
IMPLEMENTATION OF A DISTRIBUTED, MODEL-BASED
INTEGRATED ASSET MANAGEMENT SYSTEM

SUBMITTED: September 2003
REVISED: June 2003
PUBLISHED: July 2003 at http://www.itcon.org/2003/10
EDITOR: Bo-Christer Björk

Mohammad A. Hassanain, PhD, Assistant Professor
King Fahd University of Petroleum and Minerals, Kingdom of Saudi Arabia
email: mohhas@kfupm.edu.sa

Thomas M. Froese, PhD, Associate Professor
University of British Columbia, Canada
email: tfroese@civil.ubc.ca

Dana J. Vanier, PhD, Senior Research Officer
National Research Council Canada, Canada
email: dana.vanier@nrc.ca

SUMMARY: This paper presents the development of a generic framework for asset maintenance
management, and an object model for the maintenance management of roofing systems as a case study
to demonstrate the applicability of the framework. The model builds upon the Industry Foundation
Classes (IFCs) to define object requirements and relationships for the exchange and sharing of
maintenance information between applications. The paper explores the implementation of the
developed maintenance management models through the development of a distributed, model-based
integrated system. It describes the set of inter-connecting components forming a typical or reference
system architecture for integrated distributed systems. It describes the Jigsaw Distributed System (JDS)
version 0.6, as the implementation environment of the reference architecture, which facilitates a wide
range of data exchanges and software interoperability. The paper describes the development of a
generic Asset Management Tool (AMT) prototype data client application that can initiate data
exchanges with a number of data servers (including MicroROOFER, Microsoft Project, and files that
can be used by several other applications), thus demonstrating software interoperability in the
Facilities Management (FM) domain. Finally the paper presents an evaluation and testing scenario for
the prototype application.

KEYWORDS: Asset Management, IFC, Model-Based Distributed Systems, Asset Management Tool

1. INTRODUCTION

In a review of the state-of-the-art in asset management (AM), operational knowledge for the practice of
AM was found to exist within literature, current software, and current practice. This body of knowledge
appears to be less well developed than areas such as project and construction management (e.g., as
observed by the relative number and range of books and scholarly literature in these areas). Some
efforts were found to formalize AM knowledge and practice in models, but these were found to be few
and partial in their coverage of the breadth and depth of AM concerns. One of the research challenges
addressed in this paper was to synthesize the available knowledge sources into a formal model for the
practice of maintenance management. The primary motivation for this was the development of IT tools
for asset management, but the resulting formalization also offers other benefits in structuring the
organization and management of AM knowledge and operations.

AM is currently a young and growing, yet still a fragmented industry. One of the contributing factors to
this fragmentation is that the AM industry is witnessing a proliferation of software tools (Vanier 2001).
Furthermore, each of these software tools is providing standalone solutions to a multitude of problem
areas, such as asset inventory, condition assessment and strategic planning. As a result, there exist
many data format and databases, leading to large volumes of loosely-structured data (Kyle et al. 2000;
Peters and Meissner 1995) with poor interoperability. Moreover, no software solutions were found that

ITcon Vol. 8 (2003); Hassanain et al., pg. 119

exchange data interoperably between corporate desktop computer applications. This interoperability
holds the promise of reducing dependency on paper-based views of both project and asset information.

Data model standards are a way of representing technical and administrative information content,
leading to the development of data structures that allow information to be exchanged among various
computer applications (Eastman 1999). A requirement to achieve integration is conformance to some
degree of standardization of the information representation approaches. Efforts in this line of research
include those under ISO International Standard 10303, STEP (Standard for the exchange of product
model data) (ISO 1994), or the Industry Foundation Classes (IFCs) developed within the International
Alliance for Interoperability (IAI) (IAI 1999).

