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SUMMARY: Modular construction is a promising alternative to conventional construction; offering improved 

productivity, quality, and safety. To realize these benefits, sequencing the module fabrication process in a manner 

that ensures efficient allocation of labor resources is essential. However, the varying sizes and design 

specifications of modules lead to high variation in process times at workstations, ineffective utilization of 

resources, and imbalanced production lines. To address these challenges, this paper proposes a simulation-based 

statistical method to plan the sequencing of module fabrication and the allocation of workers at workstations for 

such that productivity and control are improved. The method consists of four processes: (i) data collection to 

obtain historical and near real-time data; (ii) identification of significant impact factors affecting process times 

at workstations along the production line; (iii) development of a predictive model for forecasting process times at 

workstations using statistical analysis and probability distribution function; and (iv) planning the sequencing of 

module fabrication in a manner that ensures efficient labor allocation (i.e., crew size). The developed method is 

validated using data captured from a light gauge steel wall panel production line operated by a modular fabricator 

in Edmonton, Canada. The industrial partner produces both interior and exterior light gauge steel wall panels on 

a production line consisting of multiple workstations. First, five significant impact factors for each workstation 

among the design factors that highly influence the process times were identified in order to develop cycle time 

formula as a predictive model. The simulation model developed and implemented in conjunction with cycle time 

formula (CTF) in this case study was deemed to be a reliable predictive model (i.e. 89.39% accuracy), which can 

be used to improve productivity. The method is shown to be capable of assisting in decision-making by enabling 

production managers to better understand the effects of proposed changes to the production line prior to 

implementation. In this way, production managers can plan effectively and thereby reducing non-productive idle 

time. 
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1. INTRODUCTION 

Modular construction has grown in popularity in recent years, given its potential to enhance productivity. 

According to the Modular Building Institute (MBI, 2018), modular construction can be used to construct 

condominiums, dormitories, and duplex homes in about half the time of conventional construction. Previous 

research (Bertram et al., 2019) has defined modular construction in terms of the following features: (i) repetitive 

nature of manufacturing activities; (ii) standardized operating procedures (SOPs) on a production line; and (iii) a 

streamlined construction process due to simultaneous on-site and off-site activities. Based on these features, MBI 

reported an increase in gross revenues from $3.3 billion to $3.97 billion in 2017 (MBI, 2018). However, modular 

construction manufacturing (MCM) still has various challenges, such as: (i) variation in design specifications of 

modules, leading to varying production rates and imbalanced production lines; and (ii) queuing and waiting due 

to imbalanced production, in turn further increasing the idle time of workers at workstations (Hsu et al., 2019). To 

overcome these challenges, robust production planning that encompasses careful sequencing of fabrication 

processes and efficient allocation of workers at workstations is critical in efforts to improve productivity and 

control. 

Effective planning plays an essential role in construction projects, as it helps to better allocate workers (minimizes 

their idle time), leading to timely and efficient delivery of projects. However, the planning methods used in 

conventional construction projects, such as the critical path method, are not suitable for MCM due to the lack of 

crew work continuity leading to low productivity (Kavanagh, 1985). Consideration of crew work continuity helps 

to prevent idle time during repetitive tasks by planning the advancing from one task to another in accordance with 

the task demands (El-Rayes and Moselhi, 1998). In this respect, the linear scheduling method (LSM) addresses 

resource continuity in repetitive projects. This method provides information about productivity and duration of 

activities in an easy to understand format. For example, Salama et al. (2018) integrated critical chain project 

management with LSM to accelerate schedules while maintaining resource continuity. However, this method does 

not (i) account for decision variables such as module dimensions and wall openings in their sequencing and labor 

allocation, which highly affects the cycle time of the production line or (ii) consider multiple scenarios of resources 

and sequences of modules which is critical for planning effectively and improving production performance of 

MCM lines (Altaf et al., 2014; Liu et al., 2015). 

To address the above limitations, this paper proposes a simulation-based statistical method for production line 

planning that supports production planning and labor allocation based on historical and near real-time data. The 

developed method encompasses: (i) a C-track application to collect historical and near real-time data from 

workstations; (ii) identification of significant impact factors (SIFs) influencing fabrication process times at 

workstations; (iii) development of predictive models for forecasting process times at workstations; and (iv) 

development of a simulation model facilitating the generation of multiple scenarios based on sequences of modules 

and allocation of workers at workstations. 

2. BACKGROUND 

To improve planning in modular construction, researchers have proposed planning methods based on various 

techniques such as lean principles and simulation (Yu et al., 2009). The implementation of lean principles enhances 

substantially process improvement efforts by identifying and eliminating non-value-added activities in the 

production line. For example, Yu et al. (2009) used a value stream mapping (VSM) tool to determine steady 

production flow for productivity improvement by analyzing the production process and controlling the fluctuation 

of resources. Zhang (2017) integrated the production line breakdown structure with VSM to assess the status of 

the production line, identify issues, and propose solutions for future implementation. However, based on these 

techniques, designing plans without validating and understating their effects on the production line can be costly 

and time-consuming. To address this, computer simulation can be employed as a validation tool for future planning 

by imitating production line processes as a way of assessing the effect of proposed solutions prior to incurring the 

cost and disruption of actual implementation (Han et al., 2012). 

