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SUMMARY: In large-scale industrial construction projects, scaffolding activities account for a large amount of 

the construction budget, and overlooking the scaffolding management can lead to budget overruns and schedule 

delays. The scaffolding activities can be categorized by classifications and types based on the nature of the scaffold 

builds. To ensure the project progress on track, it is critical to measure project performance based on project 

progress data. However, given the nature of scaffolding activities, it has been challenging to track and utilize the 

scaffolding data for analytical purposes. Therefore, this paper proposes a project control framework based on 

Earned-value analysis (EVA), in which linear regression models are used for productivity prediction. Three 

scenarios of productivity based on historical data (i.e., low, medium, and high productivity) are introduced. The 

proposed framework is implemented in a real construction project for validation. The results have shown that the 

proposed framework can efficiently evaluate the project progresses integrated with the EVA. The construction 

companies, such as general contractors and scaffolding sub-contractors, can use this method for site progress 

tracking. For future work, the EVA can be integrated with other non-linear predictive models (e.g., neural 

network) for productivity prediction. The EVA results can be integrated with data visualization to create 

situational awareness for construction practitioners. 
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1. INTRODUCTION 

In large-scale construction projects, such as heavy industrial projects, often encounters work to be performed at 

specific locations where access is not available in the first place, and scaffolding, as an indirect work, is often used 

to provide access to these locations. Due to the size and complex nature of these large-scale construction projects, 

scaffolding can account for quite substantial onsite work (e.g., scaffolding work can make up to 30% - 40%  of 

the total manhour (Zolfagharian and Irizarry, 2014)). Mismanagement of scaffolding work can lead to budget 

overruns and schedule delays. Particularly, scaffolding work, as a type of temporary work, is challenging to track 

and manage. For example, the quantities and measurements of productivities are challenging to manage and track 

(see Fig. 1 for a complex scaffolding tower at an industrial construction site), which results from three reasons: (1) 

scaffolding data is difficult to acquire given that a large amount of material consumed onsite and low traceability 

of each material piece; (2) a lack of data-driven project control framework that can be used for industry 

practitioners for scaffolding management; and (3) efficient and reliable planning systems that can be applied to 

large-scale complex construction projects.   

In the past, research efforts have been made to improve the scaffolding management from the above-mentioned 

three aspects. One type of effort focuses on using technologies to increase the traceability of scaffolding material. 

For example, a radio-frequency identification aided system was introduced for scaffolding tracking to improve 

stock management (Moon et al., 2018). Recently, scaffolding planning has benefited by incorporating Building 

Information Modeling (BIM) technologies to achieve automated design and plan generation: a rule-based 

computational algorithm was proposed to automatically generate scaffolding plans (Kim and Teizer, 2014); A 

feature lexicon was introduced to formalize representation of factors essential to scaffolding planning (Kim et al., 

2015). To improve the efficiency of scaffolding planning and scheduling, mathematical algorithms have been 

developed, such as the discrete firefly algorithm-based scaffolding scheduling approach (Hou et al., 2017). 

Researchers have also considered safety (e.g., prevention from collapse) as part of the scaffolding planning and 

management (Cho et al., 2018; Kim et al., 2016). Also, past research has emphasized using data-driven decision 

support systems to aid scaffolding management. The basis for these systems is the productivity analysis, which is 

used for quantifying the output of scaffolding work (e.g., scaffolding material weight and volumes) completed 

over given inputs (e.g., manhours) (Moon et al., 2016). 

 

FIG. 1: Scaffolding tower at an industrial construction site. 
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In construction engineering and management (CEM), data analytics has gained attention in both academia and 

industry, as data has become accessible through emerging data collection technologies. Examples of such data 

collection mechanisms include Internet-of-things (e.g., mobile applications) and digital platforms, and image-

based acquisition systems (Cheng et al., 2020; Soltani et al., 2016). Based on collected data, decision support 

insights can be generated through algorithm-based analytics. Machine learning (ML) and artificial intelligence 

(AI) have been utilized to achieve such predictions (Cho et al., 2018; Liu et al., 2018). For instance, analytical 

methods have been applied to analyze construction equipment costs (Liu, AbouRizk, et al., 2020; Liu, Lei, et al., 