This paper reviews the development of a generic framework for asset maintenance management, and an
object model for the maintenance management as a case study to demonstrate the applicability of the
framework. The paper then explores the implementation of the developed asset maintenance
management models through the development of a distributed, model-based integrated system. It
describes the set of inter-connecting components forming a typical or reference system architecture for
integrated distributed systems. It describes how the Jigsaw Distributed System (JDS) version 0.6 (JDS
2001), the implementation environment of the reference architecture, is used to facilitate a wide range
of data exchanges and software interoperability. The paper then describes the development of a generic
Asset Management Tool (AMT) prototype data client (DC) application that can initiate data exchanges
with a number of data servers (DS), thus demonstrating software interoperability in the Facilities
Management (FM) domain. Finally the paper presents an evaluation and testing scenario for the
prototype application.

2. GENERIC ASSET MANAGEMENT MODELS
This section reviews briefly the development of an integrated framework model for asset maintenance
management (Hassanain et al. 2001). Development of this framework was motivated by the desire to
develop IT solutions for the FM industry. However, the framework is useful beyond its role in
supporting IT. The framework, presented as an IDEF0 (Integration Definition for Function Modeling)
process model as shown in Fig. 1. In IDEF0 notation, boxes represent tasks while arrows from the left,
right, top and bottom represent inputs, outputs, controls, and mechanisms, respectively. The framework
is generic, meaning that the activities involved can be applied to non-specific assets. Further, the
framework can be applied at both the level of individual assets or on a network of assets. The
framework can also be used to analyze current maintenance management practices in FM organizations
engaged in managing several assets, regardless of whether the tasks involved are implemented by in-
house staff or professional maintenance contractors.

The framework model is unique in the sense that it is a collection of diverse knowledge areas that have
been analyzed and introduced to the FM domain in a formalized and standardized view. The framework
model consists of five sequential processes. It starts with carrying out an inventory of all assets
requiring maintenance during their service life and ends with scheduling maintenance operations. For
each of the processes, the authors have defined a number of supporting activities, with their logical
sequences and information requirements (Hassanain 2002).

3. INTEGRATED MAINTENANCE MANAGEMENT MODELS
The purpose of developing a process model is to define requirements for information sharing amongst
the various asset management areas. Within the AEC domain, a large-scale effort is underway to create
a general purpose data model, the IFCs, for information exchange throughout the project life cycle.
Some FM domain knowledge has been incorporated into the current release of the IFCs, but to date,
there has been virtually no assessment and validation of how well the IFCs can support maintenance
management.

In developing the asset maintenance information models (Hassanain et al. 2001), and in keeping with
the notion of developing integrated maintenance project models, the authors chose to conform to the
development methodology set out by the IAI. The IAI is a global, non-profit, industry-based
consortium for the AEC/FM industry (IAI 2000). The IAI was established with the objective of
defining, publishing and promoting a specification (the IFCs) which describes building objects in a
neutral computer language that represents information requirements common to all industry processes.
The goal of the IAI is to enable interoperability among industry processes of all different professional

ITcon Vol. 8 (2003); Hassanain et al., pg. 120

domains in AEC/FM projects by allowing the computer applications used by all project participants to
share and exchange project information. The scope of the IAI is the entire life cycle of the building,
covering strategic planning, design and engineering, construction, and building operation.

A

Identify Assets

R

Identify
Performance
Requirements

P

Assess
Performance

M

Plan
Maintenance

O

Manage
Maintenance
Operations

Provided
Facility

Resources

Operational
Facility

Asset Register
As-built Records Initial Design Parameters

Occupancy Characterstics
Performance Agents

Assessment Methodology
- Inspection Targets
- Inspection Type
- Inspection Frequency Conflicting Objectives