Computer simulation is commonly used for planning and decision-making in the construction industry, and several 

simulation tools have been developed. Cyclone (Halpin, 1997) can be deployed to model and analyze the 

construction process. Hajjar and AbouRizk (1999) introduced Simphony.NET as a discrete-event simulation 

system to evaluate production line scenarios before implementing them in actual production. Other studies have 

advanced production line planning in MCM in particular using simulation platforms. For instance, Altaf et al. 
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(2018) used radio frequency identification (RFID) technology and simulation-based optimization for planning and 

controlling the production line. Bhatia et al. (2019) created a simulation model in Simphony.NET for predicting 

the productivity of the production line. Azimi et al. (2011) proposed a data acquisition and simulation-based 

framework as a decision support tool on the basis of which production managers can take proactive corrective 

actions. However, what these methods lack is: (i) a systematic way to identify the SIFs affecting process times at 

workstations, which provides critical information that can improve the accuracy of the simulation results; (ii) 

analysis of the allocation of workers to workstations for the purpose of productivity improvement; and (iii) a data 

collection system that offers ease of use and cost efficiency without sacrificing efficiency and accuracy. Due to 

these deficiencies, previous studies have relied on a manual data collection approach that is error-prone and time-

consuming. Although some studies have introduced RFID-based data collection (Azimi et al., 2011; Altaf et al., 

2018), this entails upfront and operational costs for the RFID infrastructure that the small- and medium-sized 

construction enterprises—which still dominate the Canadian construction market (KSBS, 2019) cannot afford. 

Moreover, depending on the material type (e.g., light gauge steel), some modular construction companies may 

prefer not to apply this advanced technology due to the interference of the RFID tag detection caused by the 

material. 

Accurate prediction of workstation process times based on a module’s design specifications is essential for 

production planning in MCM. In this respect, identifying the key features affecting the process times and 

developing regression-type predictive models that use historical data is vital to support intelligent decision making 

in production planning that promote productivity improvement. Feature selection methods in data analysis are used 

to select important features from an available subset of variables in order to develop efficient and accurate 

predictive models (Guyon and Elisseeff, 2003). According to Mohsenijam and Lu (2019), a predictive model with 

key input features significantly reduces the collinearity between input variables and overfitting issues. Various 

feature selection methods, such as correlation matrix, principal component analysis, and t-test, have been used to 

identify key features (e.g., work durations, worker’s skill, profit margin, module type and workplace design 

parameters) in order to improve understanding of the underlying processes and overall performance of projects 

(Xu et al., 2017; Xie et al., 2018; Zaalouk and Han, 2021). For instance, Chanmeka et al. (2012) carried out a 

correlation analysis and statistical test of significance to determine critical factors related to the performance of oil 

& gas projects in Alberta, Canada.  

Moreover, multiple linear regression has been implemented to develop data-driven prediction metrics in various 

construction and fabrication projects. This approach relies on several input variables to predict an output variable 

as a way of gaining insights into underlying patterns. For example, Mohsenijam and Lu (2019) used multiple linear 

regression techniques to develop a predictive model for structural steel fabrication. In their study, stepwise 

regression was implemented to identify key design features such as rebar, bolts, nuts, etc. The project’s labor hours 

were predicted using a regression model created using these smaller subsets of design features. Despite the 

appropriate use of feature selection methods and regression-type predictive models in the aforementioned studies, 

though, they cannot be effectively applied to MCM because of its process-oriented nature. In the MCM approach, 

the entire production process is divided into sequences of smaller repetitive processes, such that the productivity 

of the manufacturing production line can be improved using lean concepts such as elimination of wastes and 

continuous improvement. As such, in the case of MCM, an analytical framework is required in order to identify 

significant module design factors and establish a model to accurately predict the workstation process times. In 

consideration of these characteristics, the research presented in this paper seeks to identify which feature selection 

methods are most effective for production planning in MCM. 

3. DEVELOPED METHOD 

Fig. 1 depicts the components of the developed method and its simulation-based planning process for MCM lines 

using historical and near real-time data. The process encompasses three phases: (i) data collection; (ii) data 

analysis; and (iii) simulation-based planning. Input parameters such as process times of workstations, design 

specifications of modules, and the number of workers at workstations are housed in a central database. The criteria 

are workflow of the production line, availability of resources, working hours, and the capacity of workstations in 

terms of the module length they can accommodate (e.g., the capacity of a framing workstation may be a length of 

20 ft). In the data collection phase, work and time studies are performed in order to gain understanding of the SOPs 

at workstations as well as collect historical and near real-time workstation production data. The data collected 

includes the start and finish times of modules, design specifications, and the number of workers assigned to various 
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workstations. This data is stored in a database via a cloud-based time-track application called “C-track”. The 

database is used in: (i) the data analysis phase to identify SIFs, develop the probability distribution functions and 

cycle time formula (CTF) using statistical techniques, and select the best predictive model by comparing the 

performance of the cycle time formula with that of the probability distribution functions; and (ii) the simulation 

model of the production line developed in Simphony.NET. Both cycle time formula (CTF) and probability 

distribution functions are used in the simulation model as a way of capturing the unique nature of production lines 

(e.g., facility layout and number of workstations). In this respect, the outputs (productivity) from the simulation 

model using cycle time formula (CTF) and probability distribution functions are compared with historical 

productivity data in order to determine which model is most accurate. The output, it should be noted, lists the 

sequence of modules and allocation of workers at workstations, and can be used to determine the total duration for 

completing a module in the multiple scenarios generated by the simulation model. The simulation model also helps 

to balance the production line by assigning an optimal sequence of modules and allocation of workers. 

