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SUMMARY: We propose using handcrafted features extracted from small datasets to classify the conditions of 

the construction materials. We hypothesize that features such as the color, roughness, and reflectance of a material 

surface can be used to identify details of the material. To test the hypothesis, we have developed a pre-trained 

model to classify material conditions based on reflectance, roughness and color features extracted from image 

data collected in a controlled (lab) environment. The knowledge learned in the pre-trained model is finally 

transferred to classify material conditions from a construction site (i.e., an uncontrolled environment). To 

demonstrate the proposed method, 80 data points were produced from the images collected under a controlled 

environment and used to develop a pre-trained model. The pre-trained model was re-trained to adapt to the real 

construction environment using 33 new data points generated through a separate process using images collected 

from a construction site. The pre-trained model achieved 93%; after retraining the model with the data from the 

actual site, the accuracy had a small decrease as expected, but still was promising with an 83% accuracy. 
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 INTRODUCTION 

Automated construction data processing could improve the efficiency of monitoring of construction progress and 

quality assurance by enabling efficient quantity calculation, quality monitoring, and detection of defects. 

Traditional progress monitoring depends on manual site observation and paper-based quantification of works 

which is prone to error in recognizing quality discrepancies and determining the quantity of work. Moreover, the 

process is inefficient in terms of time and labor, reducing the ability to complete a project within a given time and 

budget constraints. According to the PMI publication, for multiple reasons, only 57% and 66% of construction 

projects are completed within the planned time and budget, respectively (Pulse of the Profession, 2021). 

Automating inefficient manual data collection and processing practices within the construction industry could 

enable project managers to work on accurate site observation and measurement information, with increased 

attention to controlling cost and schedule throughout the construction process (Teizer, 2015).   

Recently, extensive research has focused on automated construction data collection and processing to achieve 

accurate material recognition using sensing systems and machine learning algorithms. Most material recognition 

methods focus on detecting materials and elements, regardless of their condition (Degol et al., 2016; Dimitrov and 

Golparvar-Fard, 2014; Maalek et al., 2019). This limits the possibility of understanding the status of a construction 

site, as the materials themselves undergo significant temporary and permanent changes in appearance. If a 

construction task is associated with a given material, the status of the task can be determined by tracking the 

variation (e.g., textural variation) of the material. For instance, a cast-in-place concrete slab can be left unfinished 

(rough) or may become smooth and reflective after screeding. Both the cast-in-place slab (rough) and the screed 

(smooth) one have different appearance states or material conditions. In the context of this study, ‘material 

condition’ refers to the condition (i.e., appearance) of a given material associated with a given task with the 

presumption that the condition can be linked to the state of the related task. A certain trade needs to put effort into 

completing the screeding work on the concrete slab. Therefore, recognizing material conditions increases the 

understanding of the construction status. Material layers could be rough, while subsequent layers could be 

relatively smooth, depending on the finishing requirements. Applying each layer on the construction site takes a 

specific amount of time, cost and effort. Therefore, tracking the detailed conditions of the construction materials 

can provide a better understanding of the progress of the associated tasks, hence the project. This study addresses 

previous limitations by using handcrafted features such as the color, roughness, and reflectance of a material 

surface extracted from small datasets to classify construction materials and used to identify details of the material 

condition and track the temporary and permanent changes in the appearance of construction materials associated 

with different construction tasks. 

One of the primary challenges in tracking material conditions is the scarcity of comprehensive and labeled data. 

In general, training supervised machine learning algorithms to track and understand detailed changes in material 

appearance requires extensive training data. Image libraries, widely used to train material recognition algorithms, 

can represent the color, shape, or other two-dimensional patterns on the material surface. However, they are not 

created to provide out-of-surface (i.e., 3D) textural details. Moreover, it is difficult and time-consuming to label 

images collected from construction sites according to detailed material conditions. One of the reasons for this is 

that material conditions could be hard to identify manually from an image without referring to the actual 

construction site. 

This study presents a method of recognizing material conditions automatically from a small dataset. The classifier 

is developed using a dataset generated in a controlled lab environment. Handcrafted features, such as roughness, 

reflectance and color, are extracted from the laboratory data before the machine learning model is developed. The 

developed model is transferred to an as-is dataset collected from a real construction environment. In this study, 

the term ‘as-is’ represents the state of the construction during the data collection. The outcome of this method is 

to track detailed variations in the condition of construction materials that have a shortage of labeled datasets.  

The rest of this paper is organized as follows: Section 2 identifies gaps in state-of-the-art material recognition 

research. Section 3 presents the proposed research method, and Section 4 demonstrates the application of the 

developed method in the construction environment. Section 5 shows the testing results, while Section 6 discusses 

the contribution of this study to the current state of the art, practical impacts, overall limitations, and 

recommendations for future work. Finally, Section 7 presents the conclusions. 
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 LITERATURE REVIEW  

Over the past few decades, material recognition has played an essential role in automating manual activities in 

construction. This section presents the current state of the art in construction material recognition research. 

2.1 Material recognition research in construction  

Image-based approaches primarily analyze images and videos using computer vision and image processing 

techniques. Dimitrov and Golparvar-Fard (2014) proposed a material recognition approach based on the 

descriptors extracted from color and image filter responses. Based on this work, Han and Golparvar-Fard, (2014) 

developed an operation-level approach to monitoring construction progress in which the BIM model was back-

projected into an as-built point cloud generated from site images to define deviations in progress. When classifying 

materials in both methods, the size of filters to be applied in extracting features could result in hiding or yielding 

noisy information regarding the material condition of small elements, such as the edges of slender members or 

electrical outlet points. Considering texture variation of materials in the construction site to train an algorithm for 

material recognition increases the level of detail of feature representation. For example, Deng et al. (2020) 

developed a method to track tile-paving progress in indoor construction. The recognition algorithm was developed 

to identify tiled areas using an image database with intentionally varying texture, camera perspective and lighting 

data. 