- Minimize Cost
- Minimize Risk of Failure
- Maximize Performance

Budget Time

Facility
Management
Team

Assets
Requiring
Maintenance

Statement of
Performance
Requirements

Performance
Values

Statement
of Asset/
Component
Condition

Maintenance
Work Order

 Figure 1: General processes involved in maintenance management model

The formulation of the proposed framework led to an iterative development of data models for
representing the information that will be exchanged among all participants in an asset maintenance
management project. These data models build upon the IFCs to define object requirements and
relationships for the exchange and sharing of maintenance information between applications. Roofing
systems, especially flat or low-slope conventional assemblies, were chosen as a "proof of concept"
building system that is representative of the built-asset maintenance domain. Fig. 2 provides a class
diagram for the proposed roofing maintenance management model. A set of proposed IFC data
standards has been generated that considered existing standards and representations in IFCs Release 2X
and recommendations have been made for a number of extensions for inclusions in Release 3.0
(Hassanain et al. 2001); however, these will not be discussed in this paper. The focus here is on the
reference system architecture, the implementation environment of that architecture, and the
development of a generic AMT prototype, which attempts to facilitate a wide range of data exchanges
and software interoperability in the FM domain.

ITcon Vol. 8 (2003); Hassanain et al., pg. 121

Determines

Library

IfcObject

IfcInspectionTaskType

IfcInspectionTest

RoofCondition

RoofRisks

Requires

Uses

Dictates

IfcMRRTask

HasCostElements

IfcCost

Elements BaseCost

HasFunctionalRequirements

IfcCostValue

IfcFunctionalRequirementType

IfcFunctionalRequirement

IfcCostSchedule

IfcResource

IfcResourceType

IfcRiskSchedule

IfcInspectionTask

IfcMRRTaskType

IfcConditionType

InspectionTechnique

IfcCondition

IfcProduct

IfcRoof

Figure 2: Overview of roofing maintenance management data model

4. DISTRIBUTED SYSTEMS AND ARCHITECTURE

The prototype implementation reported upon in this paper is centered on developing a data client (DC)
component that interacts with a number of data server (DS) components, through a standard
Application Programming Interface (API). The custom-built DC component, described later within this
paper, is named Asset Management Tool (AMT), while the implementation environment selected for
the distributed system architecture is named Jigsaw Distributed System version 0.6 (JDS 2001).

4.1 The jigsaw distributed system (JDS)
The JDS, developed as a parallel research endeavour (JDS 2001), aims at creating tools to support both
project model-based data integration and transaction-based application interoperability. The JDS
implements a general reference architecture by creating a system in which a wide variety of DCs can

ITcon Vol. 8 (2003); Hassanain et al., pg. 122

communicate with a wide variety of DSs through a standard API, so that individual DCs need not know
the details of the individual DSs and vise-versa.

4.1.1 Data Clients (DCs)

DC applications interact and initiate data exchanges with DS applications through a number of data
import/export operations, typically initiated from within the user interface of that of the DC application.
DC applications typically are custom-built applications, or current, desktop applications, referred to as
“legacy applications” that work with their own application data. Data exchanges within the JDS are
facilitated through abstract components called “adaptors”. Adaptors map the schema of the DC
application to the Jigsaw data interface.

4.1.2 Jigsaw Interface

The standardized Jigsaw interface uses many "industry standard" elements, namely, Extensible Markup
Language (XML) and the XML Document Object Model (DOM) for the "data content" API, and uses
the IFCs for much of the data content schema. Jigsaw adds some custom elements for the data access
and control API, and some extensions to the IFC schemas. The Jigsaw data server Application
Programming Interface is called JsServerDOM (shown in Fig. 3). The JsServerDOM is an “abstract”
component: it defines the interface for all Jigsaw data server components.

Data Server
JsServerDOM

Data Source

Data Source - Specific API

 Client
Data
Files

Data Client

Figure 3: Jigsaw Distributed System client-server interaction

Application

Application

Data Client

Database

WWW

XML
File

Adaptor

Adaptor

Adaptor

Adaptor

Standard
Jigsaw data

Interface

Adaptor

App
Data

Figure 4: Current types of data servers in the Jigsaw Distributed System

ITcon Vol. 8 (2003); Hassanain et al., pg. 123

As Fig. 3 illustrates in a typical Jigsaw situation, a DC can work with its own client data, but it uses the
JsServerDOM interface for all interactions with other applications or data sources. These data requests
can be for full models or for specific pieces of information. The Jigsaw data server provides a
"wrapper" around some other form of data source, adapting it to the JsServerDOM API.