2020). Also, simulation techniques were applied to increase predictability in CEM (e.g., discrete-event simulation, 

system dynamics, etc.) (Alanjari et al., 2014; Ji and AbouRizk, 2018; Taghaddos et al., 2011). All these efforts 

contribute to the transformation of CEM towards a more digitized, automated, and autonomous state. However, 

past research has focused on scaffolding data collection and analysis, and not addressed how to use scaffolding 

data for project progress tracking; Also, there is a lack of research in the area of using machine learning techniques 

to construct productivity models to be used for EVA. This research thus proposes using a machine learning 

technique (i.e., linear regression modelling) to construct productivity models for scaffolding data in order to 

conduct EVA for project progress status analysis. The research contributions of this work include: (1) providing a 

generic data collection and classification approach for scaffolding data that result in productivity analysis; (2) 

dynamically incorporating EVA in scaffolding progress control using historical data; and (3) regression-based 

productivity modeling based on user-defined productivity categories. The industry contributions include: (1) 

providing a scaffolding management framework for large-scale construction projects; and (2) algorithms 

developed through this study can be implemented by industry companies to achieve near real-time project control 

for scaffolding work. 

2. METHODOLOGY 

The overall research framework is presented in Fig. 2 to show the steps taken throughout the implementation of 

the research. The research inputs include the scaffolding expertise and practice as provided by the industry 

practitioners. For example, the classification of the scaffolding types (the inputs will be elaborated in the section 

2.1 “Data Structure Definition and Acquisition). This know-how is used to define the data structure and develop 

the data acquisition tools. Also, the users define the categorization of the productivity types based on their 

experience, which helps generate regression models. The research framework consists of three main components: 

(1) the data acquisition: IoT mobile app is developed to acquire field data, which can be deployed using Platform-

as-a-Service (e.g., Microsoft PowerApps); (2) the Cloud-based SQL database: for data storage collected from the 

IoT apps; this can be deployed using Microsoft Azure SQL database, or Amazon Web Services (AWS); and (3) 

the analytical modeling system: using RStudio as the engine to perform data wrangling, productivity regression 

modeling, and EVA. Lastly, the research outputs allow the users to conduct project reviews based on collected 

data and predictive modeling, and review the project performance through the EVA. The proposed research 

framework is generic and can be applied to similar project contexts to analyze scaffolding data and project progress 

status. The research framework will be elaborated on in the following sections in detail. 

 

FIG. 2: Overall research framework. 
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2.1 Data structure definition and acquisition 

Data acquisition is the first component of the research framework. In this research, IoT apps using the PowerApps 

platform were developed to collect field data. The data structure was defined together with the industry partner. 

After discussing with the industry partner, the research team has identified two main functions of scaffolding data 

acquisition systems: (1) material handling system: which deals with the material tracking of the scaffolding 

activities; the material master list is provided by the scaffolding component manufacturer, which is used as the 

basis for the data structure, including material ID, material name, and weight. For each completed scaffolding task, 

the field scaffolder reports what material has been used through the app; and (2) task requisition system: which 

handles the requisition of scaffolding tasks as requested by the field foremen and/or scaffolder. As shown in Fig. 

3 as a typical scaffolding management workflow, the process starts with identifying the needs of scaffolding in the 

field. There are three types of needs: erection of new scaffolding structures, modification and dismantling of 

existing structures. After the need is identified, a scaffolding request is created with a request ID, which is later 

associated with multiple tasks (e.g., one request can consist of multiple tasks, 1: n relationship). The tasks are then 

sent back to the field crew for completion and report back with task progress and material consumption. Following 

this workflow, corresponding data structures were developed using an entity-relationship diagram (ERD) and 

further deployed in the Microsoft Azure SQL database (see section “Case Study” for an example of deployed data 

structure). Once data is collected from the field, it is processed to remove system outliers due to errors in entry 

(e.g., using database integrity checks, user-defined rules, etc.). 

 
FIG. 3: Scaffold management workflow. 

2.2 Productivity regression modelling 

Regression modeling is a form of predictive modeling that investigates the relationship between the dependent and 

variables. In construction engineering and management, regression modeling has been used to provide decision 

support insights for construction operations (Bowen et al., 2014; Son et al., 2019).  In this research, regression 

modeling is used to model the scaffolding productivity from onsite operations. The productivity, by its definition, 

can be measured as the outputs over the given inputs for any system, and in this case, is the amount of scaffolding 

work completed (i.e., outputs) over the manhours that are put into work (i.e., inputs). The measurement of 

scaffolding work completed can be defined by various metrics (e.g., weight and/or volume) (Moon et al., 2016). 

