
ITcon Vol. 1 (1996); Brown et al; pg.  1

Promoting Computer Integrated Construction Through the Use of
Distribution Technology

RECEIVED: June 1996
REVISED: September 1996
PUBLISHED: October 1996

Mr. Alex Brown
Email: a.j.brown@iti.salford.ac.uk

Yacine Rezgui, Dr.
Email: y.rezgui@iti.salford.ac.uk.

Grahame Cooper, Dr.
Email: g.s.cooper@iti.salford.ac.uk

Jim Yip, Dr.
Email: y.j.yip@iti.salford.ac.uk
all: Information Technology Institute, University of Salford

Peter Brandon, Professor
Department of Surveying, University of Salford
Email: p.brandon@surveying.salford.ac.uk

SUMMARY: This paper discusses how distributed object technology can profitably be put to use in the
construction industry.  It begins by outlining the potential benefits distributed object technology and standards
can bring to construction, particularly when considering the integration of existing and future information
systems.  It then describes research that has applied this technology to the COMMIT (COnstruction Modelling
and Methodologies for the Intelligent inTegration of information) project.  This project aims to provide new
levels of support for integrated building information systems by dealing with issues such as versioning,
notification, the representation of intent and the definition of object rights.  To this end, a generic information
management model has been proposed, a brief description of which is given here.  The architecture and
distributed implementation of this information management model are then described, and a framework
proposed in which the model acts as a bridge between services provided by the CORBA (Common Object
Request Broker Architecture) distribution standard and objects in a computer integrated construction
environment.  Examples, illustrating the implementation of information management concepts as distributed
components complying to the CORBA standard, are given.  Several techniques for integrating existing CIC
systems and legacy applications are proposed before finally presenting the user interface through which project
participants interact with the distributed components of the integrated environment.  The research presented in
this paper is ongoing; a primary aim is to refine the prototypes that demonstrate the new levels of integration
we can expect in the coming component-based era.

KEYWORDS: Distributed, Computer Integrated Construction, Information Management, Component, CORBA,
COMMIT

1. INTRODUCTION
It is widely recognised that business and social trends are driving the construction industry through a period of
radical change.  Downward cost pressures, coupled with ever more specialised building trades and the increasing
technical complexity of projects all create a demand for the integration of construction project information.  At
the same time, the state of the art in information technology continues to move forward.  The development and
deployment of new construction industry software applications, improvements in network technology, the



ITcon Vol. 1 (1996); Brown et al; pg.  2

application of  robotics to the building process, the development of new modelling methodologies and languages
and the definition of standards for information exchange all create new opportunities for integration.  Of course,
the desire to integrate is not unique to construction.  Other industries, such as manufacturing and the IT industry
itself, are arguably even more powerful levers for change.  Indeed, construction has yet to achieve the levels of
design process integration found in the automotive and aerospace industries.

The next few years will undoubtedly see major changes in the use of computers.  Improvements in hardware
technology - in particular, the advent of inexpensive, high performance CPUs - are resulting in increasingly
powerful desktop machines.  The computing resources of an organisation or project team are now spread across
many (often heterogeneous) platforms in different locations.  At the same time, business application end users
are increasingly seeking more local autonomy and responsibility.  These changes are being reflected by a
growing interest in distributed object technology.  Many computer industry analysts see this as the next
evolutionary step in a process which has already moved from monolithic applications to the client/server era
(Orfali et al., 1995). These changes will inevitably have an impact on the construction industry and, in particular,
the potential for the integration of information.

Researchers have addressed information integration in construction in a variety of ways: communication between
applications (achieved through specific software integrating a unique and invariant set of chosen applications),
integration through geometry (often the case in commercial CAD packages where integration is based on and
limited to geometrical information), knowledge-based interfaces linking multiple applications and multiple
databases, and integration through central project databases holding all the information relating to a project
according to a common conceptual model.  The latter category includes ATLAS (Bohms et al., 1994) (for large
scale engineering), COMBINE (Dubois et al., 1995) (for HVAC and building design), RATAS (Bjoerk, 1994)
and ICON (Aouad et al., 1995) (for building design and construction management).

The aim of this paper is to illustrate how research carried out by the COMMIT project can be married with IT
developments in the field of distributed object technology to help to provide new levels of intelligence and
integration in construction projects.  The paper first discusses the benefits of adopting distributed object
technology, both to the construction industry itself and the software industry which serves it.  An overview of the
COMMIT project is then given.  The latter parts of the paper present the architecture and distributed
implementation of the COMMIT Information Management Model.