4.1.3 Data Servers (DSs)

Current types of DSs are illustrated schematically in Fig. 4. The standard Jigsaw data interface can
respond to information requests (data exchanges) for either full data models or specific pieces of
information, include: XML files, Building Lifecycle Interoperable Software (BLIS) IFC data files.
Other legacy applications such as Microsoft Project and MicroROOFER, relational databases, and
remote data sources on the World Wide Web can also be accessed.

5. A TIERED REFERENCE ARCHITECTURE
Jigsaw is implemented in a three-tiered reference architecture as proposed by Froese (Froese et al.
2000). Fig. 5 illustrates a typical set of software components for the distributed, model-based,
integrated system for AEC/FM. These components describe a typical, or reference architecture. One
possible configuration is where these logical tiers consist of two or more physical computer systems
(i.e. a user’s workstation and one or more central servers). The listing below describes the system
components within each tier as:

• The applications/presentation tier: contains application programs and related user-centric
components. This paper is focusing on implementation work within the application tier,
where the prototype AMT represents a custom-built application that has the capability to
import and export data files from other legacy applications. For example, the AMT was
developed using Microsoft Visual Basic 6.0. In the application or presentation tier, both
custom-built and legacy system applications maintain their own data sets in addition to
the information shared through the integrated system. Adaptors, as illustrated in Fig. 5,
are pieces of code that serve to map application schema to the common data schema. This
mapping is carried out by an application-specific adaptor software component.

• The business objects/middle tier: brings the data and services from the data tier to the
local applications and implements business logic processes of the
applications/presentation tier. In this configuration, local model proxies are software
components on users’ workstations. Applications and adaptors access a local version of
the shared data that acts as a proxy for remote data sources. These components expose the
distributed information services to client applications, and handle the communication of
the local data within the distributed servers.

• The data tier: handles the persistence of project model data. While there can be various
centralized or distributed data repository alternatives, a typical configuration involves a
central database and DS component that interacts with model proxy components across
the Internet/Intranet connection.

ITcon Vol. 8 (2003); Hassanain et al., pg. 124

Data Tier

Business
Objects/
Middle Tier

Applications/
Presentation
Tier

Workstation

Application

Local Model
Proxy

Adaptor

Servers

Data-
Server

Project Model
Database

App
Data

= Programming Interface

= Services

Local Model
Cache

Business
Objects

Figure 5: A reference architecture for a distributed, model-based, integrated system (Froese et al.
2000)

6.ASSET MANAGEMENT TOOL, A PROTOTYPE INTEGRATED
APPLICATION

The AMT is a prototype application that implements generic asset management in a distributed, model-
based, integrated AEC/FM environment. The AMT is a custom-built application, implemented as a
Jigsaw data client, situated within the application/ presentation tier of the reference-system architecture
described in the section above. Fig. 6 illustrates the AMT prototype application in Unified Modeling
Language (UML) notation and shows the interaction of the DC software components (Jigsaw Asset
Management Tool and Jigsaw Application Objects) with data server software components (Jigsaw
XML file, Jigsaw BLIS data source, Jigsaw MicroROOFER data source and Jigsaw Microsoft Project
data source) through a standard Jigsaw data interface. The following listing provides a description of
the DC and DS software components involved in the implementation of the AMT prototype
application.

ITcon Vol. 8 (2003); Hassanain et al., pg. 125

<<Data Server>>
JsBLISDS06

<<Data Server>>
JsRooferDS06

<<Data Server>>
JsXMLFile06

<<Data Server>>
JsMSProjectDS06

<<UI>>
JsAMT

JsAppObj06

<<Data Server>> JsServerDOM
JsAppObj06

JsServerDOM

JsServerDOM

JsServerDOM

JsServerDOM
Current

Data
Servers

<<Data Client>>
Asset Management Tool

Figure 6: Asset Management Tool’s implementation model

6.1 Data Client Software Components

The two main DC components of the prototype application include the user interface components of
the Jigsaw AMT and the set of Application Objects for the implemented schema.