 

 

FIG. 1: Main components of the developed method. 

3.1 Data collection  

The purpose of the data collection phase is to understand the performance of production lines by conducting work 

and time studies. The work study involves: (i) reviewing the SOPs of workstations in order to gain a high-level 

understanding of the sequences of activities at workstations prior to direct observation; (ii) classifying the types of 

modules (e.g., interior and exterior wall panels) and their components (e.g., number of window openings per 

module) using the shop drawings; and (iii) determining the breakpoints, i.e., the start and finish points for the 

various work processes at the workstations, in order to ensure that the process times are collected efficiently and 

accurately. In a typical time study, a series of time data in the production line is collected and recorded manually 

using a stopwatch and timesheets, but this approach is time-consuming and inaccurate. Therefore, to achieve more 

accurate results in a more efficient manner, a C-track app is used in the present study in order to: (i) improve the 
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accuracy of the data collection process by recording near real-time data of modules at workstations; and (ii) 

improve communication by providing efficient information transfer between the production line and the 

production planning department. The C-track app consists of a desktop-based production management system 

(used in the production planning department) and an iPad-based system (installed at the workstations). The key 

users in the desktop-based system are the project manager and the project coordinator. The desktop-based system 

encompasses: (i) representation of the production line for the purpose of defining the workflow; (ii) management 

of the assignment of modules to workstations (i.e., sequence); and (iii) data organization (e.g., productivity of 

specific workstations and of the production line overall) based on the historical and near real-time recorded by the 

iPad-based system. The iPad-based system receives the information related to modules and their workflow from 

the desktop-based system. The workers at workstations follow the information concerning sequencing of modules 

assigned under the list of module names in order to record the process times. For collecting the time records, the 

‘Track App’ features start, pause, and finish buttons. The worker first selects a ‘module name’ from the list, then 

presses ‘start’ to record the process start-time. In case of a disruption due to an error in the drawings or a work 

stoppage for a scheduled break, the worker uses the ‘pause’ button to stop the time record. After completing a 

module, the worker selects the ‘finish’ button. The timestamp is then recorded and transferred automatically in the 

‘production management system’ and the database. Along with this, the ‘module name’ of the finished module is 

updated automatically in the ‘product item’ list of the next workstation. Although workers are still required to 

manually start/stop the time recordings, this semi-automated data collection application efficiently and accurately 

tracks modules at workstations and allows the productivity of the production line to be monitored in real-time. 

Based on the app's data organization feature, production managers can monitor bottlenecks on the production line 

in near real-time by comparing current and historical production rates. 

3.2 Data analysis  

Fig. 2 provides a flowchart of the data analysis used to develop the models for predicting process times. To address 

the effect of missing data and outliers on the accuracy of the predictive models, the first step of the data analysis 

is to identify any missing values in the dataset due to human error (e.g., incorrect keystrokes on the app.) or 

technical issues such as temporary internet disconnection. The most common method to deal with missing values 

in the data is substitution through linear interpolation or regression (Piryonesi and El-Diraby, 2019). Furthermore, 

outliers, a set of data points that follow a pattern inconsistent with the rest of the data points, must be removed to 

improve the accuracy of the predictive model. Outliers can be identified and removed either by drawing scatter 

plots or by using residuals, which measure differences between observed and estimated durations. Residual 

analysis proceeds with: (i) fitting a regression model to the dataset; (ii) finding the estimated durations; and (iii) 

calculating the residuals and adjusted residuals. In this research, the standardized residuals (individual residual 

divided by the standard deviation of residuals) are found to fall within the range of ±1.64, where data points outside 

of this range are considered outliers, as per Cottrell (2006). After detecting the outliers, normalization is 

implemented using Eq. (1) to: (i) reduce the sizes of variables and thereby reduce computation time for calculating 

the process times; and (ii) improve the accuracy of the model. 

𝑉′ =  (𝑉 − 𝑚𝑖𝑛𝐴)/(𝑚𝑎𝑥𝐴 −  𝑚𝑖𝑛𝐴) Equation (1) 

where minA and maxA are the minimum and maximum values, respectively, of the independent variable, A, and V 

represents the original value of A. 

The dataset having been cleaned, statistical techniques such as PCA, t-test, and PCC are applied in order to identify 

the SIFs affecting the process times. These feature selection techniques enhance the performance of the predictive 

model and provide deeper understanding of the underlying process (Guyona and Elisseeff., 2003; Chanmeka et 

al., 2012). These techniques, it should be noted, are selected for the present study by virtue of (i) their wide use in 

investigating prediction and variable selection problems in manufacturing and pipe fabrication; and (ii) their 

simplicity, empirical accuracy, and generic applicability. To avoid overfitting, machine learning algorithms such 

as random forest and decision tree, as alternative methods for variable selection, are not considered because of the 

small size of the dataset, i.e., less than 1,000 observations. According to Makridakis et al. (2018), the use of such 

methods for small datasets can yield a “black box solution”, which may not be acceptable to industry practitioners. 