2. THE USE OF DISTRIBUTION TECHNOLOGY IN CONSTRUCTION
There are currently two major emerging standards for distributed objects, Microsoft’s Object Linking and
Embedding (OLE) (Brocksmidt, 1995) and the Object Management Group’s Common Object Request Broker
Architecture (CORBA) (OMG, 1995a, 1995b).  Without going into detailed comparisons of OLE and CORBA
which have been made elsewhere (Orfali et al., 1996),  this paper will refer exclusively to CORBA for the
following reasons. At the time of writing CORBA would seem to have more to offer projects aimed at computer
integrated construction; it fully supports the principles of object-orientation whereas OLE does not support
inheritance.  It also offers a wider range of facilities and services for integration; one estimate puts CORBA
about two years ahead of OLE (Orfali et al., 1996).  If OLE (or some other) standard prevails, we assume it will
offer services along similar lines to those currently offered by CORBA.

The nature of the construction industry is such that virtual teams are often brought together for projects before
being broken apart again on completion.  The software applications used may vary from one construction project
to another. Organisations and individuals participating in a team will bring their own unique skills and resources,
which may include legacy applications and data.  Any integrated environment should provide a means by which
the component objects provided by organisations and application vendors can interoperate in a seamless way.
This interoperability should not be limited to those components which have a prior knowledge of each other;
components should “plug and play” and so be usable in ways which were unanticipated by the original
developers.

There is therefore a need to concentrate on the interfaces between objects as well as standardising the objects
themselves.  Instead of integration being achieved through static models that define the structure of shared
information (in the form of files or databases), integration should be made through frameworks which define
semantic relationships between the interfaces of separate components.  The CORBA architecture provides for
these frameworks through business object facilities (also known as vertical common facilities) (OMG, 1996) and
distinguishes them from basic services (such as naming, persistence, transactions, etc.) and horizontal common
facilities (such as user interfaces and system management).  Business object facilities are already under
development for several business areas including computer integrated manufacturing and banking.  It is to be



ITcon Vol. 1 (1996); Brown et al; pg.  3

expected that work such as STEP, which aims to define standards for the exchange of product model data
(ISO/TC184/SC1, 1994), will play an important part in the definition of a CORBA facility for computer
integrated construction. The Industry Alliance for Interoperability is also developing the Industry Foundation
Classes (IFC’s)  - a common set of intelligent building design objects that will enable the sharing of information
in all stages of a construction project. The IAI is currently investigating the possibility of making IFC’s CORBA
compliant.  Other researchers have attempted to enable the integration of product modelling and distribution
standards by proposing languages which combine the features of the STEP and CORBA modelling languages
(Su et al., 1995).  It remains to be seen as to whether this work will impact upon the standards bodies.  Work
carried out at Stanford University investigates interoperation at a more fundamental level in order to support
concurrent engineering, although without adhering to standards such as CORBA (Khedro et al., 1994).

One advantage that CORBA frameworks have over many existing methods of integration is that they are highly
flexible and designed for reuse.  Business objects within the framework are capable of recognising their
environment and interacting with other business objects.  They can therefore take part in a wide range of
integration scenarios, perhaps even across industrial sectors.  They can also easily be specialised to meet the
needs of particular organisations or projects.  This is of particular relevance to the construction industry where
organisational structures and processes may vary greatly from one project to another.  Where appropriate,
relationships between business objects will be transparent and modifiable by end users.  An organisation may
also define its own standard frameworks for object interworking and collaboration.  Object collaborations also
occur at many different levels of granularity, for example:-

• a line in a CAD drawing should be cut off at the edge of its bounding frame window,
• the contents of a room should move when the room is moved,
• a estimate of the cost of building a wall might be generated from the wall dimensions, material and

unit rate and
• the structural engineer might need to be notified in case of any modifications to the dimensions of a

given load-bearing wall.

Such collaborations and relationships can be placed within the appropriate framework of a well defined
distributed object standard.  This breaks down the problems of integration into more manageable, logically
discrete areas.

The integration of existing construction industry software applications is also facilitated by the language neutral
nature of CORBA.  In a CORBA system, distributed objects are first specified in IDL (Interface Definition
Language).  From IDL, which only describes object’s interfaces and not their implementation details, various
language specific implementation skeletons can be automatically generated.  CORBA currently specifies
language bindings for C, C++ and SmallTalk (Ada, COBOL and several other languages are forthcoming).
Existing construction industry software applications are coded in a variety of implementation languages; IDL
therefore provides a means by which they may be more easily “wrappered”.