In this research, regression models were developed based on the total weight of scaffolding components and 

manhours involved in given tasks and manhours. Other variables (e.g., elevation of the work, etc.) can be used to 

develop regression models, however, due to the availability of data, weight is used as the sole variable for this 

analysis. Given this, the regression modeling is to seek the best fit line of the predicted value (manhours) for a 

given variable (scaffolding weight), by minimizing the cost function as shown below: 

𝑀𝑖𝑛.
1

𝑛
∑(𝑀ℎ𝑟𝑝 − 𝑀ℎ𝑟𝑎)

𝑛

𝑖=1

 
(1) 

Where: 𝑀ℎ𝑟𝑝 = predicted scaffolding manhour using the regression model; and 𝑀ℎ𝑟𝑎 = actual scaffolding 

manhours observed from field. 
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Considering the fact that the nature of different scaffolding work varies, categorizations are adopted to subset the 

entire scaffolding dataset for regression modeling for the purpose of improving model accuracy. There are four 

categorization criteria for the scaffolding data: (1) scaffolding work classification (e.g., erection, modification, and 

dismantle); (2) scaffolding types (e.g., tower, platform, etc.); (3) work discipline (e.g., piping, civil, etc.); and (4) 

productivity level (e.g., low, medium, and high productivity). Fig. 4 shows the process of regression modeling 

based on the categorization, which generates three types of productivity regression models: low, medium, and high 

productivity (see “Implementation” for results). The determining factor for these three productivity categories is 

defined by user (i.e., industry partner) based on past experience, and in this case, is 0.3 deviation from the overall 

dataset average, in both positive and negative directions. 

 

FIG. 4: Regression modelling flowchart. 

2.3 Productivity regression modelling 

Earned-value analysis (EVA) is a widely adopted project control technique in project management (Howes, 2000; 

Waris et al., 2012). It is based on the calculations of four main parameters to obtain the overall performance of 

project progress: (1) budgeted cost of work performed (BCWP); (2) budgeted cost of work scheduled (BCWS); 

(3) actual cost of work performed (ACWP); and (4) actual cost of work scheduled) (ACWS). Their definitions are 

self-reflected from their calculation formulas as shown as Eq. (2) – (4). The ACWP consists of commitments and 

payments due and made for a given project time period. Based on these four parameters, other project metrics can 

be calculated: (1) cost variance (CV); (2) schedule variance (SV); and (3) performance (productivity) factor (PF) 

(Eq. (5) – (7)). In this research, due to the regression modeling provides three categorized productivity predictions, 

it yields corresponding BCWP and BCWS with high, medium, and low planned productivity, along with its own 

probability, which will be elaborated with example in the “Implementation” section. 
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𝐵𝐶𝑊𝑃 = 𝑄𝑡𝑝𝑙𝑎𝑛𝑛𝑒𝑑 × 𝑃𝑎𝑐𝑡𝑢𝑎𝑙  (2) 

𝐵𝐶𝑊𝑆 = 𝑄𝑡𝑝𝑙𝑎𝑛𝑛𝑒𝑑 × 𝑃𝑝𝑙𝑎𝑛𝑛𝑒𝑑 (3) 

𝐴𝐶𝑊𝑆 = 𝑄𝑡𝑝𝑙𝑎𝑛𝑛𝑒𝑑 × 𝑃𝑎𝑐𝑡𝑢𝑎𝑙  (4) 

PF = Earned value manhours/Actual manhours (5) 

𝐶𝑉 = 𝐵𝐶𝑊𝑃 − 𝐴𝐶𝑊𝑃 (6) 

𝑆𝑉 = 𝐵𝐶𝑊𝑃 − 𝐵𝐶𝑊𝑆 (7) 

𝐶𝑃𝐼 =
𝐵𝐶𝑊𝑃

𝐴𝐶𝑊𝑃
 

(8) 

𝑆𝑃𝐼 =
𝐵𝐶𝑊𝑃

𝐴𝐶𝑊𝑃
 

(9) 

Where: BCWP = budgeted cost of work performed (i.e., earned value); BCWS = budgeted cost of work scheduled; 

ACWS = actual cost of work scheduled; ACWP = actual cost of work performed; CV = cost variance; SV = schedule 

variance; CPI = cost performance index; SPI = schedule performance index. 