Below is a brief description of statistical techniques used: 

1) t-test: The sample t-test is a statistical analysis technique used to determine the probability value of rejecting 

the hypothesis, which, in this research, is the statistical significance of the selected factors that affect the process 
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times at MCM workstations. In this research, a sample t-test (Gerald, 2018) is deployed based on Eq. (2), where n 

is the sample size, �̅� is the mean of the sample data, µ is the population mean, and 𝜎 is the standard deviation. The 

SIFs are selected by evaluating the p-value—defined as p-value ≤ 0.01 in this research. 

𝑡 =  (�̅� − 𝜇)/(𝜎/√𝑛) Equation (2) 

2) Pearson correlation coefficient (PCC): PCC (Yu and Liu, 2003) is represented by Eq. (3), where 𝑥𝑖
𝑗̅̅ ̅ is the mean 

of independent variable xj and 𝑦�̅�  is the mean of dependent variable y (duration). 𝑥𝑖
𝑗  and 𝑦𝑖  represent the original 

values of variables xi and y. The range of R is ±1, where values close to 1 are indicative of a strong correlation 

between the independent variables, while values close to 0 signal a weak correlation between independent 

variables. 

𝑅 =  ∑( 𝑥𝑖
𝑗 − 𝑥𝑖

𝑗̅̅ ̅) (𝑦𝑖 − 𝑦�̅�) / √∑( 𝑥𝑖
𝑗 − 𝑥𝑖

𝑗̅̅ ̅)
2

∑( 𝑦𝑖
𝑗 − 𝑦𝑖

𝑗̅̅ ̅)
2
  Equation (3) 

where i is the number of observations and j is the number of variables. 

3) Principal component analysis (PCA): PCA is a widely used data reduction technique that extracts the small set 

of variables that accounts for maximum variance in the original dataset. In this method, typically the principal 

components (PCs) accounting for 90% of the dataset's total variation are selected for further analysis (Rocchi et 

al., 2004). These components represent a linear combination of original independent variables, where the first PC 

has the most significant variance, and the succeeding PCs are built by reducing the variances of the preceding PCs. 

 

FIG. 2: Flowchart of data analysis. 

Before developing the regression model, the dataset is divided into training (80%) and testing (20%) subsets. Based 

on the SIFs and the training subset, multiple linear regression (MLR) models are developed to predict the process 

times at workstations. To identify and mitigate overfitting, which diminishes the generalizability and accuracy of 

predictive models, cross-validation, as a technique that identifies overfitting by testing the accuracy of the 

predictive model (Mahmood and Khan, 2009), is applied. The present study adopts K-fold cross-validation, as this 

is one of the most robust approaches for validating and testing the performance of a model, given that it utilizes 

unseen data. The dataset is divided into K folds, where, in turn, (K−1) folds are used to train the predictive model, 

and the remaining fold is used to test the accuracy. This process is repeated for K iterations, where the accuracy 

of the predictive model is determined by calculating the average of these K iterations. 
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Based on the results of the t-test, PCC, and PCA using different lists of SIFs, there are a few different MLR models 

capable of predicting the process times. There are four evaluation indices that can be used to determine which 

predictive model is most accurate: (i) R-square (R2); (ii) adjusted R-square, (adj. R2); (iii) root-mean-square error 

(RMSE); and (iv) mean absolute error (MAE) (Willmott and Matsuura 2005, Elmousalami 2019). These evaluation 

indices have been shown to be reliable and are used widely in various disciplines such as manufacturing and 

construction (Martinez et al., 2020). 

Based on the historical time data stored in the database, a probabilistic model is developed to predict the process 

times at workstations. Various functions, including Gamma, Weibull, Uniform, and Triangular, are fitted in order 

to generate the process times based on the parameters of the associated distributions, such as moment matching, 

maximum likelihood, and least squares. A given function and associated parameters having been determined, 

goodness-of-fit tests, including Kolmogorov–Smirnov (K–S) and chi-squared, are performed in order to assess the 

goodness-of-fit between the observed and expected distributions (AbouRizk et al., 2016). If the predicted and 

actual process times are in close correlation, the given function is accepted for use as an input in the simulation 

model. 