A typical large scale construction project involves hundreds of participants, thousands of decisions and huge
volumes of data.  Clearly, centralising such large amounts of data in a single database poses technical
difficulties.  Distribution technology, however, provides “network transparency” - data in a single logical
repository may be physically stored in many different locations.

In addition to the fundamental advantages mentioned above, a component-based approach to integration has
benefits when one considers the current technological and socio-economic state of the construction industry.  For
example, commercial pressures often dictate that existing construction industry software applications satisfy a
very broad range of user requirements.  This results in large monolithic applications.  Component based
applications could be assembled on the basis of user needs and could potentially be much smaller.  They would
run on hardware that is less expensive and more portable, thereby creating the opportunity to involve
construction industry practitioners who have hitherto been excluded.  This might, in particular, promote the use
of computers on-site.  Smaller, component based applications are also easier to distribute over networks,
particularly with the advent of interpreted platform independent languages such as Java (Gosling and McGilton,
1996).

3. THE COMMIT PROJECT
The overall aim of the COMMIT project is to improve the long-term effectiveness of the construction industry
by the provision of intelligent integration of information to support concurrent engineering and decision making
for the effective management and realisation of all stages of a construction project’s lifecycle.  In order to further
improve support for computer-integrated construction, project information needs to be conceptually modelled



ITcon Vol. 1 (1996); Brown et al; pg.  4

throughout its lifecycle, along with the events that impact upon it.  The project intends to deal with issues not
covered fully by either previous work in integrated building information systems, or previous work in
standardising for the exchange of product model data such as STEP.  It is proposed that an intelligent integrated
building information system needs to address the following four areas: rights and responsibilities, notification,
versioning support and the representation of intent.  The COMMIT Information Management Model (CIMM)
consists of generic models of the concepts needed to address these areas.

A pure Object-Oriented methodology has been chosen for the analysis and design stages of the COMMIT
project.  It is widely accepted that Object-Orientation has a stronger equivalence with the real world than other
methodologies: encapsulation, abstraction and multiple inheritance are all features which help us to model the
complex and dynamic systems found in the construction industry (Turk, 1993).  It is worth noting that the
emerging standards for distribution are also deeply rooted in Object-Oriented methodologies.  Only a brief
description of the CIMM can be given here, for further details the reader is referred elsewhere (Rezgui et al.,
1996a).

3.1. Rights and Responsibilities
As a construction project progresses, actors’ rights and responsibilities with respect to specific construction
project objects change.  Such rights can be captured through the use of a role; as an actor performs different
roles through the life of a project, so their rights over project information change. Defining roles in this way is
essential for effective management of concurrent multi-actor engineering and needs to be tightly integrated with
support for versioning.  The performance of all project roles involves actions on both object types and objects.
Each action takes place according to a certain pre-defined object right (an authorisation given to a role to
perform a given action on an object).  The set of ObjectRights that a Role has on a given Object is defined as
ObjectAuthority (Fig. 1).  Similarly, the set of rights a role has on a given ObjectType is defined as an
ObjectTypeAuthority.  An object authority might consist of an ordered set of other object authorities. This is
represented by the concept of OrderedCompositeAuthority (an approval procedure involving several roles and a
common object might be specified in a given order).  The object authority is specialised into default and specific
authority. The default authority is related to an object type and is thus inherited by its object instances, whereas
the specific authority only concerns the object itself.

Object 
Rights

Object 
Authority

Role

Default 
Authority

Specific 
Authority

Object Type

Object
is an 
attribute of

consists of

Object Type 
Authority

Ordered
Composite
Authority

is composed
of Type Rights

has specific
rights

has default
rights

is an
instance of

is composed
of

is composed

of

has specific
rights

has object
authority

has type
authority

FIG. 1: The CIMM model of rights

Diagramming standards modelling notation: rectangles represent object types which describe concepts.  Lines
joining object types represent bi-directional relationships.  Relationships with a cardinality of one are
represented by a single line crossing the relationship.  Relationships with a cardinality of many are represented



ITcon Vol. 1 (1996); Brown et al; pg.  5

by a crow’s foot. Optionality is represented by a small circle meaning “sometimes” or by a single line meaning
“always”.  A box enclosing more than one object type denotes a complete partition that expresses a full list of its
partitioned subtypes.

3.2. Notification
Notification is the process by which amendments made to objects are notified to the various roles concerned
with that object.  The spread of electronic mail and fax means that the CIMM can not only represent this
notification, but also to a large extent automate it.  Many individuals will be unused to working in an integrated
construction environment in which shared project information changes at a rapid pace.  A notification
mechanism is therefore essential for keeping actors aware of project changes and also supports the automation of
other information management processes such as approval.