Multiple machine learning algorithms have been used in construction material recognition research. Support 

Vector Machine (SVM) has been applied in both material recognition and construction progress monitoring 

research (Deng et al., 2020; Dimitrov and Golparvar-Fard, 2014; Hamledari, McCabe, and Davari, 2017). Deng et 

al. (2020) and Hamledari et al. (2017) proposed identifying specific materials related to specific tasks to monitor 

construction progress. Those studies all exploited the illumination response of shiny surfaces to extract patterns of 

specific materials under consideration. Aside from SVM, researchers have explored several other deep and shallow 

machine learning algorithms (Ghassemi et al., 2020; Son et al., 2014). 

Son et al. (2014) proposed a construction material recognition method using ensemble classifiers, which were 

comprised of six different classifiers, including Support Vector Machine (SVM), Artificial Neural Networks 

(ANN), Naïve Bayes (NB), Logistic Regression (LR) and K-nearest Neighbors (KNN). These individual 

classifiers were trained to classify different materials, such as steel, concrete, and timber. The training data was 

developed using 250 images, non-uniformly distributed between the three classes. Images were pre-processed and 

sub-regioned into smaller pixel sizes to maximize training data count. RGB values were converted into HSV color 

space to reduce the illumination effect in the pixel color attributes. The results showed that ensemble classifiers 

performed better than single classifiers, regardless of the weather and illumination conditions on the construction 

site.  

Similarly, Ghassemi et al. (2020) proposed a material recognition method for monitoring the progress of automated 

construction. This method explored Deep Convolutional Neural Network (DCNN) structures, such as Visual 

Geometry Group (VGG), ResNet, DenseNet, and NASNet mobile. Results demonstrated that the DCNN structures 

considered performed with an accuracy rate greater than 92%. Son et al. (2014) and Ghassemi et al. (2020) 

identified illumination and data scarcity as challenges. Son et al. (2014) pre-processed the available data to separate 

the chrominance and luminance information, and Ghassemi et al. (2020) incorporated data with different 

illumination orientation conditions during the training. Moreover, Ghassemi et al. (2020) added random outliers 

to the data to overcome overfitting resulting from the data size. 

Although classical machine learning methods achieve good accuracy in material recognition, the conditions that 

the materials are going through are overlooked. For instance, in Son et al. (2014) and Ghassemi et al. (2020), 

concrete is simply detected as concrete, regardless of its finishing state. Similarly, timber is only recognized as 

timber, regardless of its state; yet, timber can be processed and smoothed or raw and rough. Although it is 

technically feasible to apply a similar approach in detecting detailed construction material conditions, developing 

a sizable database to represent each construction stage and material condition effectively— and large enough to 

define patterns using the above-mentioned machine learning models—may be prohibitive in terms of time. 

Researchers have proposed transfer learning as a potential approach to achieving a promising accuracy level to 

classify materials based on their appearance states. The method transfers pre-trained features from a given model 

as input to another task without pre-training (Weiss, Khoshgoftaar and Wang, 2016). For instance, in 
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infrastructural material studies, (Gopalakrishnan, Khaitan, Choudhary and Agrawal, 2017) performed a study to 

detect pavement distress by transferring knowledge from a DCNN trained on a big image dataset. The pre-trained 

DCNN model features were further evaluated using 1056 local images to achieve a maximum of 87% accuracy. 

Although transfer learning performs well by sharing knowledge and saving computational time and resources, 

fine-tuning the model to the desired new purpose still requires a significant amount of data.  

Alternative approaches to the data limitation challenge include data augmentation and feature engineering. Most 

augmentation techniques inflate the available data by artificially creating data instances by applying multiple 

techniques, including scaling, clipping, shearing, rotating, mixing and convolving existing images (Shorten and 

Khoshgoftaar, 2019). Data augmentation could overcome challenges related to irrelevant information in the image, 

such as background or problems related to image distortion. However, it can only simulate the increase in data 

size with minimal contribution of new information during a feature pattern definition. Training deep neural 

networks using a small dataset results in a weak generalization of features. This is mainly because features are 

extracted automatically through the layers of the network, and neural networks generally require a significant 

amount of data to generalize a pattern with reasonable confidence. Therefore, in the case of a small dataset, 

handcrafted feature extraction could force the networks to focus on specific features (Das, Arshad, Manjhi, and 

Thepade, 2020). The following sections describe a selected set of features utilized in the literature to define a 

material’s appearance. 

2.1.1 Color features  

With several color attribute models proposed in the literature, color is one of the most used object recognition 

features. The common challenge in extracting descriptors from color information is the dependency of color 

information on the illumination of the environment (Ebner, 2007). The more stable chrominance characteristics of 

a material can be computed by converting imagery into relatively illumination-invariant color spaces to help reduce 

image data dependency upon illumination of the environment. The most widely-used color space to represent a 

material’s chromatic character is Hue Saturation and Value (HSV) (Braun et al., 2020; Quintana et al., 2018). 

However, HSV color space has limitations in clearly representing differences between materials with 

monochromatic and achromatic color characteristics, such as concrete (Son et al., 2012). CIELab color space is 

another alternative color space used to reduce the effect of environmental illumination in construction component 

recognition and progress monitoring (Hamledari et al., 2017; Mengiste and Garcia de Soto, 2018). However, in 

some instances, materials appeared to have constant color characteristics throughout different construction states, 

regardless of the work progress. Therefore, color features are not enough to detect progress and material state. 

