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SUMMARY: This paper introduces an integrated research and design support tool, called Emergent Designer, 
developed at George Mason University. It is a tool that implements models of various complex systems, 
including cellular automata and evolutionary algorithms, to represent engineering systems and their related 
design processes. The system is intended for conducting design experiments in the area of structural design and 
for the analysis of their results. It implements state-of-the-art representations supporting generation of novel 
design concepts and efficient mechanisms for their subsequent optimization at the topological and sizing levels.  
The first part of this paper describes the overall system’s architecture and the flow of information among its 
components. The actual system’s implementation is discussed next and illustrated with several screen shots of 
the system’s graphical user interface. Emergent Designer’s novel approach to representing steel structural 
systems in tall buildings is also presented. It is based on the use of generative representations which utilize 
cellular automata to generate design concepts. Several design experiments are briefly described to demonstrate 
the feasibility of Emergent Designer in conceptual design as well as of design processes modeled by complex 
systems. 
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1. INTRODUCTION 
With the emergence of Information Technology new design methods based on various computational models of 
engineering design processes are being developed. However, up until very recently, computers in structural 
design were used mostly and merely for drawing and visualization (CAD) and for various analytical design 
activities conducted in the detailed design stage (Arciszewski and De Jong, 2001). Today, we are witnessing the 
emergence of a new class of design methods applicable both in conceptual and detailed design stages. In order to 
fully benefit from this progress, these new design methods require, however, new computer tools. 

At the same time, we are witnessing another paradigm change in engineering design. Traditional methods, which 
are focused strictly on design optimization tasks, are being replaced by new methods emphasizing not only 
design optimality issues but also generation of novel design concepts (Kicinger, 2004). Representations of 
engineering systems are one of the key issues to achieve this goal. When the focus is restricted to design 
optimization, the attention is usually limited to a particular concept or at most to several known design concepts 
(Arciszewski et al., 1995). In this case, design representations usually take a form of parameterizations of an 
engineering system, or its parts, i.e. the system is represented by a collection of parameters and their values 
which together form its complete description. Traditional representations frequently used in engineering 
optimization problems can be included in this category, e.g., representations in which parameters have binary 
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values representing presence or absence of a feature (binary representations), or real values representing 
numerical dimensions (real-valued representations).   

Inventive design requires, however, more general and usually more complex representations. Representations 
that are appropriate for inventive design are diverse but they nevertheless share some similarities. Typically, they 
are quite general and thus capable of representing large numbers of alternative shapes, forms, or morphologies 
(Bentley, 1999). They range from direct representations, as in voxel-based representations (Baron et al., 1997) or 
array-based representations (Kane and Schoenauer, 1995), to highly indirect and generative representations, i.e. 
representations that do not encode complete solutions but rather rules on how to build/generate these solutions. 
The most popular examples of indirect representations in engineering design include trees (Funes and Pollack, 
1999), shape grammars (Stiny, 1980), cellular automata (CAs) (Frazer, 1995), L-systems (O'Reilly et al., 2000), 
and embryogenies (Bentley and Kumar, 1999). 

In this paper, we introduce Emergent Designer, an integrated research and design support tool, developed at 
George Mason University. It represents, together with systems like iSIGHT (Koch et al., 2002) or 
modeFRONTIER™, a new generation of computer tools which automate and optimize design processes by 
integrating state-of-the-art models, algorithms, and analysis and visualization methods. The distinguishing 
feature of Emergent Designer is the fact that it addresses both important objectives of engineering design, 
namely creativity and optimality. It does that by implementing new types of generative representations based on 
CAs (Kicinger et al., 2004; Kicinger et al., 2005) which support and enhance generation of novel design 
concepts. It subsequently optimizes these designs using modern search and optimization algorithms.  

A general overview of the system describing its overall architecture and major components is presented in 
section 2. Next, in section 3 the actual implementation of Emergent Designer is presented. Furthermore, several 
types of representations of steel structural systems based on CAs are introduced and results of design 
experiments conducted using Emergent Designer are reported. Finally, initial conclusions and recommendations 
for future work are presented. 