Object
Object 
Version

has versions

Role

has specific
notifications

propagates 
change to

 has default
notifications

Object
Type

notifies 
modifications to

 has default
propagations

instance of

 has specific
propagations

FIG. 2: The CIMM model of Notification and Propagation

As illustrated in Fig. 2, an Object Type is related to a default set of roles which will typically need to be notified
in case of any modification to instances of that type.  Objects inherit this set but, as the set of roles can vary from
one instance to another, objects have their own specific set of roles to notify.  The CIMM also supports the
specification of notification lists at the version level in order to accommodate the complex interaction of roles
and proposed information changes in construction activities such as design.  Therefore, a modification to an
Object Version notifies a set of roles, which may sometimes differ from those attached to the object and object
type.

Propagation involves the CIMM making inferences on the basis of project information.  It is modelled in a
similar way to notification; an object type, object and object version may all have a unique set of objects to
which a modification is propagated.  Propagation relationships typically exist in knowledge based systems in the
form of rules.

3.3. Versioning Support and the Representation of Intent
Construction projects frequently involve multiple actors making changes and working simultaneously.  The
primary reasons for providing a structured environment in which such changes are recorded are firstly to provide
the client with a complete project history, and secondly to facilitate backtracking.  In addition, because actors
often refer to previous versions of objects, a structured historical versioning environment reduces ambiguity by
standardising version numbers and allowing the examination of previous versions of objects.

An intelligent construction information management system should also record the intent behind construction
project decisions.  A record of intent is one component necessary for providing the client with a complete project
history.  It could also be useful if disputes occur, not only for resolving litigations, but also to help actors to see
the project from other viewpoints.  Intent representation promotes actor’s understanding of the reasons for
project changes, which in turn reduces problems arising from misunderstanding intentions.  A complete record of
project intentions could be useful for decision support in future projects in the form of a case-based reasoning
analysis of objects and intentions.



ITcon Vol. 1 (1996); Brown et al; pg.  6

In the CIMM, any Object  may exist in one or more Object Versions (Fig. 3).  The existence of versions
influences a Decision which is implemented by an Object Operation.  In turn, this operation generates more
object versions.  The intent behind a decision is recorded explicitly by a Statement of Intent, but also implicitly
by the relationships which exist between a decision and the object versions which influenced it.

O b je c t
O b je c t  
V e r s i o n

D e c i s i o n

g e n e r a te s

in f l uences

S t a t e m e n t 
o f In t e n t

h a s  
in ten t

h a s  v e r s i ons

O b je c t  
O p e r a t i o n

i m p l e m e n t e d  b y

R o len o tifie s  
m o d ific a tio n  to

p r o p a g a tes  
c h a n g e  to

p r o p a g a tes
c h a n g e  to

FIG. 3:  Object Versioning and the Representation of Intent

4. A DISTRIBUTED IMPLEMENTATION OF THE CIMM
The COMMIT project has chosen to implement the CIMM as a set of CORBA compliant distributed
components which make use of CORBA services.  This section describes an architecture that makes this
possible, and gives details of how CORBA service objects can be specialised into CIMM objects.  Three
strategies for integrated existing construction industry software and CIC systems are also given.

4.1 Architecture
The CORBA standard defines various services which currently comprise Naming, Events, Life Cycle,
Transactions, Concurrency, Persistence and Queries. Relationship, System Management and Security services
are in the process of being finalised.  It is worth noting that, in the past, these services have been provided by a
range of different vendors and technologies.  Persistence - the capacity to have data that survives the process
which created it - has typically been provided by relational and object-oriented databases.  Naming, on the other
hand, has been provided by services such as ISO’s X.500.  The rationale behind much of CORBA is that it can
transparently encapsulate these existing services by providing a standard interface to distributed objects.

CIC projects have tended to expend some of their effort researching and implementing these features, for
example, some of the system level elements in OPIS (Froese and Paulson, 1994) or the work of Eastman and
Kutay (1991).  Although useful results have often been produced, we argue that the implementation of a
distributed CIC system can be considerably simplified by re-using the services CORBA provides.  Where
services do not match the particular requirements of the construction industry, existing services may be
specialised or, in the worst case, new services provided. Research efforts can focus on issues more directly
related to construction while at the same time re-using the efforts of technologists devoted purely to computing.
The COMMIT implementation architecture proposes that concepts in the CIMM, which facilitate the
management of information in a distributed CIC environment, make use of CORBA services by specialisation
(Fig. 4).  Objects in the CIC environment can then be specialised from CIMM objects.  In this way, the CIMM
provides a bridge between basic CORBA services and CIC systems - in CORBA terms, a vertical market
common facility.