6.1.1 Jigsaw Asset Management Tool

The Jigsaw AMT "JsAMT" is a custom-built application consisting of Visual Basic user interface
forms and code through which the user interacts with project data and initiates a wide range of data
exchanges.

6.1.2 Jigsaw Application Objects

The Jigsaw Application Objects “JsAppObjs06” component is a dynamic, customized data model
component, generic to the DCs implemented within the JDS. The Jigsaw Application Objects consist of
Microsoft Visual Basic classes that implement a collective schema encompassing all objects necessary
for all DCs in the JDS. These Microsoft Visual Basic classes are generated automatically using an
independent utility called the Jigsaw Modeling Tool (JMT), shown in Fig. 7. The set of specific IFCs
supporting the asset maintenance management data model, along with other IFCs supporting other data
models intended for implementation within the JDS, are available and can be edited by the user through
this user interface. Since the JMT can import and export various forms of models (i.e., models with
different meta-models), it acts as a "meta-meta model". Fig. 7 illustrates a snapshot of the collective
IFC schema for all data client components, defined and edited using the JMT’s user interface.

In Fig. 7 the schema is displayed through an explorer-style interface that provides the user with the
visual ability to browse through individual classes within the IFC schema. The user can view the
properties of a particular class in the explorer-style interface through either expanding the node of the
class, or double-clicking on that class. The user can also view and/or edit the entity name, description,
type, etc. on the tabs view to the right of the explorer-style interface. Fig. 8 illustrates the operation of
creating Jigsaw application objects (Microsoft Visual Basic code) for all objects defined within the data
model.

ITcon Vol. 8 (2003); Hassanain et al., pg. 126

Figure7: Overview of the Jigsaw Modeling Tool

Figure 8: Creating Jigsaw application objects

6.2 Data Server Software Components

In addition to the existing DS components which can include XML files, BLIS data sources,
MicroROOFER data sources and Microsoft Project data sources, the AMT prototype application is
capable of exchanging data through the standard Jigsaw interface with any other application that works
with a similar information structure”, as illustrated in Fig. 6.

6.2.1 Jigsaw Server Document Object Model

The Jigsaw Server Document Object Model “JsServerDOMis an “abstract” component that defines the
interface for all Jigsaw data server components.

ITcon Vol. 8 (2003); Hassanain et al., pg. 127

6.2.2 Jigsaw XML File

The JsXMLfile06 DS component can read or write data as XML files. In importing XML files,
information that is supported through the application’s schema is imported, while unsupported
information is simply ignored.

6.2.3 Jigsaw BLIS Data Source

Building Lifecycle Interoperable Software (BLIS) is a group of software developers who are members
in the consortium of the IAI, with the mission to develop interoperable prototype software to validate
the use of the IFCs (BLIS 2001). The JsBLISDS06 DS component, shown in Fig. 6, can read and write
from IFC 2.0 data files as used by software applications from the BLIS project. At present IFC 2.0 data
sources undergo a partial mapping to the IFC 2X schema.

6.2.4 Jigsaw MicroROOFER Data Source

The JsRooferDS06 DS allows the user to import and export roof building product objects from the
MicroROOFER application.

6.2.5 Jigsaw Microsoft Project

Figure 9: Overview of the Asset Management Tool’s user interface populated with data for project 327
Data Source

The JsMSProjectDS06 DS component allows the user to import and export tasks information, such as
task name, duration, start date, finish date, predecessor and successor tasks from Microsoft Project
files.

7. ASSET MANAGEMENT TOOL PROTOTYPE DESIGN

ITcon Vol. 8 (2003); Hassanain et al., pg. 128

An integral part of the developed AMT prototype application is the user interface. Two main user
interface components have been used to provide the required functionality for the user to browse, input
and edit project information. These components are a “Tree View” explorer and Multiple-Document
Interface forms shown in Fig. 9.