2. SYSTEM OVERVIEW 
Emergent Designer is intended for conducting design experiments in the area of structural design and for the 
analysis of their results using models, methods, and tools from statistics and time series analysis. It can be used 
as a design support tool equipped with state-of-the-art mechanisms for the generation of novel design concepts 
and for conducting their optimization. At the same time, it is a versatile research tool that implements advanced 
methods and tools for the analysis of design processes and of obtained experimental results. 

2.1 Architecture 
A high-level overview of the architecture of Emergent Designer is presented in Fig. 1.  

 
FIG. 1: Architecture of Emergent Designer 

The system consists of 10 major components/modules which can be divided into three major groups: 

 Design components 
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They implement ‘Emergent Engineering Design’ (Kicinger, 2004), a design method using models 
of complex systems to represent engineering systems and design processes. Design components 
form the core of the system and conduct actual design processes. 

 Analysis components 
They implement tools and methods for the analysis of experimental results and design processes. 
The components included in this group are aimed to provide quantitative information about design 
processes as well as statistical estimates of the performance of the tool in which the method is 
implemented. In this way, an indirect (but only feasible) evaluation of the design method can be 
conducted. These components are also intended to provide deeper understanding of the underlying 
dynamics of design processes and the structure of design spaces from a global/holistic perspective. 

 Visualization components 
These components implement various visualization methods and report generation mechanisms. 
They include tools which support visualization of results from various analyses, e.g. statistical or 
time series analyses, conducted by other system’s components. Also, automated tools for 
generation of experimental reports are implemented, which include detailed descriptions of 
experimental parameters and obtained results. 

2.2 Information flow 
The flow of information in Emergent Designer is presented in Fig. 2. It provides an overview of relationships 
among the components discussed in section 2.1 and shows where user input/decisions are expected. 

Once Emergent Designer has been started, the user has a choice to conduct a new design experiment or to use 
advanced statistical and time series analysis tools in order to analyze experimental data saved from previous 
experiments. By default, a new design experiment is selected and Problem Definition Component is called to 
define a design problem. Problem Definition Component is intended to select a domain of interest (e.g. steel 
skeleton structures in tall buildings) from the list of implemented problem domains, and a specific design 
problem that will be solved (e.g. design of a wind bracing system). This component allows for the specification 
of values of parameters defining the considered design problem, e.g. the number of stories in a tall building, or 
the height of a story. It also implements mechanisms for saving the system’s parameters and their values in a 
file, and retrieving previously saved values from a file. 

When the design problem is completely defined, the user has to decide whether or not to decompose the problem 
into several sub-problems. Representation and Decomposition Component is used for this purpose. If the design 
problem is to be decomposed, then the user selects a decomposed representation of the engineering system. On 
the other hand, if the design problem is considered as a whole, then one of the implemented representations of 
the entire engineering system can be chosen. In this case, the spectrum of possible representations includes 
parameterized representations and generative representations. Representation and Decomposition Component 
also supports the specification of values of representation specific parameters, e.g. the shape of the local 
neighborhood in generative representations based on CAs (see section 4.1). When all decomposition and 
encoding parameters have been defined, the representation of an engineering system (artifact) is completely 
specified.  

At that point, Concept Generation and Optimization Component is utilized to specify the type of a concept 
generation mechanism and to determine whether or not the topology optimization and/or the sizing optimization 
should be conducted (see Fig. 3). In this way, it defines a representation of an engineering design process.  

If only a concept generation mechanism is selected, i.e. no optimization is performed, then design concepts are 
produced by design concept generators based on generative representations, e.g. 1D or 2D CAs (see section 4.2). 
On the other hand, when the optimization of engineering systems is to be performed, then the user has two 
possible choices:  

1. If the focus is restricted to design optimization issues, then only an optimization mechanism, e.g. 
an evolutionary algorithm (EA), is used together with traditional parameterized representations of 
engineering systems. 

