
ITcon Vol. 10 (2005), Kicinger et al, pg. 329

EMERGENT DESIGNER: AN INTEGRATED RESEARCH AND
DESIGN SUPPORT TOOL BASED ON MODELS OF COMPLEX
SYSTEMS

SUBMITTED: August 2005
REVISED: November 2005
PUBLISHED: December 2005 at http://www.itcon.org/2005/22/
EDITOR: C. Anumba

Rafal Kicinger, Research Assistant Professor
Department of Civil, Environmental, and Infrastructure Engineering, George Mason University, USA
email: rkicinge@gmu.edu

Tomasz Arciszewski, Professor and Chair
Department of Civil, Environmental, and Infrastructure Engineering, George Mason University, USA
email: tarcisze@gmu.edu

Kenneth De Jong, Professor
Computer Science Department, George Mason University, USA
email: kdejong @gmu.edu

SUMMARY: This paper introduces an integrated research and design support tool, called Emergent Designer,
developed at George Mason University. It is a tool that implements models of various complex systems,
including cellular automata and evolutionary algorithms, to represent engineering systems and their related
design processes. The system is intended for conducting design experiments in the area of structural design and
for the analysis of their results. It implements state-of-the-art representations supporting generation of novel
design concepts and efficient mechanisms for their subsequent optimization at the topological and sizing levels.
The first part of this paper describes the overall system’s architecture and the flow of information among its
components. The actual system’s implementation is discussed next and illustrated with several screen shots of
the system’s graphical user interface. Emergent Designer’s novel approach to representing steel structural
systems in tall buildings is also presented. It is based on the use of generative representations which utilize
cellular automata to generate design concepts. Several design experiments are briefly described to demonstrate
the feasibility of Emergent Designer in conceptual design as well as of design processes modeled by complex
systems.

KEYWORDS: evolutionary design, design support tools, emergence, cellular automata, structural design

1. INTRODUCTION
With the emergence of Information Technology new design methods based on various computational models of
engineering design processes are being developed. However, up until very recently, computers in structural
design were used mostly and merely for drawing and visualization (CAD) and for various analytical design
activities conducted in the detailed design stage (Arciszewski and De Jong, 2001). Today, we are witnessing the
emergence of a new class of design methods applicable both in conceptual and detailed design stages. In order to
fully benefit from this progress, these new design methods require, however, new computer tools.

At the same time, we are witnessing another paradigm change in engineering design. Traditional methods, which
are focused strictly on design optimization tasks, are being replaced by new methods emphasizing not only
design optimality issues but also generation of novel design concepts (Kicinger, 2004). Representations of
engineering systems are one of the key issues to achieve this goal. When the focus is restricted to design
optimization, the attention is usually limited to a particular concept or at most to several known design concepts
(Arciszewski et al., 1995). In this case, design representations usually take a form of parameterizations of an
engineering system, or its parts, i.e. the system is represented by a collection of parameters and their values
which together form its complete description. Traditional representations frequently used in engineering
optimization problems can be included in this category, e.g., representations in which parameters have binary

ITcon Vol. 10 (2005), Kicinger et al, pg. 330

values representing presence or absence of a feature (binary representations), or real values representing
numerical dimensions (real-valued representations).

Inventive design requires, however, more general and usually more complex representations. Representations
that are appropriate for inventive design are diverse but they nevertheless share some similarities. Typically, they
are quite general and thus capable of representing large numbers of alternative shapes, forms, or morphologies
(Bentley, 1999). They range from direct representations, as in voxel-based representations (Baron et al., 1997) or
array-based representations (Kane and Schoenauer, 1995), to highly indirect and generative representations, i.e.
representations that do not encode complete solutions but rather rules on how to build/generate these solutions.
The most popular examples of indirect representations in engineering design include trees (Funes and Pollack,
1999), shape grammars (Stiny, 1980), cellular automata (CAs) (Frazer, 1995), L-systems (O'Reilly et al., 2000),
and embryogenies (Bentley and Kumar, 1999).