3. IMPLEMENTATION 

In this research, a heavy industrial project located in Alberta, Canada, is selected to implement and validate the 

proposed framework. The scaffolding data is collected through mobile applications that are designed following 

the workflow of Fig. 3. A proposed ER diagram is proposed and implemented in a Microsoft Azure SQL database 

(Fig. 5). The PowerApps (a suite of apps, services, connectors and data platform that provides a rapid application 

development environment to build custom apps for business needs) was then used to connect to the Azure SQL 

database for field data collection. For the test case, there are around 16,000 scaffolding task records collected with 

an approximate total scaffolding weight of 60 million lbs. From the collected data, there are a total of 6 scaffolding 

work classifications: (1) extension erection; (2) unplanned modifications; (3) partial dismantle; (4) planned 

modification; (5) new erection; and (6) full dismantle. There are 16 scaffolding types, such as stair towers, large 

platform access, and so on; a total of 24 disciplines were defined for the scaffolding tasks: e.g., piping, structural, 

electrical, etc. With these three classifications, the subset (i.e., the 𝐷𝑑𝑖𝑠
𝑖−𝑗−𝑔

 in Fig. 4) is populated and regression 

models were developed as classified as high, medium, and low productivities (i.e., based on 0.3 deviation 

threshold). Fig. 6 shows an example of scatterplot with regression models based on the classification criteria: “full 

dismantle – tower (typical) – piping”. The green line (representing green points) is medium productivity 

regression, while the brown refers to as the low productivity and violet as the high productivity. Following this 

method, each regression model is populated, and the R2 value is calculated using Eq. (8) – (10) to show how close 

the data is to the fitted regression line. An example of exported summarized productivity regression model is given 

as Table 1. 

 

𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
 

(8) 

𝑅𝑆𝑆 =  ∑(𝑦𝑖 − 𝑓(𝑥𝑖))2

𝑛

𝑖=1

 
(9) 

𝑇𝑆𝑆 =  ∑(𝑦𝑖 − �̅�)2

𝑛

𝑖=1

 
(10) 

 

Where: RSS = sum of squares of residuals; TSS = total sum of squares; 𝑦𝑖= given data point y value (i.e., actual 

manhours); 𝑓(𝑥𝑖) = predicted value using data point x value for the given regression model; �̅� = mean value of 

the manhours of the sample. 
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FIG. 5: Sample proposed entity relationship diagram of scaffolding management system. 

 

FIG. 6: Example of productivity regression models. 
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Once the regression models are developed, then the EVA can be performed using Eq. (2) – (7).  In practice, the 

project management team can run the EVA based on the built regression models at different time points of the 

project and provide project control metrics. For example, Fig. 7 shows the overall Budgeted Cost of Work 

Scheduled (BCWS) at the 30% project progress. The red curve shows the BCWS calculated based on the high 

productivity regression models (BCWS_HP); the black as the medium productivity regression models 

(BCWS_MP); the orange as the low productivity models (BCWS_LP). In practice, the end-user can conduct EVA 

based on field-collected data as the project progresses. Table 2 shows an example of the results of the EVA based 

on project progress (i.e., 30%, 50%, 70%). Based on the EVA results, the CV, SV, CPI, and SPI can be calculated 

to demonstrate the project progress performances using Eq. (6) – (9). For example, for the 30% project progress, 

the CV for high productivity regression models = 41 – 18 = 23 million lbs (corresponding CPI = 41/18 = 2.3); the 

SV for high productivity regression models = 41 – 12 = 29 million lbs (corresponding SPI = 41/12 = 3.4). With 

CPI and SPI both bigger than 1, which indicates the project has a cost underrun and ahead of schedule. From the 

calculated CPI and SPI, the project management team can obtain insights if the project is on track. Similar 

calculations can be performed at different project progress statuses (e.g., 50%, 70%). However, in industry 

practice, the scaffolding estimation still relies solely on a percentage base (e.g., a certain percentage of the total 

direct work manhours), and scaffolding activities often occur on an ad-hoc basis. It is challenging to have an exact 

cap (i.e., total expected scaffolding expenses) and duration as a comparison. Also, the duration of scaffolding work 

often extends beyond the completion of the main construction structures, e.g., dismantling, etc. This will add 

complexity to the EVA analysis. 