2. If both the generation of novel design concepts and their subsequent optimization are considered as 
equally important objectives, then an optimization mechanism is combined with a concept 
generation mechanism utilizing a generative representation. 
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Design concepts produced by the concept generation and/or optimization mechanisms are transferred to the 
Evaluation and Simulation Component which evaluates them and assigns fitness value(s) (multiple fitness 
measures are used in the case of multiobjective optimization). This component is used to select an evaluation 
model for a given design experiment and to determine values of several parameters specifying the evaluation 
process, e.g. methods for the determination of wind loads acting on a structural system, or magnitudes of dead 
and live loads, etc. Also, general simulation parameters (e.g., the number of runs, the termination criteria) need 
to be defined by this component in order to run a design experiment. 

 
FIG. 2: Information flow in Emergent Designer 
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FIG..3: Information flow within the Concept Generation and Optimization Component  

As described earlier, the four components, i.e. Problem Definition Component, Representation and 
Decomposition Component, Concept Generation and Optimization Component, and Evaluation and Simulation 
Component form a group of design components implementing the actual design method. Relationships among 
these components and major phases of the design method are shown schematically in Fig. 4. 
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FIG. 4: Phases of the design method implemented in Emergent Designer 

When values of all parameters implemented in the group of design components have been determined (default 
values are also used where possible), the actual design experiment can be initiated. Basic Statistical Analysis 
Component and Basic Dynamical Systems Analysis Component support online monitoring of design processes by 
providing best-so-far fitness values and trajectories (sequences of points) of solutions (designs) in design spaces. 
Basic Statistical Analysis Component also provides mechanisms for extracting and collecting relevant 
experimental data and saving them in files. 

When a given design experiment is completed, Basic Statistical Analysis Component is used to calculate and 
display average best-so-far fitness values with corresponding 95% confidence intervals. At that point, the user 
can also generate a complete experimental report listing all design parameters and their values used in the 
experiment as well as produced results. Report Generation Component and Visualization Component are 
employed during the process of automatic generation of an experimental report. Report Generation Component 
collects names and values of design parameters used in the experiment and extracts relevant experimental 
results. It also gathers important statistical data calculated by Basic Statistical Analysis Component. 
Visualization Component can be used to produce various visualization graphs and charts representing the 
progress of individual runs in design experiments. When all textual, numerical, and graphical data are available, 
Report Generation Component compiles them together into a single document that is subsequently displayed as 
an experimental report. 

At this point, the user can choose to start a new design experiment or to analyze the experimental data using 
advanced statistical and time series analysis tools, or simply exit the system. If a new design experiment is 
selected, Problem Definition Component is called again and the entire process described above is repeated. On 
the other hand, if advanced statistical analysis, or advanced time series analysis, is chosen then Advanced 
Statistical Analysis Component or Advanced Time Series Analysis Component is utilized, respectively. 

Advanced Statistical Analysis Component implements advanced statistical methods to more accurately analyze 
experimental data. It is particularly useful for analyzing results of design experiments in which only a small 
number of runs (repetitions) was conducted (e.g., when evaluations of generated designs are computationally 
expensive). In such cases, advanced statistical methods (e.g., analyses of sample distributions, histograms, 
normal scores plots, skewness and kurtosis estimates) should produce more reliable estimates of the performance 
of the conducted design processes. 

3. IMPLEMENTATION 
Emergent Designer has been implemented in Java with a fully functional graphical user interface (GUI). The 
decision to use this particular programming language was made because several of the system’s components 
were built upon existing packages written in Java. Moreover, Emergent Designer integrates several 
commercially available systems (e.g., Mathematica© (Wolfram, 2003) and OpenOffice.org©) and 
communicates with them by using available Java APIs.  