In this paper, we introduce Emergent Designer, an integrated research and design support tool, developed at
George Mason University. It represents, together with systems like iSIGHT (Koch et al., 2002) or
modeFRONTIER™, a new generation of computer tools which automate and optimize design processes by
integrating state-of-the-art models, algorithms, and analysis and visualization methods. The distinguishing
feature of Emergent Designer is the fact that it addresses both important objectives of engineering design,
namely creativity and optimality. It does that by implementing new types of generative representations based on
CAs (Kicinger et al., 2004; Kicinger et al., 2005) which support and enhance generation of novel design
concepts. It subsequently optimizes these designs using modern search and optimization algorithms.

A general overview of the system describing its overall architecture and major components is presented in
section 2. Next, in section 3 the actual implementation of Emergent Designer is presented. Furthermore, several
types of representations of steel structural systems based on CAs are introduced and results of design
experiments conducted using Emergent Designer are reported. Finally, initial conclusions and recommendations
for future work are presented.

2. SYSTEM OVERVIEW
Emergent Designer is intended for conducting design experiments in the area of structural design and for the
analysis of their results using models, methods, and tools from statistics and time series analysis. It can be used
as a design support tool equipped with state-of-the-art mechanisms for the generation of novel design concepts
and for conducting their optimization. At the same time, it is a versatile research tool that implements advanced
methods and tools for the analysis of design processes and of obtained experimental results.

2.1 Architecture
A high-level overview of the architecture of Emergent Designer is presented in Fig. 1.

FIG. 1: Architecture of Emergent Designer

The system consists of 10 major components/modules which can be divided into three major groups:

 Design components

ITcon Vol. 10 (2005), Kicinger et al, pg. 331

They implement ‘Emergent Engineering Design’ (Kicinger, 2004), a design method using models
of complex systems to represent engineering systems and design processes. Design components
form the core of the system and conduct actual design processes.

 Analysis components
They implement tools and methods for the analysis of experimental results and design processes.
The components included in this group are aimed to provide quantitative information about design
processes as well as statistical estimates of the performance of the tool in which the method is
implemented. In this way, an indirect (but only feasible) evaluation of the design method can be
conducted. These components are also intended to provide deeper understanding of the underlying
dynamics of design processes and the structure of design spaces from a global/holistic perspective.

 Visualization components
These components implement various visualization methods and report generation mechanisms.
They include tools which support visualization of results from various analyses, e.g. statistical or
time series analyses, conducted by other system’s components. Also, automated tools for
generation of experimental reports are implemented, which include detailed descriptions of
experimental parameters and obtained results.

2.2 Information flow
The flow of information in Emergent Designer is presented in Fig. 2. It provides an overview of relationships
among the components discussed in section 2.1 and shows where user input/decisions are expected.

Once Emergent Designer has been started, the user has a choice to conduct a new design experiment or to use
advanced statistical and time series analysis tools in order to analyze experimental data saved from previous
experiments. By default, a new design experiment is selected and Problem Definition Component is called to
define a design problem. Problem Definition Component is intended to select a domain of interest (e.g. steel
skeleton structures in tall buildings) from the list of implemented problem domains, and a specific design
problem that will be solved (e.g. design of a wind bracing system). This component allows for the specification
of values of parameters defining the considered design problem, e.g. the number of stories in a tall building, or
the height of a story. It also implements mechanisms for saving the system’s parameters and their values in a
file, and retrieving previously saved values from a file.

When the design problem is completely defined, the user has to decide whether or not to decompose the problem
into several sub-problems. Representation and Decomposition Component is used for this purpose. If the design
problem is to be decomposed, then the user selects a decomposed representation of the engineering system. On
the other hand, if the design problem is considered as a whole, then one of the implemented representations of
the entire engineering system can be chosen. In this case, the spectrum of possible representations includes
parameterized representations and generative representations. Representation and Decomposition Component
also supports the specification of values of representation specific parameters, e.g. the shape of the local
neighborhood in generative representations based on CAs (see section 4.1). When all decomposition and
encoding parameters have been defined, the representation of an engineering system (artifact) is completely
specified.

At that point, Concept Generation and Optimization Component is utilized to specify the type of a concept
generation mechanism and to determine whether or not the topology optimization and/or the sizing optimization
should be conducted (see Fig. 3). In this way, it defines a representation of an engineering design process.