3.3 Simulation-based planning 

In practice, different types of modules, such as interior and exterior wall panels, may be produced in the same 

production line but following different SOPs at the workstations. In this respect, MCM typically follows a mixed-

production line model, leading to varying process times and, in turn, imbalanced production flow and inefficient 

utilization of resources. Given this, it is important to reduce: (i) waiting time of modules between workstations; 

and (ii) idle time of workers at workstations. In this respect, continuous workflow can be achieved by planning 

efficient sequencing of modules and labor allocation through predictive modeling based on historical time data. In 

this regard, in the present study production planning is implemented using a simulation model developed in 

Simphony.NET. Fig. 3 illustrates the process flow of the simulation-based planning method, which consists of (i) 

developing a simulation model by mimicking the workflow of the production line based on the work study; (ii) 

importing inputs such as cycle time formula (CTFs), probability distribution functions, labor allocation, and 

module design specifications (e.g., heights of framing components and number of frames) from the database into 

the simulation model using structured query language (SQL); (iii) comparing the results (productivity) between 

the cycle time formula (CTFs) and probability distribution functions using historical productivity data in order to 

identify the most accurate predictive model ; (iv) using the most accurate predictive model to develop multiple 

scenarios in the simulation model by considering various sequences of modules and various labor allocation cases; 

and (v) selecting the best scenario, that is, the scenario with the minimum total duration to complete the project 

(i.e., to produce the given modules). 

 
FIG. 3: Flowchart of simulation-based planning. 

Identify best scenario 
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4. IMPLEMENTATION  

The developed method was implemented on a wall panel production line of a modular fabricator in Edmonton, 

Canada. The industry partner produces both interior and exterior light gauge steel (LGS) wall panels on a 

production line consisting of five workstations: (i) as assembly station where wall components, such as types of 

studs and tracks and the number of studs and tracks, are prepared based on the shop drawings; (ii) a framing station 

where the wall components are fastened together to form wall panels; (iii) a rim track sub-station where track studs 

are installed on the panels to secure the wall studs; (iv) a sheathing station where drywall is installed on the exterior 

walls; and (v) a temporary storage area where wall panels are stored as they await delivery to sites. The industry 

partner produces various types of LGS wall panels for six-storey residential buildings, each comprising 120 units 

and more than 1,500 wall panels with varying design specifications. Workstation process times (200 series of time 

data) were collected and stored in a database using the C-track app. The names of wall panels, the number of 

workers at workstations, and module design specifications such as the number of studs and total area of windows 

and doors (in sq. ft) were stored manually into the database. 

The 200 series of time data and impact factors of each of the three main workstations (i.e., the assembly station, 

the framing station, and the sheathing station) were used for the data analysis. The time-series data collected, 

though it would be considered a relatively small dataset, provided useful insights about the production line, as 

illustrated below. Looking at the results of the data analysis, the workstation process times were found to vary 

depending on the wall panel design specifications, even when the allocation of tasks and workers at workstations 

did not change. For example, as shown in Fig. 4(a), the process times at the assembly workstation ranged from 7 

to 99 minutes depending on the number of wall panel design factors (e.g., the number of studs, plates, and clips). 

The data in the figure also indicates that at this particular workstation all the listed wall panel design factors 

affected the process times. For example, the number of plates in the wall panels ranged from 5 to 80, and this 

factor, as the figure clearly shows, strongly affected the process times. However, as shown in Fig. 4(b) and Fig. 

4(c), it was found that some design factors (e.g., number of tracks and window area) did not affect the process 

times at some workstations. In other words, these factors do not have a significant relationship with the workstation 

process times. For instance, as shown in Fig. 4(b), the number of tracks required was 2 to 3 for all types of wall 

panels; however, the process times were found to vary from 11 to 102 minutes. As illustrated in Fig. 4(d), there 

was found to be a high level of variance in the process times at workstations due to the influence of these design 

factors. For example, although there was an SOP at the assembly workstation, the process times ranged from 23 

to 100 minutes, leading to reduced productivity due to an imbalanced production line. As described above, this 

imbalance can be reduced by planning more efficient sequencing of modules and allocation of labor based on 

historical production data. In this respect, the next critical step in the case study would be to identify the SIFs 

among the design factors that highly influence the process times. 

 

FIG. 4(a,b,c): Effect of design specifications on process time, and (d) average productivity of workstations. 
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Prior to identifying the SIFs, though, data pre-processing was implemented to identify and remove the outliers 

from the raw dataset based on the scatter plot and the standardized residual test. Based on the expert opinion of 

the industry partner’s production manager, process times >80 minutes were removed from the scatter plot, given 

that such data points are indicative of a work disruption such as a delay due to errors in the shop drawings. After 

this, the standardized residuals test was implemented to identify hidden outliers. The data points with standardized 

residuals outside the range of ±1.64 were considered outliers and were removed from the dataset. As a result of 

the pre-processing task, the datasets numbered 178, 180, and 178 for the assembly, framing, and sheathing 

workstations, respectively. These data were normalized using a min–max normalization technique to transform 

the integer values into values ranging between 0 and 1. A t-test, PCC, and PCA were implemented to find the SIFs, 

with these, in turn, serving as the primary input in the development of the MLR models. The results of the t-test 

and PCC are represented in Table 1. With the significance level (p-value) defined as 1%, the different workstations 

were found to have different SIFs. For example, for the assembly workstation, six design factors (number of: 

header foam, studs, stud’s foam, plates, clips, and openings) were identified as SIFs. However, the SIFs at the 

sheathing station were track length, number of angles, and window and door area. In terms of PCC, the design 

factors were selected by examining the correlation coefficient, which represents the relationship between the 

dependent variable (duration) and the independent variables. Design factors with a correlation coefficient >0.65 

as defined by the experiments were deemed to be SIFs. Based on this, for the assembly workstation, four factors 

(number of: studs, studs foam, cripples, and openings) had a coefficient >0.65 and thus were identified as SIFs. 