Another important reason why this programming language was selected is Java’s portability and network-
orientation. Portability offers the flexibility of running the system on various platforms while built-in networking 
capabilities open the possibility of using distributed architectures. Both of these features are particularly 
important in structural design in which the process of evaluation of generated design concepts is usually 
computationally expensive and conducted using specialized structural analysis software. 
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3.1 Design Components 
As of now, two problem domains have been implemented in Problem Definition Component: the 

domain of steel structural systems in tall buildings and the domain of real-valued functions (added for 
testing purposes and for the behavior analysis of various components of the system). The domain of 
steel structural systems includes two major classes of structural design problems: design of a wind 
bracing system in a tall building and design of an entire steel structural system in a tall building. Four 
types of representations are supported by Representation and Decomposition Component, including 
binary, real-valued, integer-valued, and CAs. The latter two are used to encode designs concepts of 
steel structural systems in tall buildings. A simple example which introduces and compares these two 
types of design representations is described in section 4.2. The GUI of Emergent Designer displaying 
Problem Definition Component and Representation and Decomposition Component is presented in 
Fig. 5.  

 
FIG. 5: Graphical user interface of Emergent Designer showing Problem Definition Component and 
Representation and Decomposition Component 

Concept Generation and Optimization Component has been built upon four major existing packages and 
commercially available systems. Generation of design concepts utilizing various types of generative 
representations utilizing CAs is conducted by Mathematica’s kernel which was integrated with Emergent 
Designer via JLink™. All major types of CAs are supported, including 1D and 2D CAs (see section 4.1).  

The topology/shape optimization using EAs is supported by ec3 package, a Java-based evolutionary computation 
toolkit developed by Kenneth De Jong at George Mason University. Here, all canonical EAs can be utilized, 
including genetic algorithms (GAs), evolutionary programming (EP), and evolution strategies (ES).  The system 
also offers a possibility of employing a unified EA (De Jong, to appear) in which all major components (e.g., 
parent and offspring selection mechanisms, genetic operators.) can be individually adjusted to a particular 
problem. The sizing optimization is conducted using an optimization algorithm based on traditional 
mathematical programming method and implemented in a commercially available structural analysis, design and 
optimization system called SODA (Grierson, 1989). Implementation of Concept Generation and Optimization 
Component is presented in Fig 6.  
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FIG. 6: Implementation of Concept Generation and Optimization Component 

Evaluation and Simulation Component implements evaluation models used to determine fitness of generated 
designs. The system supports both single- and multiobjective evaluation of designs using the following 
evaluation criteria: the total weight (an estimate of the cost) and the maximal horizontal displacement (an 
estimate of the stiffness) of a steel structure.  The determination of the least-weight structure is performed by 
SODA and conducted in conformance with the strength (stability) and stiffness (displacement) provisions of 
several commonly used steel codes, including AISC-ASD-89, AISC-LRFD-86, AISC-LRFD-93, CSA-Sl6.1-
M89, or CSA-Sl6.1-94. The loading model required for the evaluation of generated design concepts includes 
dead, live, and wind loads. Wind forces are calculated for a given design situation using a modified version of a 
commercial system Wind Load© V2.2.S developed by Novel CyberSpace Tools. Fig. 7 shows the 
implementation of Evaluation and Simulation Component as well as Visualization Component displaying the 
current progress of a design process. 

3.2 Analysis Components 
Methods and models of basic statistical and dynamical systems analysis have been implemented directly in Java. 
These analytical processes are conducted online, i.e., during the actual design processes. The basic statistical 
analysis involves best-so-far fitness statistics calculated for individual runs (see Fig. 8 top left) and average best-
so-far fitness statistics and 95% confidence intervals computed for an entire design experiment (see Fig. 8 
bottom left). These analyses are also automatically saved in files. Implemented methods of simple dynamical 
systems analysis include trajectory analysis which shows the dynamics of the processes in design spaces (see 
Fig. 8FIG. 8 top right) as well as delay coordinates analysis (see Fig. 8 bottom right). The trajectory analysis 
dynamically shows the dynamics of conducted design processes and region(s) of the search space to which they 
converge. On the other hand, the delay coordinates analysis attempts to reconstruct attractors from the time 
series produced by design processes. 
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FIG. 7: Implementation of Evaluation and Simulation Component 
 

 
FIG. 8: Implementation of Basic Statistical Analysis Component and Basic Dynamical System Analysis 
Component 
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Contrary to the basic analyses described above, advanced statistical and time series analyses are performed 
offline, i.e. when a given design experiment has been completed. Fig. 9 shows several types of advanced 
statistical analyses implemented in Advanced Statistical Analysis Component. They were either implemented 
directly in Java or borrowed from JMSL© Numerical Library which was integrated with Emergent Designer. 