If only a concept generation mechanism is selected, i.e. no optimization is performed, then design concepts are
produced by design concept generators based on generative representations, e.g. 1D or 2D CAs (see section 4.2).
On the other hand, when the optimization of engineering systems is to be performed, then the user has two
possible choices:

1. If the focus is restricted to design optimization issues, then only an optimization mechanism, e.g.
an evolutionary algorithm (EA), is used together with traditional parameterized representations of
engineering systems.

2. If both the generation of novel design concepts and their subsequent optimization are considered as
equally important objectives, then an optimization mechanism is combined with a concept
generation mechanism utilizing a generative representation.

ITcon Vol. 10 (2005), Kicinger et al, pg. 332

Design concepts produced by the concept generation and/or optimization mechanisms are transferred to the
Evaluation and Simulation Component which evaluates them and assigns fitness value(s) (multiple fitness
measures are used in the case of multiobjective optimization). This component is used to select an evaluation
model for a given design experiment and to determine values of several parameters specifying the evaluation
process, e.g. methods for the determination of wind loads acting on a structural system, or magnitudes of dead
and live loads, etc. Also, general simulation parameters (e.g., the number of runs, the termination criteria) need
to be defined by this component in order to run a design experiment.

FIG. 2: Information flow in Emergent Designer

ITcon Vol. 10 (2005), Kicinger et al, pg. 333

FIG..3: Information flow within the Concept Generation and Optimization Component

As described earlier, the four components, i.e. Problem Definition Component, Representation and
Decomposition Component, Concept Generation and Optimization Component, and Evaluation and Simulation
Component form a group of design components implementing the actual design method. Relationships among
these components and major phases of the design method are shown schematically in Fig. 4.

ITcon Vol. 10 (2005), Kicinger et al, pg. 334

FIG. 4: Phases of the design method implemented in Emergent Designer

When values of all parameters implemented in the group of design components have been determined (default
values are also used where possible), the actual design experiment can be initiated. Basic Statistical Analysis
Component and Basic Dynamical Systems Analysis Component support online monitoring of design processes by
providing best-so-far fitness values and trajectories (sequences of points) of solutions (designs) in design spaces.
Basic Statistical Analysis Component also provides mechanisms for extracting and collecting relevant
experimental data and saving them in files.

When a given design experiment is completed, Basic Statistical Analysis Component is used to calculate and
display average best-so-far fitness values with corresponding 95% confidence intervals. At that point, the user
can also generate a complete experimental report listing all design parameters and their values used in the
experiment as well as produced results. Report Generation Component and Visualization Component are
employed during the process of automatic generation of an experimental report. Report Generation Component
collects names and values of design parameters used in the experiment and extracts relevant experimental
results. It also gathers important statistical data calculated by Basic Statistical Analysis Component.
Visualization Component can be used to produce various visualization graphs and charts representing the
progress of individual runs in design experiments. When all textual, numerical, and graphical data are available,
Report Generation Component compiles them together into a single document that is subsequently displayed as
an experimental report.

At this point, the user can choose to start a new design experiment or to analyze the experimental data using
advanced statistical and time series analysis tools, or simply exit the system. If a new design experiment is
selected, Problem Definition Component is called again and the entire process described above is repeated. On
the other hand, if advanced statistical analysis, or advanced time series analysis, is chosen then Advanced
Statistical Analysis Component or Advanced Time Series Analysis Component is utilized, respectively.

Advanced Statistical Analysis Component implements advanced statistical methods to more accurately analyze
experimental data. It is particularly useful for analyzing results of design experiments in which only a small
number of runs (repetitions) was conducted (e.g., when evaluations of generated designs are computationally
expensive). In such cases, advanced statistical methods (e.g., analyses of sample distributions, histograms,
normal scores plots, skewness and kurtosis estimates) should produce more reliable estimates of the performance
of the conducted design processes.