  

FIG. 7: Budgeted cost of work scheduled (BCWS) based on 30% project progress. 
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Table 1. Example of Results of Regression Models by Classifications 
Work 

Classification 

Scaffoldin

g Type 

Discipline Medium 

Productivity 

(Slope) 

Medium 

Productivity 

(Intercept) 

Medium 

Productivity 

(R2) 

Low 

Productivity 

(Slope) 

Low 

Productivity 

(Intercept) 

Low 

Productivity 

(R2) 

High 

Productivity 

(Slope) 

High 

Productivity 

(Intercept) 

High 

Productivity 

(R2) 

General 

Productivity 

(Slope) 

General 

Productivity 

(Intercept) 

General 

Productivity 

(R2) 

Extension 

Erection 

Stairtower Structural 0.015751838 54.06825896 0.94545191 NA NA NA NA NA NA 0.014684 45.70579 0.834591 

Extension 

Erection 

Large 

Platform 
Access 

Piping 0.017126879 75.83303896 0.956036861 0.029651297 133.6736358 0.946808 0.01161 21.09507 0.96197 0.016838 68.98776 0.833505 

Extension 

Erection 

Large 

Platform 
Access 

Structural NA NA NA NA NA NA 0.006732 13.96215 0.914807 0.008901 53.01735 0.495265 

Extension 

Erection 

Large 
Platform 

Access 

Electrical 0.027741504 55.66820058 0.922106958 NA NA NA 0.012372 29.96179 0.778971 0.028143 39.03827 0.652922 

Extension 

Erection 

Tower 
(Typical) 

Piping 0.021175533 18.88385485 0.958188537 0.036499711 40.45652459 0.931652 0.013083 4.479517 0.940725 0.020519 18.02973 0.76844 

Extension 

Erection 

Tower 

(Typical) 

Structural 0.014467461 89.93131727 0.923624256 0.025444104 243.2006917 0.801508 0.005132 34.19858 0.69785 0.014006 72.07202 0.512412 

Extension 

Erection 

Tower 
(Typical) 

Civil 0.015914588 22.09145986 0.978130573 NA NA NA 0.010756 6.5221 0.860197 0.015141 26.46719 0.675077 

Extension 

Erection 

Tower 

(Typical) 

Electrical 0.018426138 37.36682836 0.960604073 0.02959803 80.12015961 0.916025 0.010511 14.36787 0.845679 0.017935 32.82119 0.775811 

Extension 

Erection 

Tower 

(Typical) 

Mechanical 0.020863532 4.837116804 0.952295031 0.036075711 37.46063881 0.759188 0.014534 -0.70402 0.947908 0.019671 13.22373 0.822364 

Extension 

Erection 

Tower 
(Typical) 

Instrumentation 0.017891243 22.51714911 0.871295455 0.026078415 53.33726413 0.85994 0.012684 6.004106 0.937134 0.017529 21.57142 0.623626 

…… 

New 

Erection 

Barricade Piping 0.019088989 7.990251563 0.947650966 0.030144536 21.6057935 0.778805 0.010995 3.122084 0.85659 0.018174 7.589283 0.611964 

New 

Erection 

Barricade Structural 0.030150283 11.71301805 0.962188353 0.047853271 22.0203893 0.917292 0.011735 6.969111 0.789906 0.025355 12.34769 0.454869 

Full 

Dismantle 

Tower 

(Typical) 

Piping 0.004293835 17.64618797 0.972425341 0.009349757 35.02214769 0.910456 0.003549 4.765679 0.948886 0.005037 14.69169 0.696866 

Full 

Dismantle 

Tower 
(Typical) 

Structural 0.004974796 18.6737539 0.977482977 0.00991369 36.1483911 0.973161 0.004007 4.172978 0.997004 0.005211 16.1226 0.772929 

Full 

Dismantle 

Tower 

(Typical) 

Civil 0.005487184 -

0.358878467 

0.971335215 NA NA NA NA NA NA 0.00515 1.03364 0.816508 

Full 

Dismantle 

Tower 
(Typical) 