 
FIG. 9: Advanced statistical analysis tools implemented in Emergent Designer 

Advanced Time Series Analysis Component implements more advanced methods of linear and nonlinear time 
series analysis, including delay coordinates plots with adjustable parameters, power spectrum analysis, 
autocorrelation analysis, and two types of recurrence plots. As was the case with the Advanced Statistical 
Analysis Component, several tools and methods of advanced time series analysis were directly implemented in 
the system while some of them have been used from JMSL© Numerical Library. 

3.3 Visualization Components 
There are three major methods of visualizing experimental data in Emergent Designer. First, line plots and 
scatter plots (or more generally signal plots) are used to visualize experimental data transferred from Basic 
Statistical Analysis Component and Basic Dynamical Systems Analysis Component (see Fig. 8). The plots are 
produced by a Java-based signal plotter called PtPlot developed at UC Berkeley. They are embedded in 
Emergent Designer’s GUI and can be subsequently saved as bitmap files. Second, histograms are employed to 
visualize sample distributions produced by Advanced Statistical Analysis Component (see Fig.  9). These types 
of graphs are created using JMSL© Graphical Library integrated with Emergent Designer. They are also 
embedded in the system’s GUI and provide functionality to save the produced graphs as bitmap files. Finally, 
renderings of fitness landscapes can be produced (see Fig. 10) for simple real-valued functions only. More 
advanced methods supporting visualization of design landscapes will be added in the future versions of the 
system. Renderings of simple real-valued fitness landscapes are produced using Mathematica’s advanced 
graphical capabilities and their display in Emergent Designer’s GUI is supported by JLink.  
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FIG. 10: Renderings of fitness landscapes produced by the Visualization Component 

Automatic report generation capabilities have been achieved through the integration of Emergent Designer with 
OpenOffice.org© via its Java API. Report Generation Component collects and organizes textual, numerical and 
graphical data produced during design processes and includes them in an experimental report. This report is 
subsequently displayed as an OpenOffice.org document as shown in Fig. 11.  The report can be later saved in a 
file in any of the supported formats. In this way, a complete summary including design parameters and obtained 
experimental results is automatically created. 

4. EXAMPLES OF DESIGN EXPERIMENTS 
Having described the system’s architecture and components, this section shows how Emergent Designer can be 
used as a state-of-the-art design support system and an advanced analysis tool. First, however, CAs as well as 
novel design concept generators based on them are briefly introduced. Also, these concept generators are 
compared to traditional parameterized representations used in structural design. Next, experimental results 
produced using these two types of representations in the domain of steel structural systems in tall buildings are 
reported. Finally, it is shown how advanced analysis tools implemented in Emergent Designer can be utilized to 
obtain better understanding of design processes. 

4.1 Cellular Automata 
Cellular automata are one of the simplest models of complex systems (Wolfram, 1994). They are used to model 
many complex systems and processes consisting of a large number of identical, simple, and locally interacting 
components, including fluid and chemical turbulence (d'Humieres and Lallemand, 1986; Gerhadrt and Schuster, 
1989), growth of crystals (Kessler et al., 1990), social dynamics (Axtell and Epstein, 1996), patterns of electrical 
activity in neural networks (Franceschetti et al., 1992), and others. CAs have also been the subject of significant 
research interests in structural design. Inou et al. (1998) used cellular automata to investigate self-organization of 
topologies in mechanical structures. Kundu et al. (1997) applied CAs to shape optimization of structural plates. 
Kita and Toyoda (2000) used CAs to optimize shape and topology of two-dimensional elastic structures  and to 
optimize cross-sections of members in truss structures (Kita and Toyoda, 2001). Hajela and Kim (2001) applied 
GAs to search the space of CA rules in the structural analysis of 2D elastic structures. 
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FIG. 11: Experimental report produced by the Report Generation Component and displayed as an 
OpenOffice.org document 