3. IMPLEMENTATION
Emergent Designer has been implemented in Java with a fully functional graphical user interface (GUI). The
decision to use this particular programming language was made because several of the system’s components
were built upon existing packages written in Java. Moreover, Emergent Designer integrates several
commercially available systems (e.g., Mathematica© (Wolfram, 2003) and OpenOffice.org©) and
communicates with them by using available Java APIs.

Another important reason why this programming language was selected is Java’s portability and network-
orientation. Portability offers the flexibility of running the system on various platforms while built-in networking
capabilities open the possibility of using distributed architectures. Both of these features are particularly
important in structural design in which the process of evaluation of generated design concepts is usually
computationally expensive and conducted using specialized structural analysis software.

ITcon Vol. 10 (2005), Kicinger et al, pg. 335

3.1 Design Components
As of now, two problem domains have been implemented in Problem Definition Component: the

domain of steel structural systems in tall buildings and the domain of real-valued functions (added for
testing purposes and for the behavior analysis of various components of the system). The domain of
steel structural systems includes two major classes of structural design problems: design of a wind
bracing system in a tall building and design of an entire steel structural system in a tall building. Four
types of representations are supported by Representation and Decomposition Component, including
binary, real-valued, integer-valued, and CAs. The latter two are used to encode designs concepts of
steel structural systems in tall buildings. A simple example which introduces and compares these two
types of design representations is described in section 4.2. The GUI of Emergent Designer displaying
Problem Definition Component and Representation and Decomposition Component is presented in
Fig. 5.

FIG. 5: Graphical user interface of Emergent Designer showing Problem Definition Component and
Representation and Decomposition Component

Concept Generation and Optimization Component has been built upon four major existing packages and
commercially available systems. Generation of design concepts utilizing various types of generative
representations utilizing CAs is conducted by Mathematica’s kernel which was integrated with Emergent
Designer via JLink™. All major types of CAs are supported, including 1D and 2D CAs (see section 4.1).

The topology/shape optimization using EAs is supported by ec3 package, a Java-based evolutionary computation
toolkit developed by Kenneth De Jong at George Mason University. Here, all canonical EAs can be utilized,
including genetic algorithms (GAs), evolutionary programming (EP), and evolution strategies (ES). The system
also offers a possibility of employing a unified EA (De Jong, to appear) in which all major components (e.g.,
parent and offspring selection mechanisms, genetic operators.) can be individually adjusted to a particular
problem. The sizing optimization is conducted using an optimization algorithm based on traditional
mathematical programming method and implemented in a commercially available structural analysis, design and
optimization system called SODA (Grierson, 1989). Implementation of Concept Generation and Optimization
Component is presented in Fig 6.

ITcon Vol. 10 (2005), Kicinger et al, pg. 336

FIG. 6: Implementation of Concept Generation and Optimization Component

Evaluation and Simulation Component implements evaluation models used to determine fitness of generated
designs. The system supports both single- and multiobjective evaluation of designs using the following
evaluation criteria: the total weight (an estimate of the cost) and the maximal horizontal displacement (an
estimate of the stiffness) of a steel structure. The determination of the least-weight structure is performed by
SODA and conducted in conformance with the strength (stability) and stiffness (displacement) provisions of
several commonly used steel codes, including AISC-ASD-89, AISC-LRFD-86, AISC-LRFD-93, CSA-Sl6.1-
M89, or CSA-Sl6.1-94. The loading model required for the evaluation of generated design concepts includes
dead, live, and wind loads. Wind forces are calculated for a given design situation using a modified version of a
commercial system Wind Load© V2.2.S developed by Novel CyberSpace Tools. Fig. 7 shows the
implementation of Evaluation and Simulation Component as well as Visualization Component displaying the
current progress of a design process.

3.2 Analysis Components
Methods and models of basic statistical and dynamical systems analysis have been implemented directly in Java.
These analytical processes are conducted online, i.e., during the actual design processes. The basic statistical
analysis involves best-so-far fitness statistics calculated for individual runs (see Fig. 8 top left) and average best-
so-far fitness statistics and 95% confidence intervals computed for an entire design experiment (see Fig. 8
bottom left). These analyses are also automatically saved in files. Implemented methods of simple dynamical
systems analysis include trajectory analysis which shows the dynamics of the processes in design spaces (see
Fig. 8FIG. 8 top right) as well as delay coordinates analysis (see Fig. 8 bottom right). The trajectory analysis
dynamically shows the dynamics of conducted design processes and region(s) of the search space to which they
converge. On the other hand, the delay coordinates analysis attempts to reconstruct attractors from the time
series produced by design processes.