Table 1: Results of t-test and Pearson correlation coefficient 

Assembly Station Framing Station Sheathing Station 

Factors P value Corr. Factors P value Corr. Factors P value Corr. 

# of HeaderTrack 0.02977 0.57 # of HeaderTrack 2.08e-09 0.77 TrackLength 1.88e-11 0.71 

# of SillTrack 0.05807 0.59 # of SillTrack 2.78e-12 0.58 # of Studs 0.697 0.73 

# of HeaderFoam 0.00212 0.40 # of Studs 0.434 0.76 WindowArea 2.17e-07 0.42 

# of Studs  1.40e-05 0.82 # of Bracings 0.007 0.71 Door Area 0.0002 0.05 

# of StudsFoam 0.00141 0.74 Net Area 6.99e-05 0.18 Net Area 0.993 0.68 

# of Plates 0.00393 0.62 # of Openings 0.69 0.70 # of Angles 1.61e-09 0.48 

# of Clips 0.00086 0.36 - - - # of Openings 0.941 0.39 

# of Cripples 0.9381 0.66 - - - - - - 

# of Openings 3.53e-05 0.69 - - - - - - 

In addition to the t-test and PCC, PCA was applied. The first step in the PCA was to determine the percentage of 

variance for PCs, selecting for further analysis the set of PCs that cumulatively accounted for 90% of the dataset's 

total variation. For example, for the assembly station, the minimum set of PCs accounting for ≥90% of the 

cumulative variance was the set of PC1, PC2, PC3, and PC4, representing 61.5%, 14.1%, 9.56%, and 6.9%, 

respectively, of the variation, for a cumulative variation of 92.1%. These components were used as the basis for 

identifying SIFs, where PC1 was found to be highly correlated with the number of openings, PC2 with the number 

of clips, PC3 with the number of studs, and PC4 with the number of plates. 

Based on the training dataset (80%) and the lists of SIFs generated by the different analyses, MLR models were 

developed and validated using a K-fold cross-validation. The training dataset was randomly split into 10 folds, 

with one fold used for the testing set and the remaining 9 folds used as a training set. The cross-validation process 

was repeated against all 10 folds in the dataset, and the average evaluation indices were calculated. The best 

predictive model was then selected based on four performance indices: R2, adj. R2, RMSEs, and MAE. As observed 

in Table 2, for the assembly station, the R2, adj. R2, RMSE, and MAE values in the training and testing datasets 

were 80.1%, 74.33%, 79.08%, 71.01%, 7.93 min, 9.83 min, 5.82 min, and 7.16 min, respectively, when the SIFs 

were the number of: header foam, studs, stud’s foam, plates, clips, and openings identified by the t-test. The R2 

value for testing was 80.1%, meaning that the model was found to predict 80% of the outcomes. The RMSE value 
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for testing depicted the deviation of 9.83 minutes between predicted and actual duration. However, for the framing 

station, the SIFs identified by the correlation test were selected instead of those identified in the t-test, since, for 

this station, the RMSE and MAE values generated by the correlation test were lower than those generated by the 

t-test. 

Table 2: Results of multiple regression models at workstations 

Model R square (%) Adj. R square (%) RMSE (min) MAE (min) 

Training Testing Training Testing Training Testing Training Testing 

  Assembly Station    

t-test 80.1 74.33 79.08 71.01 7.93 9.83 5.82 7.16 

Correlation 79.86 71.38 78.83 70.07 7.97 9.88 6.32 7.64 

PCA 74.35 71.23 73.27 69.79 9.00 10.59 7.033 7.95 

 

  Framing Station   

t-test 78.09 76.56 77.36 74.31 7.09 8.10 5.78 6.01 

Correlation 79.13 74.55 78.33 73.48 6.89 6.99 5.56 5.89 

PCA 64.74 57.01 63.87 51.64 8.37 10.20 6.58 8.46 

 

  Sheathing Station   

t-test 74.90 73.35 72.37 71.26 9.04 9.54 7.56  8.19 

Correlation 61.91 49.66 60.56 46.93 11.77 13.80 9.66  11.20 

PCA 57.59 51.7  55.7 50.01 10.88 12.40 8.32  10.66 

Table 3 represents the cycle time formula (CTF) of workstations, which involves the coefficient values of SIFs to 

predict the process times of workstations. As can be seen, some of the coefficients (Coef.) of SIFs had positive 

values while others were negative. For example, for the assembly station, the XHF, XS, and XC coefficients indicate 

that the process times increased when the XHF, XS, and XC in the wall panel increased. Similarly, the coefficient 

of XW means that the process times decreased whenever additional workers were allocated to the station. To 

improve accuracy, probability distribution function-based models were developed based on the time data used in 

the statistical analysis. To identify the most suitable probability distribution functions, as shown in Table 3, a 

goodness-of-fit method, consisting of both a Kolmogorov–Smirnov (K–S) test and a chi-square test, was 

performed. Weibull, gamma, and triangular distributions were selected as the best fit for the assembly, framing, 

and sheathing stations, respectively. These distributions, along with cycle time formula (CTF), were used as inputs 

in the simulation model. 