2.1.2 Surface roughness  

Roughness is a measure of out-surface irregularity. It is common in pavement condition classification research 

which requires laser scanning using infrared-based devices, such as time-of-flight (ToF) cameras or LiDAR 

scanners (Díaz-Vilariño et al., 2016; Mahmoudzadeh et al., 2019) to extract roughness information. Although 

roughness is used frequently for pavement classification, the high equipment and operational expenses of accurate 

depth cameras and laser scanners hinder the use of the feature for regular day-to-day activities in tracking 

construction progress. As an alternative, researchers have looked at more affordable photogrammetric methods to 

generate point cloud data (PCD) and experiment with roughness feature extraction. Petitpas et al. (2010) proposed 

a method for extracting surface roughness from unconstrained image data. In their method, a dense stereoscopic 

point cloud was developed using photogrammetry. Roughness was calculated based on the root mean square and 

arithmetic mean of depth, which was measured as a stochastic variation between points and the reference surface.  

Petitpas et al. (2010) noted multiple sources of error in these calculations of surface roughness. Most of them were 

due to filtering procedures to reduce noise caused by mismatched images, which affected roughness estimation 

quality. This study adopts the method Petitpas et al. (2010) proposed by applying a defined threshold margin to 

limit the extent of noise around the reference surface. 

2.1.3 Surface reflectance  

Material reflectance is a spectral property of a material, measured as the ratio of irradiance transmitted through the 

material to the incident irradiance (Eismann, 2012). Bidirectional Reflectance Distribution Function (BRDF) is 

the expression of reflectance characteristics demonstrated by emphasizing the amount of multi-directional 

refraction of illumination from every possible direction toward the surface in focus. Light incoming to a surface 
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reflects in any random direction; objects placed within close range of one another can inter-reflect. Therefore, 

identifying the source and original direction of natural light radiation to measure and calculate BRDF accurately 

is not trivial. Although computer vision and applied optics articles (Cula and Dana, 2004; Kim, Lim, Ahn and Lee, 

2018; Chao Liu and Gu, 2014; Marschner, Westin, Arbree and Moon, 2005; Marschner, Westin, Lafortune and 

Torrance, 2000; Sole, Farup, Nussbaum and Tominaga, 2018; H. Zhang, Dana and Nishino, 2015) have proposed 

methods for estimating BRDF to approximate reflectance property of materials using laser-emitting devices, the 

method’s applicability to the construction site is limited because the data inputs were collected under heavily 

controlled conditions.  

To replace the utilization of a controlled environment in measuring BRDF, Lai, Liu, Zhao, Zhao and Tan (2020) 

developed a BRDF simulation model based on experimental results. In their method, optimal model parameters 

are computed using genetic algorithms, where the parameter fitting of the objective function was performed 

through empirical data fitting. Therefore, this method depended on data generation under a highly controlled 

environment, employing a sensitive up-close optical setup such as a scatterometer. Similarly, Erickson, Xing, 

Srirangam, Chernova and Kemp (2020) and Ohi, Mridha, Hamid, Monowar and Kateb (2021) proposed a method 

of recognizing objects using up-close visual measurements. Whereas the former uses spectrometry measurements 

to collect data, multimodal networks are trained to represent various modalities with different groups of 

SpectroVision datasets. The latter collected up-close microscopic image data to determine the fiber characteristics 

of textiles samples. Although results obtained from both publications were promising, the size of the training data 

and the data collection scheme requires up-close spectrometry (approximately 1cm distance) or microscopy, which 

is limiting for application in a complex construction site. Ce Liu, Sharan, Adelson and Rosenholtz (2010) 

developed an alternative method that defines color, texture and micro-texture from 2D image-based measurements 

of parameters such as surface BRDF, object shape and environmental lighting. Although the method achieved only 

a 44.6% recognition rate, its independence from special requirements such as spectroscopy instrument, close up 

position during data collection or controlled environment, makes it promising for construction site applications.  

The possibility of approximating surface reflectance from image data in construction sites has not yet been 

sufficiently explored. In this study, a novel method of reflectance measurement is developed. The technique 

depends on coupled images, where the reflectance is extracted by subtracting one of the images taken under natural 

illumination from the other set of photos taken under both natural and artificial illumination conditions. 

 THE PROPOSED METHOD  

The proposed method (Figure 1) consists of five sections. The first section relates to data generated in a controlled 

lab environment. The produced data set was pre-processed in the second section to extract the features (color, 

roughness, and reflectance). The extracted handcrafted features are used to pre-train a material condition classifier 

in the third section. The fourth section is about the data collection and feature extraction from the actual 

construction site environment. In the last section, the pre-trained model is transferred to classify actual construction 

information using the feature data resulting from step four.  

3.1 Data collection from the controlled Lab environment  

The condition of construction materials is expected to change throughout the course of construction. The changes 

in the condition of a given set of materials were determined and established in a controlled environment. Three 

sets of image data were collected to accommodate the requirements of the three features considered (i.e., color, 

roughness, and reflectance). Figure 5 presents a set of sample images taken in the controlled environment. Each 

image was captured by focusing on each element with the specific condition and excluding any background 

objects. For reflectance feature extraction, coupled sets of reference images were collected under natural and 

artificial illumination conditions in various orientations. Stereoscopic sets of images were taken under natural 

illumination to capture the roughness characteristics of material surfaces. Finally, to extract color features 

representing each material condition, a separate set of images with random scale and rotation from different 

viewpoints under natural illumination conditions ware taken. 