ITcon Vol. 10 (2005), Kicinger et al, pg. 337

FIG. 7: Implementation of Evaluation and Simulation Component

FIG. 8: Implementation of Basic Statistical Analysis Component and Basic Dynamical System Analysis
Component

ITcon Vol. 10 (2005), Kicinger et al, pg. 338

Contrary to the basic analyses described above, advanced statistical and time series analyses are performed
offline, i.e. when a given design experiment has been completed. Fig. 9 shows several types of advanced
statistical analyses implemented in Advanced Statistical Analysis Component. They were either implemented
directly in Java or borrowed from JMSL© Numerical Library which was integrated with Emergent Designer.

FIG. 9: Advanced statistical analysis tools implemented in Emergent Designer

Advanced Time Series Analysis Component implements more advanced methods of linear and nonlinear time
series analysis, including delay coordinates plots with adjustable parameters, power spectrum analysis,
autocorrelation analysis, and two types of recurrence plots. As was the case with the Advanced Statistical
Analysis Component, several tools and methods of advanced time series analysis were directly implemented in
the system while some of them have been used from JMSL© Numerical Library.

3.3 Visualization Components
There are three major methods of visualizing experimental data in Emergent Designer. First, line plots and
scatter plots (or more generally signal plots) are used to visualize experimental data transferred from Basic
Statistical Analysis Component and Basic Dynamical Systems Analysis Component (see Fig. 8). The plots are
produced by a Java-based signal plotter called PtPlot developed at UC Berkeley. They are embedded in
Emergent Designer’s GUI and can be subsequently saved as bitmap files. Second, histograms are employed to
visualize sample distributions produced by Advanced Statistical Analysis Component (see Fig. 9). These types
of graphs are created using JMSL© Graphical Library integrated with Emergent Designer. They are also
embedded in the system’s GUI and provide functionality to save the produced graphs as bitmap files. Finally,
renderings of fitness landscapes can be produced (see Fig. 10) for simple real-valued functions only. More
advanced methods supporting visualization of design landscapes will be added in the future versions of the
system. Renderings of simple real-valued fitness landscapes are produced using Mathematica’s advanced
graphical capabilities and their display in Emergent Designer’s GUI is supported by JLink.

ITcon Vol. 10 (2005), Kicinger et al, pg. 339

FIG. 10: Renderings of fitness landscapes produced by the Visualization Component

Automatic report generation capabilities have been achieved through the integration of Emergent Designer with
OpenOffice.org© via its Java API. Report Generation Component collects and organizes textual, numerical and
graphical data produced during design processes and includes them in an experimental report. This report is
subsequently displayed as an OpenOffice.org document as shown in Fig. 11. The report can be later saved in a
file in any of the supported formats. In this way, a complete summary including design parameters and obtained
experimental results is automatically created.

4. EXAMPLES OF DESIGN EXPERIMENTS
Having described the system’s architecture and components, this section shows how Emergent Designer can be
used as a state-of-the-art design support system and an advanced analysis tool. First, however, CAs as well as
novel design concept generators based on them are briefly introduced. Also, these concept generators are
compared to traditional parameterized representations used in structural design. Next, experimental results
produced using these two types of representations in the domain of steel structural systems in tall buildings are
reported. Finally, it is shown how advanced analysis tools implemented in Emergent Designer can be utilized to
obtain better understanding of design processes.