Table 3: Cycle time formula and summary of the goodness-of-fit test  

  Cycle time formula    

Assembly Station Coef. Sheathing Station Coef. Framing Station Coef. 

Number of Header Foam (XHF) 20.54 Track Length (XTL) 70.32 Number of Header Track (XHS) 15.14 

Number of Studs (XS) 38.36 Number of Angles (XA) 15.63 Number of Studs (XS) 20.78 

Number of Plates (XP) −21.49 Window Area (XWA) −36.47 Number of Bracings (XB) 7.43 

Number of Clips (XC) 8.74 Door Area (XD) −20.72 Number of Openings (Xo) 0.05 

Number of Workers (XW) −16.19 Number of Workers (XW) −7.27 Number of Workers (XW) −11.3 

Number of Studs foam (XSF) 27.75 - - - - 

 Goodness-of-fit test  

Assembly Station Framing Station Sheathing Station 

Distribution  K-S X2 Distribution K-S X2 Distribution K-S X2 

Weibull 0.0818 45.47 Gamma  0.0543 26.80 Triangular 0.0752 27.59 

Triangular 0.0915 64.26 Triangular 0.0558 30.83 Uniform 0.0849 16.29 

Gamma 0.0916 41.97 Weibull 0.0571 27.35 Normal 0.0891 31.17 

Normal 0.1052 64.26 Lognormal 0.0678 28.82 Weibull 0.0958 22.57 

Lognormal 0.1063 60.21 Uniform 0.0701 35.04 Gamma 0.1074 42.47 
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Based on the process flow of the production line, the simulation model illustrated in Fig. 5 was built in 

Simphony.NET. The simulation model uses the ‘database’ element to update wall panel information from a central 

database using SQL. In the simulation model, ‘Database Create,’ ‘task,’ and ‘conditional branch,’ ‘resource’, and 

‘destroy’ elements from the general template are used to mimic the process flow of the actual production line. 

Depending on the type of wall (interior or exterior), different process flows were required. In the model, the 

‘Database Create’ element generates the simulation entities (wall panels) and passes them into the next task 

elements, which are the assembly station and framing station. After completing the tasks at the framing station, 

the wall panel components proceed to the ‘conditional branch’, where they are classified as components of either 

interior or exterior walls (since these types of walls require different tasks). From the ‘conditional branch element’ 

pertinent were related to types of wall panels, interior wall panel components are directed to ‘storage’ while 

exterior wall panel components are directed to the ‘sheathing station’. Once the process is complete at each 

workstation, the given entity is destroyed using the ‘destroy’ element. The simulation model was run using cycle 

time formula (CTFs) and probability distribution functions as inputs, and the results in terms of productivity were 

compared with the historical actual productivity data for validation purposes. It should be noted that 2 and 3 

workers were allocated to the assembly and framing stations, respectively, for interior wall panels, while 3, 2, and 

3 workers were allocated to the assembly, framing, and sheathing stations, respectively, for exterior wall panels. 

 

FIG. 5: Simulation model of a production line. 

Fig. 6 shows a comparison of the actual(historical) and simulated (cycle time formula and probability distribution 

functions) cycle times for producing interior wall panels. As can be seen, the actual cumulative cycle time for the 

manufacture of 205 interior and exterior wall panels was 119 hr, compared to 106.38 hr for the cumulative cycle 

time formula and 90.1 hr for the cumulative probability distribution functions. It should be noted that cumulative 

cycle time is the total sum of the process times of all wall panels, while cumulative probability distribution 

functions is the total process time to complete the wall panels with probability distribution as an input in the 

simulation. 

 
FIG. 6: Comparison between cumulative actual and simulated cycle time. 
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These results are indicative of general agreement between the actual and simulated cumulative process times 

generated by the CTF (i.e., 89.39% accuracy). In this respect, the simulation model developed and implemented 

in conjunction with cycle time formula (CTF) in this case study was deemed to be a reliable predictive model. 

After validating the production rate generated, multiple simulation-based scenarios were developed and analyzed 

using cycle time formula (CTF). 

To compare the simulation results to the historical production data, the fabrication of 309 wall panels in five 

different panel-sequencing scenarios, each with the same labor allocations at the various workstations, was 

simulated. In the first scenario, the units of a residential project were selected in a clockwise direction and 

manufactured unit-by-unit, and their wall panels (exterior or interior) were prefabricated randomly in the 

production line. In the second scenario, the units of the residential project were again selected in a clockwise 

direction and manufactured unit-by-unit, but this time the exterior wall panels of a given unit were prefabricated 

first, followed by the corresponding interior walls for the unit. In the third scenario, the interior wall panels of a 

given unit were manufactured first, followed by the exterior wall panels. In the fourth scenario, the interior wall 

panels of all units were produced first, followed by the exterior wall panels of all units. In the fifth scenario, the 

exterior wall panels of all units were produced first, followed by the interior wall panels of all units. Based on 

these scenarios, the simulation model provided the cumulative duration to prefabricate all wall panels in each of 

the five scenarios, yielding cumulative durations of 93.52 hr, 51.92 hr, 69.76 hr, 59.84 hr, and 60.64 hr for the five 

respective scenarios. Thus, Scenario 2 was found to outperform the other scenarios. 