3.2 Feature extraction from data collected in the Lab environment  

The collected data was transformed into a feature data set used to train the classification algorithm. In this step, 

the raw image data set collected to represent the material conditions was converted into a training data vector. This 
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section is divided into three sub-sections, each one elaborating on the detailed process for extraction of reflectance, 

roughness, and color features. 

 

Figure 1: Proposed method 
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3.2.1 Extract reflectance feature  

In this study, the reflectance was investigated using coupled images. The first image of each pair was taken under 

natural light conditions. The natural illumination in each environment could result from various light sources and 

be inter-refracted between solid objects, making it difficult to control the intensity and identify the amount of light 

originally delivered to the surface. The second set of images was taken using a controlled artificial light source 

(i.e., additional illumination). The natural illumination was then excluded from the captured scenes, taking the 

absolute difference between the couples—Figure 2(a). 

The resulting image contains only the reflection of artificial light on the material surface. The resulting image was 

a grayscale pattern with a light glow mark—Figure 2(b). Illumination glow information was further preserved by 

converting the image to CIELab color space, and L-channel was taken for reflectance descriptor extraction—an 

illustration is shown in Figure 2(c).  

As shown in Figure 2(d), a statistical analysis of maximum glow was performed on the L-channel (Figure 2(c)), 

and the reflectance characteristic of the material surface was defined from the difference (Figure 2(b)) between 

the coupled raw images (Figure 2(a)). The distribution of the glow intensity varied depending on the orientation 

of the artificial light source. Materials with a relatively higher reflectance surface finish resulted in more light 

being reflected into the camera. The brightness intensity and the size of the glow, with a value steadily decreasing 

to zero, are the two main measures of the reflectance feature.  

 

Figure 2: An illustration of coupled images. 

In this study, the reflectance of a material surface was generalized using the standard deviation and mean (𝜎𝑟 and 

𝑙𝑟) of the L-channel value distributions across the glow image. 

3.2.2 Extract roughness feature  

A 3D scene was reconstructed for each material condition by matching images using Scale Invariant Feature 

Transform (SIFT) image descriptor extraction (Verma and Liu, 2017) and a matching algorithm. The cluttering 

points were manually cropped out of the general 3D scene to keep the region of interest clean. The RANdom 

Sampling Consensus (RANSAC) surface-fitting algorithm (Nurunnabi et al., 2014) was used to estimate the 

surface. A set of points within the allowable proximity was further processed to calculate the material roughness 

property. Roughness was measured using the mean root square (MRS) of points distributed along the estimated 

point cloud surface. The normalized distribution curve of the MRS error was plotted and then taken as the 

roughness approximation metric. Similar to Petitpas et al. (2010), the roughness metric was represented using the 

standard deviation and mean parameters (𝜎𝑅𝑜𝑢𝑔ℎ  and 𝑅) in the training data set. 
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3.2.3 Extract color feature  

Similarly, in the reflectance descriptor extraction process, all of the images were converted to CIELab color space 

to take advantage of the separability of the chrominance (Valero et al., 2019) of lightness. Moreover, Lab space is 

also proven to be more robust in working with slight color differences (Hamledari et al., 2017). The RGB values 

were converted to CIELab space, and histograms of a and b color channels were developed to represent the 

approximation of the color features. Similar to Valero et al. (2019), color attributes were summarized for each 

image in terms of standard deviation (𝜎𝑎 , 𝜎𝑏) and mean (𝑎 , 𝑏 ) values of both a and b channels. 

For each material condition, the values of all three feature representations (𝜎𝑟 , 𝑙𝑟, 𝜎𝑎 , 𝜎𝑏 , 𝑎 , 𝑏, 𝜎𝑅𝑜𝑢𝑔ℎ , 𝑅) were 

assembled to create an eight-dimensional vector for use as training data. 

3.3 Collection of construction as-is image data 

Image data were collected from various randomly-selected camera positions within the construction site. This was 

done to represent real conditions and allow flexibility for the collection of images. Two sets of images were 

collected, one under natural illumination (i.e., without altering the ambient situation during data collection) and 

the other with additional artificial illumination (e.g., external light sources). The two image datasets were 

processed independently of each other. 

3.4 Pre-processing as-is image data and feature extraction 

Each image frame contains multiple permanent and temporary construction members and pieces of equipment. 

Therefore, to detect and recognize the different material conditions, it was necessary to segment the region of 

interest from the image background and analyze the segmented surfaces independently. Region of interest 

segmentation and feature extraction can be conducted in 2D site images. However, to increase the performance of 

the method by reducing the effect of occlusion, image scale and distortion on the result, in this study, the as-is 

state of the construction is represented in 3D.  

Given that it is a well-documented approach,  3D reconstruction of the site from the collected images was 

performed using Structure from Motion (SfM) method, in which images are matched using the SURF image 

matching algorithm (Li et al., 2017), and dense point cloud data were generated separately for the two distinct 

image sets collected under different illumination conditions. 

Furthermore, RANSAC surface-fitting (Schnabel, Wahl and Klein, 2007) iterations were performed following 

randomly selected initiating points. Once the surfaces had been identified, points within the threshold from the 

fitted point were recognized as points representing each surface. Through this process, planes were segmented 

based on geometric proximity. However, each recognized plane contains multiple material conditions. Therefore, 

a patch of points that belong to the same material condition needed to be recognized.  