4.1 Cellular Automata
Cellular automata are one of the simplest models of complex systems (Wolfram, 1994). They are used to model
many complex systems and processes consisting of a large number of identical, simple, and locally interacting
components, including fluid and chemical turbulence (d'Humieres and Lallemand, 1986; Gerhadrt and Schuster,
1989), growth of crystals (Kessler et al., 1990), social dynamics (Axtell and Epstein, 1996), patterns of electrical
activity in neural networks (Franceschetti et al., 1992), and others. CAs have also been the subject of significant
research interests in structural design. Inou et al. (1998) used cellular automata to investigate self-organization of
topologies in mechanical structures. Kundu et al. (1997) applied CAs to shape optimization of structural plates.
Kita and Toyoda (2000) used CAs to optimize shape and topology of two-dimensional elastic structures and to
optimize cross-sections of members in truss structures (Kita and Toyoda, 2001). Hajela and Kim (2001) applied
GAs to search the space of CA rules in the structural analysis of 2D elastic structures.

ITcon Vol. 10 (2005), Kicinger et al, pg. 340

FIG. 11: Experimental report produced by the Report Generation Component and displayed as an
OpenOffice.org document

A cellular automaton is a deterministic system which is fully defined by its update rule (called here a CA rule)
and an initial configuration of cell values. Fig. 12 shows how simple cellular automata work. The process of
iteration of an elementary CA is presented in Fig. 12a. In this case, the individual cells have only binary values
(0 and 1) and local neighborhoods affecting the iteration of the considered cell are formed by this cell and its
immediate left and right neighbors. Therefore, three cells are considered in each local neighborhood and such
situation is called a ‘local neighborhood of size 3’. The bottom row of Fig. 12a consists of 6 squares (cells)
denoting an initial configuration of cells (at t=0). In this particular case, the initial configuration consists of cell
values 0 0 0 1 1 0. White squares in Fig. 12 denote cell values equal to 0 while black squares represent cell
values equal to 1. The particular CA rule used to iterate this initial configuration for 15 time steps is presented in
Fig 12b. A CA rule can be understood as a complete set of decision rules whose conditions incorporate all
possible combinations of cell values in the given local neighborhoods (here of size 3) and outcomes determine
the values of the considered cells (usually central cells in the local neighborhood) at the next time step.
Graphical representation of the same rule is presented in Fig. 12c. The CA rule shown in Fig. 12b-c is applied to
the current configuration of cells and determines the new configuration at the next time step (t=1, 2, 3,…). The
details of the process of determining the new configuration of cells at the next time step are presented
graphically in Fig. 12d.

Bottom part of Fig. 12d shows the same initial configuration (t=0) as in Fig. 12FIG. 12a. First, a set of local
neighborhoods of size 3 is constructed by taking each cell from the initial configuration together with its left and
right neighbors and placing them respectively in the middle, left, and right of the lattice defining each local
neighborhood (see the set of 6 local neighborhoods of size 3 placed above the initial configuration in Fig. 12d).
In this particular example, so-called cyclic boundary conditions are used, meaning that the rightmost cell in the
initial configuration becomes the left neighbor of the leftmost cell in the initial configuration, and vice versa
(denoted by dashed lines in Fig. 12d). Next, the local neighborhoods created that way are compared to the local
neighborhoods shown in the bottom row of Fig. 12b-c. When the two match, the value shown in the top row of
Fig. 12b-c defines the new value of the central cell at the next time step. This process is repeated for each local
neighborhood and the values obtained are placed in appropriate slots in the new configuration of cells at time

ITcon Vol. 10 (2005), Kicinger et al, pg. 341

t=1 thus completely defining this configuration. The process is repeated for an arbitrary number of time steps.
Fig. 12FIG. 12a shows the results of the iteration process for the first 15 steps.

FIG. 12: a) Process of iteration of a simple CA staring with an initial configuration of cells, b) Numerical
representation of the CA rule used in a), c) Graphical representation of the same CA rule as in b), d) Details of
the mechanism of generation of subsequent cell configurations (t=1,2,etc.,)

The CA rule shown in Fig. 12b specifies all possible (8 in this case) cell values of the local neighborhood of size
three (bottom row) and determines the values achieved by the central cells at the next time step (top row). Thus,
if we assume the same ordering of the local neighborhoods as shown in the bottom row of Fig. 12b then any
elementary CA rule can be defined by a single eight-digit binary number specifying the values achieved by the
central cells at the next time step for all possible combinations of cell values in the local neighborhood.