A cellular automaton is a deterministic system which is fully defined by its update rule (called here a CA rule) 
and an initial configuration of cell values. Fig. 12 shows how simple cellular automata work. The process of 
iteration of an elementary CA is presented in Fig. 12a. In this case, the individual cells have only binary values 
(0 and 1) and local neighborhoods affecting the iteration of the considered cell are formed by this cell and its 
immediate left and right neighbors. Therefore, three cells are considered in each local neighborhood and such 
situation is called a ‘local neighborhood of size 3’. The bottom row of Fig. 12a consists of 6 squares (cells) 
denoting an initial configuration of cells (at t=0). In this particular case, the initial configuration consists of cell 
values 0 0 0 1 1 0. White squares in Fig. 12 denote cell values equal to 0 while black squares represent cell 
values equal to 1. The particular CA rule used to iterate this initial configuration for 15 time steps is presented in 
Fig 12b. A CA rule can be understood as a complete set of decision rules whose conditions incorporate all 
possible combinations of cell values in the given local neighborhoods (here of size 3) and outcomes determine 
the values of the considered cells (usually central cells in the local neighborhood) at the next time step. 
Graphical representation of the same rule is presented in Fig. 12c. The CA rule shown in Fig. 12b-c is applied to 
the current configuration of cells and determines the new configuration at the next time step (t=1, 2, 3,…). The 
details of the process of determining the new configuration of cells at the next time step are presented 
graphically in Fig. 12d. 

Bottom part of Fig. 12d shows the same initial configuration (t=0) as in Fig. 12FIG. 12a. First, a set of local 
neighborhoods of size 3 is constructed by taking each cell from the initial configuration together with its left and 
right neighbors and placing them respectively in the middle, left, and right of the lattice defining each local 
neighborhood (see the set of 6 local neighborhoods of size 3 placed above the initial configuration in Fig. 12d). 
In this particular example, so-called cyclic boundary conditions are used, meaning that the rightmost cell in the 
initial configuration becomes the left neighbor of the leftmost cell in the initial configuration, and vice versa 
(denoted by dashed lines in Fig. 12d). Next, the local neighborhoods created that way are compared to the local 
neighborhoods shown in the bottom row of Fig. 12b-c. When the two match, the value shown in the top row of 
Fig. 12b-c defines the new value of the central cell at the next time step. This process is repeated for each local 
neighborhood and the values obtained are placed in appropriate slots in the new configuration of cells at time 
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t=1 thus completely defining this configuration. The process is repeated for an arbitrary number of time steps. 
Fig. 12FIG. 12a shows the results of the iteration process for the first 15 steps. 

 
FIG. 12: a) Process of iteration of a simple CA staring with an initial configuration of cells, b) Numerical 
representation of the CA rule used in a), c) Graphical representation of the same CA rule as in b), d) Details of 
the mechanism of generation of subsequent cell configurations (t=1,2,etc.,) 

The CA rule shown in Fig. 12b specifies all possible (8 in this case) cell values of the local neighborhood of size 
three (bottom row) and determines the values achieved by the central cells at the next time step (top row). Thus, 
if we assume the same ordering of the local neighborhoods as shown in the bottom row of Fig. 12b then any 
elementary CA rule can be defined by a single eight-digit binary number specifying the values achieved by the 
central cells at the next time step for all possible combinations of cell values in the local neighborhood.  

Increasing the number of cell values or size of the local neighborhood causes a rapid growth in the number of 
possible CA rules and hence a rapid increase of the size of the search space. For example, changing the number 
of cell values to 3 with the same size of the local neighborhood yields 7,625,597,484,987 possible CA rules 
compared 256 possible CA rules for elementary CAs. There is, however, a way to significantly reduce it by 
introducing a concept of a totalistic CA rule. The idea of a totalistic rule is to assume that the new value of each 
cell depends only on the average value of cells in the local neighborhood, and not on their individual values 
(Wolfram, 2002). For example, there are only 2187 possible totalistic CA rules with 3 values and neighborhood 
of size three compared to 7,625,597,484,987 rules found in the corresponding standard CAs. 