ITcon Vol. 1 (1996); Brown et al; pg.  7

Specialisa
tion by inherita

nce

FIG. 4:  The CIMM as a bridge between CORBA and CIC environments.

The backbone of the COMMIT integrated construction environment is an ORB (Object Request Broker) which
manages the low level interoperability between components (Fig. 5).  The ORB also provides the low level
CORBA services necessary for distributed computing and provides transparency of platform and location (as
indicated by platforms A, B and C).  Components participating in the distributed environment are specialised
from CIMM objects, whether they reside independently or in applications.  The CIMM browser is a specialised
application that allows project participants to interact with CIC objects at the information management level.  It
is described more fully in section 6.  Any number of applications may be running on a given platform at any one
time.

ORB

Application

PlatformA

Application

PlatformB

CIMM 
Browser

Application

PlatformC

CIMM 
Browser

Application

Integrated construction environment component

FIG. 5: COMMIT Implementation Architecture



ITcon Vol. 1 (1996); Brown et al; pg.  8

4.2. Implementing a CORBA Compliant CIMM
The procedure for the basic implementation of objects and relationships in a distributed environment does not
differ greatly from their implementation in an object-oriented database.  In the CORBA methodology, object
interfaces must be described in an Interface Definition Language (IDL); they can then be implemented in the
language of the developer’s choice.

All CIMM objects use the services provided by three basic CORBA objects; Persistent Object, Transactional
Object and Life Cycle Object.  Clearly, implementing the CIMM requires the use of the CORBA persistence
service; CIMM objects must remain in the construction environment after the programs which initiated their
creation have terminated.  The Transactional Object provides consistency, concurrency and recovery in a
distributed object system.  While the underlying CORBA implementation of services may often be complex (as
in the case of transactions and concurrency), this complexity is largely hidden from the developer. The Life
Cycle Object provides services for creating, copying and deleting objects while maintaining referential integrity
constraints.

The CIMM also contains several concepts that require the use of CORBA collection service.  For example, an
Object is related to the set of Object Authorities (one for each Role).  These will need to be stored in a collection
class which can be traversed with an iterator if the information manager is specifying the rights that different
roles have over core objects.  In addition to the CORBA objects that all CIMM objects inherit from, there are
several CORBA services which CIMM objects make use of through method invocations.  All CIMM Objects
make use of the Naming Context object (provided by the CORBA naming service) in order to give CIMM
objects a unique system wide identity by which they can be located. The implementation model of the CIMM
concept of Object, with possible specialisations into CIC environment objects such as Building, Room and Wall,
is shown in Fig. 6.

Persistant
Object

Transactional
Object

Life Cycle
Object

Naming
Context

Collection

Object
uses

uses ...

Room

Building

Wall

CORBA
Object

CIMM
Object

FIG. 6:  Implementation Model for CIMM Object

The CORBA event service allows objects to register their interest in specific events by invoking an appropriate
method of the Event Channel object. This service allows the invocation of a distributed object’s method to cause
the transparent invocation of a CIMM object’s method.  This is used to implement notification and rights access
in the CIMM by de-coupling the communication between objects.  It is not necessary, therefore, for an object
version to maintain a list of roles to notify.  Instead, it simply has methods that can be invoked in order to
register a role’s interest (using the Event Channel). Any subsequent invocations of a relevant object method



ITcon Vol. 1 (1996); Brown et al; pg.  9

cause a message to be sent to the role object.  This message can then be acted upon - the role object creates an
appropriate message box on the workstation of the actor performing that role.  The implementation model for
object version is shown in Fig. 7.

Persistant
Object

Transactional
Object

Life Cycle
Object

Naming
Context

Event
Channel

Object
Versionuses

uses

FIG. 7:  Implementation Model for CIMM Object Version

To write CORBA compliant applications, the boundaries and interfaces of objects must be declared in IDL.  IDL
is only concerned with the declaration of components and does not contain any implementation details.  For the
purposes of implementation, IDL code may be mapped into one of several languages, for example C++.  Fig. 8
shows some sample code for the IDL definition of the CIMM’s Object and ObjectVersion.

   // Example IDL interface definition of Object and Object Version from COMMIT
   // Information Management Model

 module CIMM
  {

interface Role;    // Forward declaration

// Note - In IDL :: is a scoping mechanism to refer to other modules.

interface ObjectVersion:CORBA::LifeCycleObject,
  CORBA::TransactionalObject,
  CORBA::PO

{
// Name of object version.  A shorthand would have been
// to declare Name as an attribute.  This would
// automatically cause the generation of GetName and SetName
// implementation methods.