In terms of production planning, finding the optimum allocation of labor to workstations is crucial in that it is a 

critical factor in (i) synchronizing process times; (ii) reducing waiting times along the production line, and (iii) 

increasing productivity. In this respect, as shown in Table 4, in the case study we experimented with different 

numbers of workers as an additional decision variable in the simulation model built based on Scenario 2. Workers 

were allocated to workstations according to the type of wall panel, and Scenario 2.3 was found to outperform the 

other labor allocation scenarios, with a cumulative duration of 44.42 hr. It is notable that the duration in Scenario 

2.4 was found to be longer than that in Scenario 2.3 even though the number of workers at the framing and 

sheathing station was increased in Scenario 2.4. This may have been attributable to space congestion at the framing 

station disrupting the coordination between the workers completing the work. In this regard, Zhang et al. (2020) 

have demonstrated that space congestion interrupts the workflow in MCM, thereby reducing productivity at the 

workstation level. As such, this simulation-based statistical method for production planning in MCM is a 

significant tool for analyzing the effect of different crew sizes, especially in that it demonstrates that it is not always 

ideal to increase the number of workers at a workstation to reduce process times. 

Table 4: Comparison of different crew sizes at workstations 

Scenario Duration 

(hours) 

Number of workers 

Interior Wall Panels Exterior Wall Panels 

Assembly Framing Assembly Framing Sheathing 

2.1 51.92 2 3 3 2 3 

2.2 45.44 2 3 3 3 3 

2.3 44.42 2 4 3 2 2 

2.4 45.42 2 4 3 3 3 

 2.5 51.04 2 2 3 2 3 

2.6 51.04 2 2 3 3 3 

The case study demonstrates that optimal sequencing of modules and allocation of workers is critical to improving 

productivity. The method described in this study is also capable of identifying the SIFs affecting fabrication 

process times, thereby removing the guesswork from production planning. However, it should be noted that the 

SIFs in this study are a function of the given product design specifications and tasks performed at the workstations 

of the case study production line. For other cases, practitioners would need to modify the data analysis phase based 

on the given design specifications in order to identify the SIFs. In modular construction, due to unpredictable 

demand, production managers must frequently alter their plans to accommodate change orders. As an alternative 

to this challenging and error-prone approach, the framework implemented in the case study can be deployed to 

devise different production line scenarios in terms of labor allocation and sequencing to streamline the MCM 

planning process. 
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5. CONCLUSIONS 

In MCM, the modules vary in size and design specifications, meaning that the production line operates following 

a mixed-production line model. This poses a challenge for production planning, leading to inefficient utilization 

of resources and reduced productivity. In this respect, this paper proposes a simulation-based production line 

planning method that uses near real-time and historical data to assist production managers in achieving better 

productivity and control. This method integrates a C-track app, statistical analysis, and simulation for production 

planning in MCM. As an alternative to the experience-based approach implemented in traditional MCM 

production planning, the developed method collects historical and near real-time data using the C-track app to 

enhance decision making; identifies the SIFs affecting fabrication process times using statistical techniques that 

increase the accuracy of the predictive model; and improves productivity by using simulation as a production 

planning tool. It also introduces the concept of developing and evaluating multiple production sequencing and 

labor allocation scenarios using two types of input cycle time formula and probability distribution functions in the 

simulation model. The case study implementation of the developed method in an LGS wall panel production line 

demonstrates that this approach ensures improved productivity (i.e., reduced durations with the same labor input) 

and control. In particular, the case study results indicate a 44.42 hr duration to produce 309 wall panels. As 

demonstrated by the case study, this method can assist production managers in understanding the effects of 

proposed changes to the production line before implementing them in reality. In this way, production managers 

can plan effectively and reduce project costs. The introduced simulation-based planning method can assist 

production managers to evaluate the optimal scenario of (i) sequencing the modules and (ii) allocating resources 

along the production line, which can reduce idle time of workers and waiting time of modules at workstations. 

However, the developed method does have some limitations, such as the need to manually test the simulation 

model scenarios. Therefore, future work will seek to enhance the performance of the developed method. This will 

include, for one, integrating simulation and advanced optimization techniques to identify sequencing of modules 

and labor allocation scenarios more efficiently and rapidly. In a simulation model, different decision variables can 

be analyzed and in the optimization model, heuristic rules can be developed in order to determine optimal solutions. 

Second, various key performance indicators (KPIs) for modular construction manufacturing can be developed in 

order to evaluate the performance of production line, which later can be integrated with simulation and 

optimization for re-scheduling (i.e. sequences of modules and allocation of resources). Third, simulation will be 

integrated with lean principles, where the former will be used for gaining a deeper understanding of the production 

line while the latter will be used for evaluating various production scenarios. It should also be noted that in some 

cases SOPs may not be available, depending on the company. In such cases, direct observation and interviews with 

plant managers can be used to identify the sequences of activities at workstations. Subsequently, integration of 

off-site, transportation and on-site schedule can be introduced in future work in order to develop an overall tracking 

and control system for modular construction. 
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