4.2 Representations of Steel Structural Systems in Tall Buildings 
Emergent Designer implements several types of generative representations of steel structural systems in tall 
buildings based on cellular automata. Fig. 13 shows an example of a generative representation of a wind bracing 
system in a tall building utilizing one-dimensional cellular automata (1D CAs). This type of representation 
consists of two parts: encoding a ‘design embryo’ and encoding of a ‘design rule’ (see Fig. 13b). The design 
embryo forms an initial configuration of the first story of a wind bracing system from which the entire design 
concept of a wind bracing system (design configuration) is developed. It corresponds to the initial arrangement 
of cell values in a CA (see Fig. 12). The design rule, which corresponds to the CA rule shown in Fig. 12b-c, is 
applied to the design embryo and the result of this operation defines a configuration of the second story of a 
wind bracing system. This process is repeated until the entire design concept of a wind bracing system is fully 
developed (see Fig. 13d). A detailed description of this type of generative representation can be found in 
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(Kicinger et al., 2004). Other types of generative representations (e.g., utilizing totalistic CAs and two-
dimensional CAs) implemented in Emergent Designer are described in detail in (Kicinger, 2004). 
 

 
FIG. 13: a) Schematic structure of a generative representation of a steel structural system, b) Genome encoding 
a specific design concept of a wind bracing system, c) A design rule based on one-dimensional cellular 
automaton that ‘grows’ a design concept from the design embryo, d) The process of growing a design concept of 
a wind bracing system from its generative representation 

 
FIG. 14: a) Configuration of structural members of a wind bracing system, b) The same configuration expressed 
in terms of symbolic attributes, c) Genome of a parameterized representation of a wind bracing system 

The generative representation described above is conceptually different than traditionally employed 
parameterized representation. In the former case, the representation does not encode the entire design concept 
but rather rules how to grow the design concept from its initial design embryo. In the latter case, there is a one-
to-one mapping between the attributes describing an engineering system and its representation. Fig 14 shows that 
all structural members of a wind bracing system (see Fig. 14a) are directly represented by symbolic attributes 
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(see Fig. 14b) which are subsequently encoded in a linear genome (see Fig. 14c). In this case, no 
growing/developmental process is necessary to determine the complete configuration of a wind bracing system 
because it is entirely defined by the genome. 

4.3 Experimental results 
Emergent Designer has been used to conduct several design experiments in the domain of steel structural 
systems in tall buildings. Experimental parameters and their values used in these experiments are presented in 
TABLE 1. It shows that 30-story buildings with 5 bays were investigated. The bay width was equal to 20 ft (6.01 
m) and the story height was equal to 14 ft (4.27 m). In the experiments, 7 types of wind bracing elements, 2 
types of beams, and 2 types of supports were considered. These parameters could be easily specified using 
Emergent Designer’s GUI as shown in Fig. 5 (left). In the conducted experiments, several types of 
representations of steel structural systems were investigated, including parameterized representations and 
generative representations based on one-dimensional CAs (standard and totalistic). These representations and 
their parameters were determined by Emergent Designer’s Representation and Decomposition Component 
presented in Fig. 5 (right). 

TABLE 1: Experimental parameters and their values 
Parameter Value(s) 
Domain parameters: 
Number of bays 5 
Number of stories 30 
Bay width 20 feet (6.01 m) 
Story height 14 feet (4.27 m) 
Distance between  
transverse systems 

20 feet (6.01 m) 

Structural analysis method first order 
Beams pinned, fixed 
Column fixed 
Supports pinned, fixed 
Wind bracings no bracing, diagonal bracing (/), diagonal bracing (\), K bracing, V 

bracing, simple X bracing, and X bracing 
CA representation parameters: 
CA type 1D, 1D totalistic 
CA neighborhood radius 1 
Number of CA cell values 7 (bracings), 2 (beams) 
Evolutionary algorithm parameters: 
EA ES 
Pop. sizes (parent, offspring) (1,25), (5,25), (1,125), (5,125) 
Generational model overlapping 
Selection (parent, survival) (uniform stochastic, truncation) 
Mutation rate 0.05, 0.1, 0.3, or 0.5 
Crossover (type, rate) (uniform, 0.0), (uniform, 0.2), (uniform, 0.5) 
Fitness weight of the steel structure (minimization problem) 
Initialization method random 
Constraint handling method death penalty (infeasible designs assigned 0 fitness) 
Simulation parameters: 
Termination criterion  1000 fitness evaluations 
Number of runs 5 (in each experiment) 