The explorer-style “Tree view” interface provides the application user with the visual ability to locate a
project’s data records in potentially large data collections. It provides a visual display of the hierarchy
of a single project in the database and the association between various different objects in the
hierarchy. In essence, the “Asset Management Tree View” explorer brings up a view of the
implemented data model, thus providing the user with a multi-dimensional view of the data model and
the instantiated objects in the database. For example, the user can follow the "Assets" tree in Fig. 9
down to the "Roof" object.

The two icons and are used in the project hierarchy to denote “Objects” and “Collections”
respectively. Any new project has the following implemented object collections, as displayed in Fig. 9:

1. Products: every object in the “Products” collection can have association with the following
two object collections.

• Assets: a collection of asset objects that can be treated as building products.
• Tasks: a collection of task objects that can be associated with products.

2. Assets: every object in the “Assets” collection can have association with the following two

object collections.
• Products: a collection of product objects that can be treated as assets.
• Tasks: a collection of task objects that can be associated with assets.

3. Tasks: every object in the “Tasks” collection can have association with the following three
object collections.

• Objects operated on: a collection of objects on which a particular task operates.
• Predecessors: a collection of predecessor task objects.
• Successors: a collection of successor task objects.

Data for each object in the hierarchy can be edited in the database by double clicking on the appropriate
object within its collection in the explorer and viewing the appropriate Multiple-Document Interface
form, as shown in the right hand side of Fig. 9. The Multiple-Document Interface forms-style interface
allows the user to display multiple forms at the same time; each form is displayed in its own window.
The user can interact with AMT through browsing structured project information in the hierarchy,
creating and/or editing object data records belonging to the appropriate collection in the project
hierarchy, and importing/exporting data from and to other data sources. Importing/exporting refers to
the user’s ability to send off and bring in data records to and from data servers, respectively. The AMT
can currently export and import data records to and from four types of data sources within the Jigsaw
Distributed System:

1. XML file data server, referred to as JsXMLFile06.
2. Ifc2.0 file data server, referred to as JsBLISDS06.
3. MicroROOFER database data server, referred to as JsRooferDS06.
4. Microsoft Project file data server, referred to JsMSProjDS06.

Not only can AMT interact with the applications for which data server adaptors have been created
(MicroROOFER and Microsoft Project), but it can also interact with any other applications that can
work with any of these data sources, such as programs from the BLIS group that can read and write
Ifc2.0 files (BLIS 2001).

8. EVALUATIONS AND TESTING SCENARIO

Project-information examples were used to serve dual purposes. The first tested the user interface
browsing and editing capabilities. The second validated the structure of the developed asset
management data model (Hassanain et al. 2001). The scenario below presents a progression of steps
that describes how the AMT can be used to achieve software interoperability. It must be stressed that
the focus of the implementation was not to develop software with features already available in
commercially available software. The focus was rather to implement a distributed model-based,

ITcon Vol. 8 (2003); Hassanain et al., pg. 129

integrated prototype application that combines building product and process information and is capable
of data exchange.

8.1 Starting from Scratch

Starting with an empty project, the user populates the “Products” collection in the AMT application
with roof objects. The user can also choose to import roof product objects into the “Products”
collection of the AMT application from one or a combination of data sources. Moreover, the user can
also import roof product data records in an XML file format from a currently developed CAD
application, acting as another DC component within the Jigsaw system. The JDS includes a CAD
application referred to as JsCAD. Fig. 10 illustrates schematically the DC and DS components involved
in populating the AMT application with roof product objects from scratch.