Point cloud segmentation is beyond the scope of this paper. However, the overall process adopted to prove the 

methodology is presented. Point cloud pixel points were clustered into subdivisions, using the Gaussian mixture 

model (GMM) to achieve accurate segmentation. The GMM introduces multiple Gaussian functions fitting into 

the intensities of features in a data set (Jian and Vemuri, 2011). The multiple Gaussian functions were fitted on 

the histograms of the color attributes of the point clouds lying on a common plane. Points fitting into each Gaussian 

function were clustered as a separate material condition group. The process of cluster segmentation in this study 

was performed according to the method by Farnoosh et al. (2008). 

Clustered sets of points are six-dimensional, incorporating three coordinate points and three other color attributes. 

Both of the image data sets collected under natural and artificial illumination were processed in a similar but 

distinct fashion. Features representing the condition of materials were extracted from the clustered set of point 

clouds. The representations were inputs for the trained algorithm to classify and label the condition in the 

construction site as a recognized material condition. The process of extracting reflectance, roughness, and color 

features from the as-is point cloud data (PCD) is described below.  

Roughness:  

Each cluster was fitted into a surface during the pre-processing procedure, and thus, each of the points in the cluster 

was within a maximum threshold of distance from the estimated plane. However, there was still a non-uniform 

distribution of PCD normals on the surface, depending on the orientation of the refracted incident light from the 
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surface into the camera lens. To estimate the irregularity in the surface, the residual values at a distance within the 

threshold boundary were computed for each point in a cluster. Moreover, the residual values were summarized 

into standard deviation and mean values (𝜎𝑅𝑜𝑢𝑔ℎ and 𝑅). 

Reflectance:  

Two clusters of the same material condition obtained from the coupled datasets were matched by comparing their 

respective scene and relative geometric locations. The RGB attributes of the point cloud were converted into 

CIELab color space. Next, the difference between the two standard deviations and the two mean values of the 

CIELab L-channel obtained from the clusters of the coupled datasets was computed. The resulting values (𝜎𝑟 and 

𝑙𝑟) were then registered as the reflectance measurement of the clustered material conditions. 

Color:  

Color feature measurement was performed on the point cloud obtained from the image dataset taken under natural 

light conditions. To extract the color attributes from the clustered points, the RGB attributes were converted to 

CIELab color space. The standard deviation and the mean of a and b color channels (𝜎𝑎 , 𝜎𝑏 , 𝑎 , 𝑏) were calculated 

independently and registered as color features. 

Similar to the controlled lab environment data, the values of all three feature representations were assembled to 

create an eight-dimensional feature dataset. 

3.5 Build and evaluate the model  

The model developed using limited-size feature data of the lab images needs to be transferred to a new set of data 

generated from a separate environment using a separate process. Therefore the pre-trained model on the feature 

dataset from lab images needs to be fine-tuned to adopt patterns of the as-is features.   

One of the available approaches that could transfer learned information from one dataset to a completely new 

dataset is transfer learning. Therefore, a transfer learning model was developed following the diagram in Figure 

3.  

 
Figure 3: Build and evaluate the transfer learning model. 
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The model development is split into two sections, with the first being the pre-training process using the vector data 

extracted from the data generated in the controlled lab environment. A One-Dimensional Convolutional Neural 

Network (1DCNN) is developed with two layers followed by three fully connected layers. The Cross entropy loss 

function is used for cost computation. The eight-dimensional vector data obtained from the lab environment is 

split 80/20% between training and testing. The Adam optimizer is adopted to optimize backward pass weights. 

Once convergence is achieved, the final weights are used to start the first layer of the 1DCNN in the second section 

of the model development. In the second section, knowledge learned during the pre-training process is used to 

initiate the training of the model on the as-is data. Therefore, after obtaining the weights of the pre-trained model, 

the transfer learning process is conducted, where the as-is data is used to fine-tune the model. 

 DEMONSTRATION OF THE METHOD 

Part of ongoing remodeling work for lab spaces at the NYU Abu Dhabi campus in Saadiyat Island, UAE, was used 

to test the classifying model. The selected portion of the construction site consisted of an area of approximately 

76 square meters and included four different material conditions or classes. Some walls were partly gypsum-

finished and partly exposed CMUs (Figure 4). The beams and columns had a smooth concrete texture, and the 

floor was finished with a smooth cement screed. The material condition categories (i.e., classes) are the CMUs, 

concrete structural members (beams/columns), gypsum-finished wall surfaces, and smooth concrete finished 

floors (cement screed). These classes shared similarities in certain features but could have differences in others.  

In that space, we acquired images controlling significant parameters such as camera pause, the distance between 

the camera and the surface of the material, illumination and other camera sensor parameters such as focus, lens 

distorsion and light sensitivity (ISO. Images representing the real construction scenario were also collected from 

the construction site without controlling the environment.  

 

 

Figure 4: Material conditions of the construction site 

4.1 Image data collection and processing (lab experiment) 

To capture the material conditions represented by the features in the training dataset, a total of 80 images of 6,000 

x 4,000 pixels size per material condition were taken using a Nikon D5200 camera of surfaces that resembled the 

expected conditions of the materials in the construction site. Twenty images for each material condition (i.e., class) 

were taken under additional artificial illumination, varying the direction and positioning of the artificial 

illumination source towards the target surface. Reference images to be coupled with those taken under additional 

artificial illumination were taken under natural illumination. Another set of 20 images was taken under natural 

illumination but with varying camera positions to target surface proximity and orientation. These sets of images 

were used to extract color information. The remaining 20 were taken with various camera orientations to create 

the 3D surface representation to extract roughness information. Samples of the collected raw image data are 

presented in Figure 5. The complete image dataset can be accessed in Mengiste et al. (2020b). 
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Figure 5: Sample raw image data collected to resemble the expected site material conditions. 

