rl Receiver load resistor 1030 Ω 
e Electron charge 1.6 × 10−19 C 
h Planck’s constant 6.66 × 10−34 Js 
Kb Boltzmann’s constant 1.38 × 10−23 J/K 

Figure 10 shows the plot of SNR versus the number of simultaneous sensor nodes with different configurations. 

The three zones configuration is simulated using (6, 4, 2), (8, 6, 4) and (10, 6, 4) code combinations. The system 

capacity is also illustrated for four zones with assigned code weights of 8, 6, 4 and 2. It can be seen that how 

increasing the code weight expand the system capacity. 
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FIG. 10: SNR of received signal against number of active nodes in the system. 

It could be concluded that, different configurations can be designed for each specific optical sensor network with 

various number of zones and sensing points. In this analysis, it was assumed that each node group (zone) with a 

different weight has the same share of the total number of nodes. However, it should be noted that if the number 

of nodes with lower weights are dominant, the system capacity will increase due to the reduction of the total code 

length, Nv and vice versa. The diagram shown in Figure 11 illustrates a rule of thumb approach to select the code 

weights for the required number of zones and the sensing points. 

 

FIG. 11: Flowchart for selecting code weight Deleted because if kept there will need more explanation. 



 

 

 
ITcon Vol. 24 (2019), Rahimian et al., pg. 312 

 

To support a large number of nodes distributed across several zones, the use of more flexible OCDMA codes such 

as VW-MS (Seyedzadeh et al. 2017), will result in a better SNR and more flexible code construction for the desired  

configuration. 

6. CONCLUSION 

The research presented in this study addresses the functionality gap between the emerging optical sensor networks 

and urban SHM, in order to leverage more efficient remote vibration sensing of constructed sites. As mentioned 

in the reviewed literature, despite the broad adoption of the optical sensing in SHM, there are several challenges 

in monitoring various structures located in urban areas. This includes high cost of the implementation of WDM 

systems, the demand for synchronisation in TDM networks and the inability of sensing to support of various zones 

which are distributed in the urban area without the need for independent connectivity. This study is our response 

to address the need for the cost-effective monitoring by utilizing the existing infrastructure and fibre links which 

are connecting these dispersed construction areas while minimizing possible detrimental effects arising from 

nonlinearities due to the signal amplification, dispersion, and time jitter - effects which otherwise would need to 

be carefully dealt with in case of employing competing approaches, including WDM or TDM systems. The 

proposed VW-SACOCDMA does not require any traffic management or system synchronisation and was shown 

in Section Effect of Transmission Distance, is also resilient to performance degradations caused by fibre 

nonlinearities. 

The proposed optical multiplexing system for monitoring vibration in unequally distributed nodes, is based on a 

VW-SAC OCDMA. The proposed system with nine nodes with different distances from the control unit was then 

investigated, using optical simulation software. Low, medium and high vibrations were considered as a sinusoidal 

modulation with different frequency. The corresponding received signals were presented in the radio frequency 

domain for three nodes in different zones. The results indicate that the applied vibration frequencies were explicitly 

obtained for all weights in various scenarios. Furthermore, the conducted simulation showed how by increasing 

the fibre length (i.e. the distance of nodes from the base) nodes with the lower weight experience more signal 

power degradation would make the vibration detection more difficult. The combine effect of transmission fibre 

and selection of an appropriate code for different zones are numerically analysed by considering nine sensing 

points distributed in three locations. Moreover, through mathematical approximation, the capacity of VW-

OCDMA for vibration sensing was demonstrated as SNR against the number of nodes; obtained results indicate 

that the proposed system has the potential to support a high number of nodes distributed with uneven distances. 

The performance of the system may be further improved using more flexible OCDMA code families. The 

simulation and mathematical results point out the suitability of the VW-OCDMA system  vibration sensing with 

a simple implementation and high accuracy. If the security of monitoring data is not an issue, the use of zero cross-

correlation codes is recommended as they provide a better code-word cardinality while using the same bandwidth. 
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APPENDIX A. EXPANDING OCDMA CODE FOR EXTENTED NUMBER OF 
SENSORS 

The process of VW-KS code construction is a combination of two algorithms, which are fixed mapping technique 

and dynamic weight assignment. The first technique is a simple mapping of codes with same and different weights 

that had been initially constructed using single weight KS technique. The second technique, dynamic weight 

assignment uses the value of [1 2 1] combination to arrange sub-codes A and B, accordingly (Anas et al. 2016). 