Electrical 0.006154531 14.65520259 0.944864811 0.012931713 25.40447223 0.708281 0.004066 3.633553 0.88096 0.006282 10.72175 0.877742 

Full 

Dismantle 

Tower 

(Typical) 

Mechanical 0.009975957 13.34296266 0.953320298 NA NA NA 0.006704 -3.04806 0.997422 0.009837 6.18502 0.894399 

Full 

Dismantle 

Tower 

(Typical) 

General 

Management 

0.011052301 -

2.853072778 

0.934649085 0.014784182 12.56001074 0.981537 0.004899 -0.47966 0.83743 0.009848 -1.29529 0.767511 

Full 

Dismantle 

Tower 
(Typical) 

Sub Contractors 0.008556148 8.155295929 0.950410503 0.019842231 11.69468762 0.949157 0.004564 0.294077 0.953661 0.008355 6.844572 0.543199 

*Note: (1) a total of 98 classifications based on work classification, scaffolding type, and discipline; and (2) “NA” refer to data sample that does not have enough data points to develop the model (i.e., 10 data points, etc.) 
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Table 2. EVA parameter calculation results at 30%, 50%, 70% project progress 

Project % BCWP_HP BCWP_LP BCWP_MP BCWS_HP BCWS_LP BCWS_MP ACWP ACWS 

30 41 18 24 12 32 46 18 36 

50 69 28 40 14 41 60 30 48 

70 95 37 55 17 49 74 42 63 

*Note: unit in Table 2 is in lbs rounded to the nearest millions. 

4. DISCUSSION AND CONCLUSIONS 

In this paper, an earned-value-analysis (EVA)-based project control framework has been proposed for onsite 

scaffolding activities at heavy industrial projects. Regression models have been developed to model the 

productivity of scaffolding activities with classification criteria. In this paper, the authors have used work 

classification, scaffolding type, and discipline. Similar approaches can be adopted to handle similar datasets. Then 

the regression models are used to model the EVA parameters based on project progresses. The case study 

demonstrates the implementation of the proposed framework. The contributions of this research include: (1) 

proposing using classification criteria for categorizing scaffolding data for productivity prediction; (2) 

incorporating regression modeling with EVA based on different productivity performance ranges (i.e., low, 

medium, and high); and (3) providing a modified EVA method for practitioners to conduct near real-time project 

control. For future research, other than the regression modeling approaches, statistical methods can be introduced 

as an alternative approach to estimate productivity. For example, random variables can be sampled from historical 

distributions to construct the productivity metrics (e.g., Monte-Carlo simulation approach). In addition, Bayesian 

statistics can be introduced to incorporate the real-time data from the field to update the productivity distributions 

(Liu, et al., 2020). Another area of improvement of the current approach is to increase the quality of the collected 

data by incorporating integrity checks for scaffolding data requisition submissions. However, the proposed 

research approach requires historical data to construct the regression models for prediction. For the scenarios where 

historical data does not exist, the user needs to rely on experience-based productivity metrics to continue the 

analysis. However, the randomness of the productivity, considered as risks in the construction projects, can still be 

introduced from the experience-based approach (e.g., a triangular distribution representing the low, medium, and 

high productivity), which can be addressed and incorporated in the future work. A comparison between regression 

and statistical approaches can be conducted for further system validation.  

Another aspect of the discussion that can be raised from this research is the suitability of EVA in scaffolding 

management, as compared to the percentage-based estimation. This has been mentioned earlier that due to the fact 

that the scaffolding activities often occurred on an ad-hoc basis on-site and at large construction sites where 

scaffolding work is often under reimbursable contracts, it is challenging to obtain the total expected expenses at 

the early stage of the project; instead, a percentage of the direct work is often used to estimate the total scaffolding 

expenses, based on which a S-curve can be used to monitor the project progress. Thus, the proposed EVA can fit 

into the S-curve approach for tracking the project progress. The proposed methodology can be used by general 

contractors and/or scaffolding sub-contractors to analyse scaffolding project progress. Other machine learning 

techniques can be applied to improve productivity modeling, e.g., non-linear models. This research also relies on 

reliable data collection from the field, without which the EVA analysis can be challenging. Another limitation is 

that companies with limited historical data may need to collect enough project data in order to start using this 

method.  
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