Coupled images were deducted from each other, and the results were converted to CIELab color space. The L-

channel was used to define the artificial light reflection on the material surface. Figure 6 shows the extraction of 

reflectance for CMUs, gypsum-finished wall, concrete structural members, and cement screed floor. These 

represent different conditions of materials. 

  

Figure 6: Extracted response to the artificial light of the four material conditions through sample images. 

Figure 7(a) – (d) shows the intensity plots for multiple illumination orientations of the four material conditions. 

The colored lines in each graph indicate the reflectance intensity of the same material surface due to the 

illumination emitted from a light source placed in various orientations. The orientations considered for each 

surface range from +40 to -40 degrees in10 degree increments measured vertically on both sides, where zero is 

taken as the camera being placed exactly level with the target surface. The reflectance feature of the surface was 

represented as the mean and standard deviation values of each intensity plot. Image processing was performed 

using the OpenCV image processing library (Bradski, 2000). 
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Figure 7: Light (glow) intensity plots on material surfaces. 

The RGB image data collected for color feature extraction was converted to CIELab color space, and the histogram 

was developed for all the material conditions. Figure 8 illustrates the histograms for the a and b color channels of 

the four material conditions. The blue and orange color histograms show the concentration of a and b channel 

values, respectively. The color features were computed as the mean and standard deviation of the a and b channel 

intensity plots. 

  

Figure 8: Examples of CIELab a and b channel histograms. 
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A point cloud was generated using close-up stereoscopic images of the four material conditions to compute the 

roughness feature. The SfM process was conducted on the image data and used the Meshroom software package 

(AliceVision, 2020). The PCD was further processed using Open 3D library (Zhou et al., 2018) to approximate a 

surface. The intensity of the geometric irregularity on the surface was computed as MRS values. The roughness 

values were defined as the mean and standard deviation of the MRS error distribution of each surface. 

A summary of the data collection and process output is presented in Table 1. With 20 data sets for each material 

condition, the final classification model had 80 distinct data points, each with eight attributes. A portion of the 

data set is presented in Table 2, where the Class column represents CMUs as ‘0’, Concrete structural members as 

‘1’, Gypsum finished wall as ‘2’ and Cement screed floor as ‘3’.  

Table 1: Summary of lab experiment database 

Test Number of images Output 

Controlled environment 

(lab set up) 

 

Images are taken on a 

controlled surface and in a 

predefined environment. 

248 images. Where each class has 62 images composed of  

• 20 images - artificial illumination, varying the 

direction and positioning of the artificial 

illumination 

• 2 images – reference with natural illumination 

• 20 images - taken under natural illumination but 

with varying camera positions to target surface 

proximity and orientation. 

• 20 images – stereoscopic 3D surface 

representation 

80 data points with the eight 

attributes (20 data points for 

each class). 

Table 2: Portion of the feature data extracted from the images taken during the lab experiment 

Material condition 

 i 

Reflectance Roughness (x 

1000) 

Color 

Class a – channel b – channel 

𝜎𝑟 𝑙𝑟 𝜎𝑅𝑜𝑢𝑔ℎ 𝑅 𝜎𝑎 𝑎 𝜎𝑏 𝑏 

CMU wall 1 36.98 20.14 0.35 0.49 126.76 0.90 126.24 1.05 0 

CMU wall 2 52.61 35.41 0.34 0.48 126.19 0.96 125.81 1.04 0 

: : : : : : : : : : : 

Concrete structural member 21 74.11 52.39 1.05 1.11 123.61 1.26 126.46 0.98 1 

Concrete structural member 22 63.73 40.94 1.12 1.12 126.17 1.08 125.03 0.90 1 

: : : : : : : : : : : 

Gypsum-finished wall 41 45.63 34.13 0.52 0.49 127.90 0.92 127.02 0.27 2 

Gypsum-finished wall 42 41.03 21.72 0.53 0.50 126.28 0.80 125.98 0.91 2 

: : : : : : : : : : : 

Cement screed floor 61 51.15 25.23 1.54 1.90 121.64 2.47 98.93 2.53 3 

Cement screed floor 62 53.57 27.19 1.72 1.94 120.16 1.83 110.23 2.59 3 

: : : : : : : : : : : 

Cement screed floor 80 53.03 25.10 1.49 1.83 119.66 2.00 97.86 2.08 3 

 

4.2 As-is image data collection and processing (real construction scenario) 

For each case under natural and artificial lighting conditions, 130 images were collected using a Nikon D5200 

camera. Complete image sets used in this section are available in a database (Mengiste et al., 2020a). As shown in 

Figure 5, each image frame is composed of multiple material conditions, and hence the segmentation process is 

conducted by generating PCD from the collected images using SfM. Coupled images are collected to measure a 

material’s reflectance using a camera and light source, as shown in Figure 9(a-b). Image collection at the 

construction site was uncontrolled, with all the images taken following an arbitrary path, as shown in Figure 9(b). 

Figure 9(b) white dots represent the locations, and white rectangles the orientation. 
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Figure 9: (a) Equipment used for data collection and (b) locations where the images were captured.  

The SfM was used to reconstruct the 3D scene utilizing Meshroom software. The point clouds generated for the 

construction site under natural and artificial illumination are shown in Figure 10 (a) and (c), respectively. The open 

3D library was used to extract surfaces based on the point geometry; RANSAC surface approximations of the 

segmented point clouds are shown in Figure 10 (b) and (d) for natural and artificial illumination. Different colors 

represent sets of PCDs that were close to the same surface. 