// Implementation of GetName and SetName uses NamingContext
void SetName(in string newname);
string GetName();

// Roles to notify in case of modification.  Implementation             
// uses EventChannel.
void AddRoleToNotify(in Role addrole);
void RemoveRoleToNotify(in Role remrole);

// Called in case of ObjectVersion modification.
// Implementation uses EventChannel to notify roles.
void OnModify();

        };

typedef sequence<ObjectVersion> OVList;

interface Object:CORBA::LifeCycleObject,



ITcon Vol. 1 (1996); Brown et al; pg.  10

  CORBA::TransactionalObject,
  CORBA::PO

{
// Implementation of GetName and SetName use NamingContext
void SetName(in string newname);
string GetName();

// Object Versions of this Object.  Sequence used because
// CORBA collection service not finalised.

// Create a new version
                ObjectVersion NewVersion();

// Delete object version
void DelVersion(in ObjectVersion delv);

// Get entire version list
OVList GetVersionList();

// Get most recent v ersion
ObjectVersion GetRecentVersion();

        };
  };

FIG. 8: IDL definition of Object and Object Version

The development of other CORBA services is ongoing; we expect the examples of re-use given here to be the
first of many.  It is expected that CIMM objects will re-use additional CORBA services as they are finalised,
particularly in the area of rule-based, trader and system management services.  At present, there are around 20
concepts in the CIMM which are construction industry independent and are concerned purely with information
management.  These make use of the small set of CORBA objects already described and are being tested with
around 30 construction specific concepts.

4.3. Integrating Existing Software with the CIMM
For the CIMM to be effective, it should be possible to integrate it with both existing CIC systems and legacy
applications.  This existing software could then take advantage of the CIMM’s information management
functionality.  Three categories of existing software and systems that have the potential to be integrated are
described below.

4.3.1. CIC systems which use shared databases

One of the most favoured methods of information integration in construction research is to use shared object-
oriented database (OODB) technology.  This type of CIC system can be integrated using inheritance;  concepts
in the database model are specialised from concepts in the CIMM.  This has the effect of converting the CIC
system to a set of CORBA compliant distributed components which are managed by the CIMM.  Although the
existing CIC models must be translated to IDL interfaces (a process which can be made easier by the use of
CASE tools), much of the original implementation and integration code can be retained.  This approach has
advantages - the full functionality of the CIMM is utilised to produce a system which is easily extended by
adding new CORBA compliant components.  However, potential difficulties arise in cases where the existing
CIC functionality overlaps with the CIMM. This strategy has been chosen to test both the feasibility of
integrating the CIMM and its effectiveness for managing information.  The existing CIC system to be integrated
has been developed by a companion project (the OSCON Project) and uses an integrated core model and the
ObjectStore object-oriented database (Tracey et al., 1996).

4.3.2. Construction Industry Software Applications

It is not unreasonable to describe most construction industry software packages as monolithic legacy
applications.  For such systems, the integration strategy is similar to that adopted by CIC systems based on
OODBs.  Object wrappers for the legacy application are modelled and coded, but, rather than being in the
language of the OODB, they are described in IDL. The IDL object wrappers can then be specialised from CIMM
concepts.  Again, this uses the full functionality of the CIMM and effectively converts the application into a set
of distributed components.



ITcon Vol. 1 (1996); Brown et al; pg.  11

4.3.3. Component Based Applications

Applications based on distributed components are still in their infancy, but will undoubtedly appear over the next
few years. CORBA’s DII (Dynamic Invocation Interface) makes it possible to integrate such applications at run
time (that is, with no code changes or recompilation).  It would, for example, be possible for the CIMM to use
the DII to query a component, and subsequently control actor’s rights to perform operations on that component.
Full CIMM functionality would, however, only be available if components were specialised from CIMM
concepts.

5. THE CIMM BROWSER
In order to make a distributed CIC system effective, it is necessary to provide users with a uniform user interface
through which they can access project information. This information consists of not only the usual concepts
found in construction integration models (for example, buildings, walls, and tasks) but also the CIMM’s
information management data (for example, roles, actors, rights and responsibilities).  The CIMM organises
project information into discrete units accessible by a project’s actors.  It also contains the basic concepts for
implementing a distributed Electronic Document Management (EDM) system. The CIMM’s user interface
reflects this organisation.  As there is an overlap between information management and project management, the
CIMM browser shares some of its functionality with project management systems.  It differs, however, in that it
provides a means of controlling the distributed components of an integrated construction environment.