The main aim of developing dynamic weight assignment was to support few number of differentiated services 

without wasting extra bandwidth. 

A.1. Mapping technique 

First, the number of sensor points is increased by mapping the basic matrix, CB, for the required weight. Based on 

the assumption that the total number of requisite sensors in one region (which determines the allocated weight) is 

N, the basic matrix repeated by 𝑀 =  ⌊𝑁/𝑁𝐵𝑐 ⌋times, where NB is the number of nodes in CB as the following 

matrix:    

 

here CB(m) is the mth mapping sequence where m = 1,2,...,M. Each ‘0’ in the mapping matrix is a sequence of 

zeros with the same size of CB. The maximum crosscorrelation λc between codes within the same matrix is one and 

from different mappings is zero. Hence; using the mapping technique maximum cross-correlation of 1 obtained 

for all users. 

Therefore, sensor points are grouped based on the distance from the monitoring unit where a matrix with suitable 

code weight is assigned for them. This means the construction sites which are located approximately in the same 

distance from the control unit are clustered in one zone. For example, if we have nine sensors of which four located 

in almost 18-20 km, 3 in 12-5 km and 2 from 8-10 km from the control unit, then we will have three zones. Next, 

we need to assign the highest weight to the farthest zone, a lower one to the zone with the medium distance and 

the lowest weight to the nearest zone.   

A matrix with the desired code weight is assigned to each zone. As it is discussed if the number of points is higher 

than one basic matrix, more number of mapped matrices are assigned to the group to support all users. Then, 

matrices with different code weights are joined together using the mapping method to construct the overall matrix. 

Figure 12, illustrates the structure of VW-code construction to support Q number of multiple distances (weights) 

using KS code. CBWq(m) shows the mth mapping basic matrix for qth region which is appointed with the weight of 

Wq.  

 

FIG. 12: General structure of VW-Code construction using KS code. 
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The total code length of VW-MS code, Lt with mapping technique is  expressed as: 

 

(A.1) 

A.2. Dynamic weight assignment and hybrid method 

Dynamic weight assignment reduces the code length by considering two important parameters to determine the 

position of sub-codes insertion. They are the value of 3-column combination (3CC) and cross-correlation between 

two different users, x and y, i.e. Rx,y. Figure 13 shows an example of KS codes with illustration of 3CC and Rx,y 

values. The procedure of dynamic weight assignment is elaborated by Anas et al. (2016). 

 

FIG. 13: KS codes illustrating 3CC and values. 

When the number of requesting nodes having the same weight (sensors in the same region) is equal to the 

maximum number of users for that particular mapping, KW = Kmax(M), a fixed mapping technique is the best choice 

for VW-KS codes. In the case of KW < Kmax(M), a dynamic weight assignment technique can be result in a reduced 

code length and utilised bandwidth, provided that the number of mappings is one, i.e. M = 1. However, for M > 1, 

a combination of both techniques results in better bandwidth utilisation. In this method, it is important to determine 

the number of maximum nodes in the previous mapping, Kmax(M−1). For large number of requesting users, KW, 

where the number of mapping is greater than one (M > 1), fixed mapping technique is the best choice for nodes 

up to Kmax(M − 1). While for the remaining users, Kr = KW − Kmax(M − 1), their codes can be constructed using 

dynamic weight assignment. The codes of different weights, generated using fixed mapping for 1 ≤ KW ≤ Kmax(M 

−1) are appended diagonally, and later combined with codes for remaining users, Kr generated using dynamic 

weight assignment technique. The general form of the hybrid fixed-dynamic weight assignment technique is 

depicted in Figure 14 and its code length is given by 

 

(A.2) 

 

 

FIG. 14: General form of hybrid fixed-dynamic weight assignment technique. 
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