 
Figure 10: (a) view of the site scene reconstruction under natural light; (b) RANSAC surface segmentation of the 

PCD generated from images taken under natural light; (c) view of the site scene reconstruction under artificial 

light; and (d) RANSAC surface segmentation of PCD generated from images taken under artificial light. 

The PCD of segmented surfaces contains RGB color values of points. The RGB values were used to compute the 

reflectance and color feature values. Roughness values were computed using the RMS values of the PCD of each 

surface cluster. Table 2 presents the summary of the data processing where out of the total of 130 x 2 images, 33 

distinct feature datasets with 8 attributes were generated. The portion of the feature values extracted from the 

construction site scene is presented in Table 4. In clusters (u-v), u stands for the index of the initial segment, 

filtered out of the total PCD using RANSAC surface fitting, and v represents the clustered point cloud out of the 

uth segment, which results from the GMM operation. In this study, GMM was performed using the Scikit-learn 

library (Pedregosa et al., 2011). 
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Table 3: Summary of real construction scenario database 

Test Number of images Comments Output 

Real scenario 

(uncontrolled) 

260 (130 with 

normal lighting + 

130 with additional 

artificial lighting) 

Images were unordered and 

were not controlled, 

i.e.,images were randomly 

taken without monitoring the 

position, and camera pause. 

The camera was on autofocus. 

A point cloud from the images 

taken. From that point cloud, 33 

regions/patches were selected, 

and the features extracted. Each 

patch was processed, and 33 data 

points were generated. 

Table 4: Portion of the feature data extracted from the images taken during the real construction (as-is_ feature 

data) 

Cluster 

(u-v) 

Reflectance (10-4) Roughness (10-4) 

 

Color  

Class a – channel (10-4) b – channel (10-4) 

𝜎𝑟 𝑙𝑟 𝜎𝑅𝑜𝑢𝑔ℎ 𝑅 𝜎𝑎 𝑎 𝜎𝑏 𝑏 

1-1 68 2896 025.9 30.7 704.3 -6400 1991 21361 1 

1-2 395 2985 22.7 29.2 570.6 -6598 1422 23129 1 

: : : : : : : : :  

2-1 752 4832 10.4 12.4 500.7 -8570 1204 26961 2 

2-2 235 678 18.1 24.3 482.2 -8002 1491 24514 2 

: : : : : : : : :  

3-1 110 2270 7.3 9.05 1127.2 -4264 2834 15422 0 

3-2 434 1481 34.6 41.3 819.7 -5522 2624 17001 0 

: : : : : : : : :  

4-1 382 3893 514.7 514.7 752.8 -3479 1776 14942 3 

4-2 293 4036 602 697.3 731.2 -3407 1737 14283 3 

: : : : : : : : :  

Finally, data from both sources were utilized to develop a classification model using the transfer learning approach.  

 RESULTS 

The performance of the classification model was evaluated during the pre-training phase, using both the training 

and testing data portions. This is done to observe whether the model is overfitting, considering the data size. 

However, the model achieved 93% accuracy using the training data, close to the accuracy level obtained during 

the testing phase. The testing phase converged to 93% on the 142nd epoch. Similarly, the transfer-learning was 

evaluated with the training and testing sets. As a result, training data converged at 91% accuracy while the testing 

data converged at 83% accuracy. The confusion matrices Figure 11(a)  and Figure 11(b)  present the performance 

of the model when evaluated on the testing portions of pre-training and transfer learning, respectively.  

           

(a)                                                              (b) 

Figure 11: Performance of the classification model (a) Pre-trained model and (b) Transfer learning  
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The accuracy of the trained model was evaluated based on both specificity and sensitivity measurements. 

Sensitivity and specificity are measures of the rate of correctly identified positives and negatives, respectively. As 

shown in Table 5 and Table 6, specificity appeared to be equal to or higher than sensitivity in all the classes, except 

in the case of the CMUs. This is consistent in both the pre-trained model and the transfer learning. Considering all 

the material conditions, the transfer learning model achieved 83% accuracy with average specificity and sensitivity 

of 95% and 87.5%, respectively. 

Table 5: Performance summary of the pre-trained model 

Material condition 

 

Class Material 

 

Total number 

of data points 

 

Pre-trained model  

TP TN FP FN Specificity Sensitivity 

CMUs 0 Concrete 5 4 10 1 0 0.909 1.000 

Concrete members 1 Concrete 4 4 11 0 0 1.000 1.000 

Gypsum 2 Gypsum 3 3 11 0 1 1.000 0.750 

Cement Screed 3 Concrete 3 3 12 0 0 1.000 1.000 

   15 14   Average 0.977 0.938 

Table 6:Performance summary of the transfer learning model 

Material condition 

 

Class Material 

 

Total number 

of data points 

 

Transfer learning  

TP TN FP FN Specificity Sensitivity 

CMUs 0 Concrete 2 1 4 1 0 0.800 1.000 

Concrete members 1 Concrete 1 1 4 0 1 1.000 0.500 

Gypsum 2 Gypsum 2 2 4 0 0 1.000 1.000 

Cement Screed 3 Concrete 1 1 5 0 0 1.000 1.000 

   6 5   Average 0.950 0.875 

In the case of TNs (True Negatives), a model can be considered to have correctly predicted the data point as not 

belonging to a class, while FP (False Positives) are instances in which the model incorrectly predicted the data 

point as belonging to a class. Similarly, TPs (True Positives) are the number of instances in which the data point 

is correctly predicted to belong to a class, while FNs (False Negatives) are incorrect predictions of not belonging 

to a class.  