Ideally the CIMM browser would be implemented as a set of distributed user interface components.
Unfortunately, there are two reasons why current technology does not offer sufficient support for this approach.
Firstly, distributed user interface components (for example OpenDoc or OLE) are not as yet sufficiently mature
or platform independent.  Secondly, as most ORB’s use the Internet to communicate with each other, low
bandwidth often renders the transmission of data intensive user interface components impracticable.  The CIMM
user interface has therefore been implemented as a standalone application which can interact with the distributed
components of the CIMM through the use of object proxies.  The software is being developed using Visual C++
Version 4.0 for the Windows NT and Windows 95 platforms.

Fig. 9 shows the CIMM user interface panel in which the project’s actors are described and managed.  Through
this interface any actor may browse the details of other actors, or, in the case of the information manager, specify
project participants.  In addition to describing the contact information, physical location and main discipline of
each actor, the panel describes the roles each actor performs.  Within the distributed CIC,  it is therefore possible
to see exactly who is responsible for carrying out a given activity.  

FIG. 9: CIMM User Interface - Actors



ITcon Vol. 1 (1996); Brown et al; pg.  12

In addition to managing the actors involved in a project, it is also important to manage the roles or tasks they
perform (Fig. 10).  For each role, the CIMM user interface describes the actors who will be involved, the
resources this role uses (hardware, software, equipment or human), the timeframe for the performance of the
role, the costs of the role and any quality standards that need to be adhered to.

FIG. 10: CIMM User Interface - Roles

Fig. 11 shows the user interface panel through which actors browse managed project information.  This
information includes the building core concepts (walls, beams, etc.) which constitute the project information
base - it is the CIMM’s view of the distributed components which make up the whole CIC environment.  Of
course, much of this information will be created and amended through the use of construction industry software
applications.  It is, however, important to allow actors to interact with information in a way that is application
independent.  The management properties of information must also be made explicit.  For example, a given
object has a creator and a creation date and an intent behind its creation.  Note that the panel describes objects at
both the type and instance level; the prototype supports schema evolution through the creation of new versions of
object types.  This is described more fully elsewhere (Rezgui et al., 1996b).



ITcon Vol. 1 (1996); Brown et al; pg.  13

FIG. 11: CIMM User Interface - Objects

One of the aims of the COMMIT project is to provide a migration path for the introduction of intelligent
distributed CIC.  Project participants should be able to access information in a familiar way, and current
practices evolved to fully take advantage of the benefits of integration and distribution.  To this end, the CIMM
models include the concept of interpreted object, which may represent a document or other interpretation (e.g.
multi-media) of a core concept. Fig. 12 shows the CIMM user interface for accessing interpreted objects.
Treating documents as another form of managed information has several additional benefits; for example, all the
project’s participants share documents and document organisation and access to documents may be controlled
according to rights.



ITcon Vol. 1 (1996); Brown et al; pg.  14

FIG. 12: CIMM User Interface - Documents.

6. CONCLUSIONS
To conclude this paper we would like to stress the potential of distributed objects in computer integrated
construction.  The paper has outlined the benefits of adopting distribution standards such as CORBA, and
described a framework for distributed computer integrated construction.  In this framework the COMMIT
Information Management Model acts as a bridge between objects in an integrated construction system and
CORBA services.  In the CORBA methodology, the CIMM is equivalent to a business object facility for the
construction industry.

This paper has presented a distributed implementation of the CIMM, and shown how CIMM objects can be
specialised from CORBA service objects.  Techniques for integrating the CIMM with existing CIC systems and
legacy applications have been presented. The CIMM user interface, which allows project participants to manage
distributed project information, has also been described.

The work presented here is ongoing; the prototype demonstrating the ideas described in this paper is currently
being refined.  In the longer term, it is hoped that the COMMIT project, which is supported by a UK steering
group comprising regulation bodies, research institutions and industrials, will successfully demonstrate the
technical, economic and sociological benefits that would be gained by adopting an approach to information
integration founded on an object-oriented information management model and distributed object technology.
While the work presented here is specific to the construction industry, many of the ideas behind it are generic.
Future work also includes generalising the CIMM across industries.

7. ACKNOWLEDGEMENTS
The authors would like to thank Dr G. Aouad, Mr J. Kirkham and Dr Z. Turk for their helpful comments on this
paper.  The authors also wish to acknowledge the financial support of the EPSRC, and the assistance provided
by members of the steering committee throughout the duration of this research project.