IFC2.0
(BLIS)

File

<<Data Client>>
JsAMT

<<Data Client>>
JsCAD

XML
File Roofer Database

Import roof
product
objects

Save
updated
roof product
objects

Import roof
product
objects Export roof

product
objects

Data Client

Data Server

Transaction
Read
Condition
Information

Figure 10: Populating the Asset Management Tool application with roof product objects from scratch

8.2 Creating Association Relationships between Objects
The user can then populate the “Assets” collection in the AMT application with asset objects. The
intent here is to define generic data, entered in the “Asset” data entry form, for the “Product” object.
An association relationship between the two objects can then be established within the project
hierarchy (e.g. a roof object and an asset object). This is facilitated using the user interface by dragging
the roof product object from its “Products” collection and dropping it on the appropriate asset object in
the “Assets” collection. Fig. 11 illustrates associating “Roof 14” product object within the “Products”
collection to “Asset 1101 – Roof” asset object in the “Assets” collection.

Figure 11: Associating “Roof 14” product object with “Asset 1101-Roof” asset object

ITcon Vol. 8 (2003); Hassanain et al., pg. 130

The user can also create an asset object from a particular roof product object. Fig. 12 illustrates creating
“Roof 25 Asset” object in the “Assets” collection from “Roof 25” product object within the “Products”
collection.

Figure 12: Creating “Roof 25 Asset” asset object from “Roof 25” product object

8.3 Exporting Data to MicroROOFER Application

The process of exporting the three roof product objects from the AMT application to the
MicroROOFER application starts with setting the data source type to “JsRooferDS06”. The user is then
prompted to save the project file by either replacing a file for an existing project, or to add the project
file to an existing project file (as illustrated schematically in Fig. 6). (At the time of composing this
evaluation and testing scenario, exporting roof product objects to the MicroROOFER application has
the limitation of adding only new roof sections to an existing building project database. The difficulty
of editing data for existing roof sections is beyond the scope of the current implementation.)

Figure 13: Project selection form

ITcon Vol. 8 (2003); Hassanain et al., pg. 131

A selection form then appears, prompting the user to choose the building for which the three roof
product objects are appended to its roof sections. In this scenario, the three roof product objects were
added to “M-16-Graphics & Illustrative Services” building as illustrated in Fig. 13.

The three roof product objects, “Roof 14”, “Roof 25” and “Roof 32”, shown in Fig. 12, are then
exported from the AMT as a data client component to MicroROOFER as a DS component within the
Jigsaw system. The three exported roof product objects are treated as three distinct roof sections in the
MicroROOFER application, as shown in Fig. 14.

The user can then record condition assessment data about the roof sections within the MicroROOFER
application.

Figure 14: Addition of three new roof objects to existing roof section in MicroROOFER application

8.4 Importing / Exporting Data to Microsoft Project Application
 After the condition assessment data has been input for “Roof 25” using MicroROOFER, and for the
purpose of composing this scenario, the roof condition index of “Roof 25” is 24% (out of a possible
100%). The Maintenance, Repair or Renewal (MRR) option that corresponds with this condition
according to MicroROOFER’s set of MRR options is “Replace Roof”. The user can then add a set of
tasks in the AMT application that need to be performed under the “Tasks” collection within the project
hierarchy:

1. The user can enter the tasks within AMT as described below to create a schedule, or
2. The user specifying the set of tasks within Microsoft Project and then importing them into the

AMT application.

Importing and exporting from and to Microsoft Project is facilitated by an adapter component
developed within Jigsaw to map the schema used in the AMT application to that of Microsoft Project.
After creating the set of tasks, as described above, the user can examine each task to browse a list of
product and asset objects that a task operates on, a list of predecessor tasks, and list of successor tasks.
Fig. 9 illustrates an overview of the AMT’s user interface populated with data for a sample project file

ITcon Vol. 8 (2003); Hassanain et al., pg. 132

“project 327”. The figure illustrates that the task object “Remove old thermal insulation board”
operates on the “Roof 14” product object, which has been treated as an asset object with the name
“Asset 1101-Roof”. The task object “Remove old roofing membrane felt” is the predecessor task, and
the task “Remove old vapor barrier” is the successor task.

9. CONCLUSIONS
The paper presented a framework that aims at being a systematic and generic reference description to
the practice of asset maintenance management. The framework serves to identify avenues throughout
the practice of asset management where effective strategies and procedures (integration of data and
knowledge through conceptual models) could be implemented to improve operations and sustain the
capital investment in an asset through its life cycle.