Fig. 6 shows the range of available sizing and topology optimization algorithms offered by the system’s Concept 
Generation and Optimization Component and the flexibility of specifying their parameters. Thus, it can be used 
to conduct extensive experimental studies investigating the influence of certain parameters, and their 
combinations, on the performance of design processes. 

The evaluation model employed in the conducted experiments was specified using Evaluation and Simulation 
Component presented in Fig. 7. The top part of Fig. 7 shows the objective with respect to which the designs were 
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optimized as well as types of loads and load combinations applied in the structural analysis. The progress of 
design processes can be monitored graphically in real-time as shown in the bottom part of Fig 7. 

When the design experiment is completed, a detailed report summarizing its results as well as applied parameters 
and their values can be generated, similarly as presented in Fig. 11. Then, advanced statistical analysis tools and 
methods may be applied to more accurately analyze the experimental data and compare results of several 
experiments. For example, Fig. 15 shows a comparison of the performance of parameterized and generative 
representations. The experimental data presented in Fig. 15 have been initially processed by Advanced Statistical 
Analysis Component to more accurately estimate average performance and confidence intervals. Specifically, the 
95% confidence intervals were calculated using Johnson’s modified t test (Johnson, 1978) and subsequently 
visualized using Emergent Designer’s Visualization component.  

Emergent Designer also supports visualization of generated designs using SODA’s visualization capabilities. For 
example, Fig. 16 compares the structural shaping patterns produced by generative representations based on CAs 
and the ones produced by parameterized representations. This type of visual analysis allowed distinguishing 
significant qualitative differences produced by these two types of representations, a fact that is important from 
the structural design perspective. 

 
FIG. 15: Typical average best-so-far curves obtained in the design experiments with parameterized and 
generative representations of the entire steel structural systems in tall buildings 
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a)       b) 

FIG. 16: Comparison of the structural shaping patterns produced using a) generative representations,  
b) parameterized representations 

5. CONCLUSIONS 
Engineering design is in the process of transition to meet the globalization and innovation challenges of the 21st 
century. The traditional focus on quantitative/numerical aspects of engineering is simply insufficient when 
dealing with these challenges. In particular, our analytical approaches to design and creativity limit the progress 
and impact on the society. Thus, new perspectives, methods, and tools are needed to successfully address these 
problems. 

One of such emerging tools, called Emergent Designer, is discussed in this paper. It is a complex computer 
system which belongs to a new generation of design tools being developed at George Mason University. They 
result from several years of intense research on evolutionary designing, on complex adaptive systems, and on 
cellular automata. It allows conducting design experiments in the area of structural design and for the analysis of 
their results using various statistical and time series analysis methods. It implements state-of-the-art 
representations supporting generation of novel design concepts and efficient mechanisms for their subsequent 
optimization at the topological and sizing levels. 

Emergent Designer can be considered as a powerful knowledge acquisition tool. It can be used by an 
experienced researcher, or an engineer, to acquire knowledge about a given engineering system and its behavior 
through conducting various kinds of experiments and generating data about its many characteristics. Such 
information, integrated and analyzed using the tools implemented in Emergent Designer and subsequently 
interpreted by an expert, may become a body of knowledge on a given engineering domain.  

As of now, Emergent Designer is intended mainly for research purposes, but in the future it will be adapted for 
the practical engineering design applications. The initial experience with Emergent Designer has clearly 
demonstrated that the concept of the integrated research and design support tool is feasible. It is too early to 
provide a balanced evaluation of the system’s advantages and disadvantages, but the authors believe that its use 
will soon lead to various discoveries related to design and engineering creativity, particularly related to 
emergence. 
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