 DISCUSSIONS  

6.1 Data collection and processing 

One of the challenges encountered while computing reflectance from the produced image data sets was the effect 

of strong shadows. A strong shadow cast on material while capturing images under artificial illumination results 

in a dark zone with zero pixel values. Figure 12(a) illustrates a shadow on the coupled image taken under artificial 

illumination. The shadow at the top corner of the first image resulted in close to zero pixel values. The pixel 

intensity plot illustrates the variation of illumination from 0.2 to 0.8 along the top edge of the image. Figure 12 (b) 

illustrates an image taken under ambient illumination.  

 

Figure 12: Effect of strong shadow 
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The difference between the two images in Figure 12 (a) and Figure 12 (b) is presented in Figure 12 (c). This 

procedure was performed to remove the effect of the ambient illumination from Figure 12 (a) and analyze the 

interaction of the known artificial illumination with the material surface. However, as shown in Figure 12(c), the 

top corner of the image resulting from the difference kept the illumination intensity value similar to Figure 12(b). 

The environmental illumination remained unaffected due to the shadow with zero pixel value. 

6.2 Key characteristics of the classifier development  

The pre-processing of the data collected in the lab converted the image into a numerical eight-dimensional vector 

representing three features (reflectance, roughness, and color). Each of the four material cases is represented by 

20 eight-dimensional data points. Similarly, as-is image data is processed and results in a 33 x 8 feature vector. 

Given the database size, both in the case of pre-training and transfer learning, the hyperparameters are fine-tuned 

against overfitting. Figure 13(a) shows that the pre-training model has significantly improved as the learning rate 

changes from 0.00001 to 0.005. However, 0.0001 is taken as the optimum value considering a higher learning rate 

than this results in overfitting, where the perfect 100% accuracy score is registered during both training and testing. 

On the other hand, in Figure 13(b), transfer learning improved inaccuracy with an increased learning rate. 

However, the convergence of the loss curve can only be maintained up to the learning rate of 0.0005. On the 

highest four learning rate values, the curve loses its consistency for epoch values higher than 40.   

     

(a)                                                                           (b) 

Figure 13:Loss curves (a) Pre-training (b) Transfer learning 

Taking the selected learning rate values of 0.0001 and 0.0005 for both pre-training and transfer learning, the 

accuracy plot is presented in Figure 14 (a) and (b). The accuracy is plotted for the training and testing data in both 

cases.  

 

(a)                                                                    (b) 

Figure 14: (a) Accuracy curves for pre-training and (b) transfer learning  
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The loss (Figure 13) and accuracy (Figure 14) plots confirm that the model developed is not overfitting regardless 

of the data size, and the accuracy results are reliable. 

6.3 Contribution to the material recognition research in construction  

Based on the findings from this study, it was found that the meta-learning model is a promising alternative in 

construction material condition recognition where labeled data is scarce. Previously, construction material tracking 

research has depended on large training data sets that are not abundantly available and do not cover the whole 

range of construction scenarios. The performance of the handcrafted features with the classification model in this 

research provides evidence of its capacity to be exploited in construction material recognition research.  

6.4 Practical impact 

The current practice of construction material recognition is data-intensive while, developing and processing large 

data sets is time-consuming and computationally expensive. Moreover, detailed material conditions are 

overlooked, and only construction materials are recognized. Detecting and recognizing permanent and temporary 

material conditions can help improve the level of detail in automated tracking of construction progress and similar 

activities in construction that require a full understanding of the construction site.  

6.5 Limitations and suggestions for future research 

While deploying the recognition algorithm on-site, the data collection process includes taking pictures in ambient 

illumination conditions and applying artificial illumination. When there is strong sunlight on the construction site, 

the additional illumination is not visible, and the computational results for reflectance show no difference. 

Therefore, the method was tested in site conditions where the illumination of the site was relatively lower than the 

intensity of the artificial light. Evaluation of the proposed method for light sensitivity can be considered in future 

work. Moreover, given that both the lab data and the as-is data are generated from the same construction sites with 

a limited number of material conditions, the performance of the model when it is subjected to a dataset generated 

from an unseen construction site with more abundant material types and complexity is not examined.  

Future work should integrate the method developed in this study with a monitoring system for progress tracking 

and trade productivity. The current method can be used to detect the as-is state of construction and the conditions 

of materials and be integrated with the planned BIM models to directly measure the amount of actual work that a 

specific trade has performed. The time required to cause a change in the condition of a material can be directly 

linked to the amount of work done. For instance, concrete curing, smoothing of rough surfaces, screeding, and 

plastering work usually result in textural change, while the color tone of the material remains constant. The 

proposed method will be extended to progress tracking in separate research.  

The proposed method has demonstrated promising performance with transfer learning. However, the performance 

should be compared with other similar cutting-edge algorithms. Similarly, in addition to the three features adopted 

in this work, other feature candidates could improve the results obtained. Therefore feature optimizations and 

sensitivity analysis should be conducted on possible combinations of available features.  

 CONCLUSION 

Construction materials possess variable color, reflectance, and roughness surface characteristics that can change 

throughout the progress of a construction project. This study proposes a novel method for automatic recognition 

of the construction material conditions on the construction site. Algorithms have been developed to extract material 

reflectance, roughness, and color features from image data sets. The lack of labeled data to train a machine-learning 

algorithm that classifies material conditions was addressed by generating a limited amount of training data using 

handcrafting features and taking advantage of transfer learning. The pre-trained model on the dataset obtained 

from the lab images attained 93% accuracy. For the actual construction site, the classification model achieved an 

accuracy of 83%, which can be considered favorable results given the limited dataset.  
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