The research also presented a general object-oriented domain model or schema for asset maintenance
management. While the developed schema for asset maintenance management supports information
exchange within the FM domain, it is capable of being re-used in other domains, hence supporting
information exchange and demonstrating software interoperability among different domain areas.

The paper finally presented the development of the AMT, a prototype integrated application that
combines building product and process information; and is capable of importing and exporting IFC
information. The prototype implements the developed process and data models in the context of
distributed, model-based, integrated AEC/FM system architecture. The AMT prototype application was
designed and implemented as a generic prototype application for the purpose of demonstrating software
interoperability through the use of the internationally recognized IFC data standards to represent
project information. The application is not limited to roof products only. Similar scenarios can be
generated for demonstrating data exchange for diverse sets of building products.

10. ACKNOWLEDGEMENT

The authors would like to gratefully acknowledge support for this work by the National Research
Council of Canada (NRCC), Public Works and Government Service of Canada (PWGSC); and the
National Science and Engineering Research Council of Canada (NSERC).

11. REFERENCES

BLIS. (2001). Building Lifecycle Interoperable Software. <http://www.blis-project.org/> (November 5,
2001).

Eastman C. (1999). “Information Exchange Architectures for Building Models.” Proceedings of the 8th

International Conference on Durability of Building Components and Materials, Vancouver,
Canada, May 30-June 3, Vol. 4, pp. 2139-2156.

Froese, T., Yu, K., Liston, K., and Fischer, M. (2000). “System Architecture for AEC Interoperability.”

Proceedings of CIB-W78: International Conference on Construction Information Technology,
Reykjavik, Iceland, June 28-30, G. Gudnason (Ed.), Icelandic Building Research Institute. Vol. 1,
pp. 362-373.

Hassanain, M. A. (2002). “Integrated Systems for Maintenance Management.” PhD thesis, University

of British Columbia, Dept. of Civ. Engrg., , Vancouver, Canada.

Hassanain, M. A., Froese, T. M., and Vanier, D. J. (2001). “Development of a Maintenance

Management Model Based on IAI Standards.” Journal of Artificial Intelligence in Engineering,
Elsevier Science, Vol. 15, No. 2, pp. 179-195.

International Alliance for Interoperability (IAI). (1999). “Specifications Development Guide.” Industry

Foundation Classes – Release 2.0, March.

International Alliance for Interoperability (IAI). (2000). <http://www.iai.org.uk> (August 8, 2002).

ITcon Vol. 8 (2003); Hassanain et al., pg. 133

http://www.blis-project.org/
http://www.iai.org.uk/

International Organization and Standardization (ISO-10303-11). (1994) Industrial Automation Systems
and Integration – Product Data Representation and Exchange. Part 11: Description methods: The
EXPRESS language reference manual, Geneva, Switzerland.

Jigsaw Distributed System (JDS). (2001). <http://construction.civil.ubc.ca/

jigsaw_technical/> (August 8, 2002).

Kyle, B. R, Vanier, D. J., Kosovac, B., and Froese, T. M. (2000). “Information Needs Towards Service

Life Asset Management.” Proceedings of the 17th International Conference of the Committee on
Data for Science and Technology, Baveno, Italy, October 15-19.

Peters, F. and Meissner, U. (1995). “Object-Oriented Composition of a Framework for Integrative

Facility Management.” Proceedings of CIB-W78/TG10: Modeling of Buildings Through Their
Life Cycle, California, USA, August 21-23, pp. 111-118.

Vanier, D. J. (2001). “Why Industry Needs Asset Management Tools.” Journal of Computing in Civil

Engineering, ASCE, Vol. 15, No. 1, pp. 35-43.

ITcon Vol. 8 (2003); Hassanain et al., pg. 134

http://construction.civil.ubc.ca/jigsaw_technical/
http://construction.civil.ubc.ca/jigsaw_technical/