ITcon Vol. 1 (1996); Brown et al; pg.  15

8. REFERENCES

Aouad, G. et al., (1994), ICON Final Report, University of Salford.
http://www.salford.ac.uk/docs/depts/survey/staff/GAouad/pubs.html

Bjoerk, B-C. (1994). RATAS Project - Developing an Infrastructure for Computer-Integrated Construction,
Journal of Computing in Civil Engineering, Vol. 8, No. 4, 400-419. http://www.vtt.fi/cic/ratas/index.html

Bohms, M., Tolman, F. and Storer, G. (1994).  ATLAS, a STEP Towards Computer Integrated Large Scale
Engineering, Revue internationale de CFAO, Vol. 9, No. 3, 325-337. http://www-uk.research.ec.org/esp-
syn/text/7280.html

Brocksmidt, K. (1995), Inside OLE-2, 2nd Edition, Microsoft Press.

Dubois, A.M., Flynn, J., Verhoef, M.H.G. and Augenbroe, F. (1995) Conceptual Modelling Approaches in the
COMBINE Project, presented in the COMBINE final meeting, Dublin. http://erg.ucd.ie/combine/papers.html

Eastman, C. and Kutay, A. (1991), Transaction Management in Design Databases, Concurrency in Engineering
Data Management, eds. D. Sririam R. Logcher and S. Fukuda, Springer, New York.

Froese, T. and Paulson, B. (1994), OPIS: An Object Model-Based Project Information System, Microcomputers
in Civil Engineering,  No. 9, 13-28. http://maillist.civil.ubc.ca/~tfroese/pubs/

Gosling, M., and McGilton, H. (1996), The Java(tm) Language Environment: A White Paper, Sun
Microsystems.
http://java.sun.com:80/doc/language_environment/

ISO/TC184/SC4 (1994), STEP Part 1: Overview and Fundamental Principles, International Standard, ISO,
Geneva, (11). http://www.igd.fhg.de/www/igd-a2/hyperstep/iso-10303/part1/gen.html

Khedro, T., Genesereth, M. and Teicholz, P. (1994), Concurrent Engineering Through Interoperable Software
Agents, Technical Report, Stanford University. http://www-leland.stanford.edu/group/CIFE/cifepubs.html

OMG (1995a), The Common Object Request Broker:Architecture and Specification, OMG.
http://www.omg.org/corbask.htm

OMG (1995b), The Common Object Request Broker: Services, OMG. http://www.omg.org/public-doclist.html

OMG (1996), Common Facilities RFP-4: Common Business Objects and Business Object Facility, OMG TC
Document Number 96-01-04. http://www.omg.org/public-doclist.html

Orfali, R., Harkey, D. and Edwards, J. (1996), The Essential Distributed Objects Survival Guide, John Wiley &
Sons.

Orfali, R., Harkey, D. and Edwards, J. (1995), Intergalatic Client/Server Computing, BYTE April 1995.
http://www.byte.com/art/9504/sec11/art1.htm

Rezgui, Y., Brown, A., Cooper, G., Yip, J., Brandon, P. and Kirkham, J. (1996a), An Information Management
Model for Concurrent Construction Engineering, to be published in Automation in Construction.
http://www.salford.ac.uk/iti/projects/commit/#Papers

Rezgui, Y., Brown, A., Cooper, G., Brandon, P. and Betts (1996b), M., Intelligent Information Versioning
Support In The Context Of Collaborative Construction Engineering, Proceedings of the 1st international
conference on computing and information technology for AEC, Singapore.
http://www.salford.ac.uk/iti/projects/commit/papers/iivs/abstract.html

Su, S., Lam, H., Yu, T., Lee, S. and Arroyo, J. (1995), On Bridging and Extending OMG/IDL and
STEP/EXPRESS for Achieving Information Sharing and System Interoperability, Proceedings of the 5th annual
express user group international conference, Grenoble, France.



ITcon Vol. 1 (1996); Brown et al; pg.  16

Tracey, A., Child, T., Aouad, G., Brandon, P. and Rezgui, Y. (1996) Developing Integrated Applications for
Construction: The OSCON Approach, Proceedings of the 1st international conference on computing and
information technology for AEC, Singapore.
http://www.salford.ac.uk/iti/att/oscon.html

Turk, Z. (1993). Object Oriented Modelling Techniques and Integrated CAD, Automation in Construction, Vol.
1, 323-337. http://www.fagg.uni-lj.si/~zturk/biblio.htm

Available electronically at http://itcon.org/