Increasing the number of cell values or size of the local neighborhood causes a rapid growth in the number of
possible CA rules and hence a rapid increase of the size of the search space. For example, changing the number
of cell values to 3 with the same size of the local neighborhood yields 7,625,597,484,987 possible CA rules
compared 256 possible CA rules for elementary CAs. There is, however, a way to significantly reduce it by
introducing a concept of a totalistic CA rule. The idea of a totalistic rule is to assume that the new value of each
cell depends only on the average value of cells in the local neighborhood, and not on their individual values
(Wolfram, 2002). For example, there are only 2187 possible totalistic CA rules with 3 values and neighborhood
of size three compared to 7,625,597,484,987 rules found in the corresponding standard CAs.

4.2 Representations of Steel Structural Systems in Tall Buildings
Emergent Designer implements several types of generative representations of steel structural systems in tall
buildings based on cellular automata. Fig. 13 shows an example of a generative representation of a wind bracing
system in a tall building utilizing one-dimensional cellular automata (1D CAs). This type of representation
consists of two parts: encoding a ‘design embryo’ and encoding of a ‘design rule’ (see Fig. 13b). The design
embryo forms an initial configuration of the first story of a wind bracing system from which the entire design
concept of a wind bracing system (design configuration) is developed. It corresponds to the initial arrangement
of cell values in a CA (see Fig. 12). The design rule, which corresponds to the CA rule shown in Fig. 12b-c, is
applied to the design embryo and the result of this operation defines a configuration of the second story of a
wind bracing system. This process is repeated until the entire design concept of a wind bracing system is fully
developed (see Fig. 13d). A detailed description of this type of generative representation can be found in

ITcon Vol. 10 (2005), Kicinger et al, pg. 342

(Kicinger et al., 2004). Other types of generative representations (e.g., utilizing totalistic CAs and two-
dimensional CAs) implemented in Emergent Designer are described in detail in (Kicinger, 2004).

FIG. 13: a) Schematic structure of a generative representation of a steel structural system, b) Genome encoding
a specific design concept of a wind bracing system, c) A design rule based on one-dimensional cellular
automaton that ‘grows’ a design concept from the design embryo, d) The process of growing a design concept of
a wind bracing system from its generative representation

FIG. 14: a) Configuration of structural members of a wind bracing system, b) The same configuration expressed
in terms of symbolic attributes, c) Genome of a parameterized representation of a wind bracing system

The generative representation described above is conceptually different than traditionally employed
parameterized representation. In the former case, the representation does not encode the entire design concept
but rather rules how to grow the design concept from its initial design embryo. In the latter case, there is a one-
to-one mapping between the attributes describing an engineering system and its representation. Fig 14 shows that
all structural members of a wind bracing system (see Fig. 14a) are directly represented by symbolic attributes

ITcon Vol. 10 (2005), Kicinger et al, pg. 343

(see Fig. 14b) which are subsequently encoded in a linear genome (see Fig. 14c). In this case, no
growing/developmental process is necessary to determine the complete configuration of a wind bracing system
because it is entirely defined by the genome.

4.3 Experimental results
Emergent Designer has been used to conduct several design experiments in the domain of steel structural
systems in tall buildings. Experimental parameters and their values used in these experiments are presented in
TABLE 1. It shows that 30-story buildings with 5 bays were investigated. The bay width was equal to 20 ft (6.01
m) and the story height was equal to 14 ft (4.27 m). In the experiments, 7 types of wind bracing elements, 2
types of beams, and 2 types of supports were considered. These parameters could be easily specified using
Emergent Designer’s GUI as shown in Fig. 5 (left). In the conducted experiments, several types of
representations of steel structural systems were investigated, including parameterized representations and
generative representations based on one-dimensional CAs (standard and totalistic). These representations and
their parameters were determined by Emergent Designer’s Representation and Decomposition Component
presented in Fig. 5 (right).

TABLE 1: Experimental parameters and their values
Parameter Value(s)
Domain parameters:
Number of bays 5
Number of stories 30
Bay width 20 feet (6.01 m)
Story height 14 feet (4.27 m)
Distance between
transverse systems

20 feet (6.01 m)

Structural analysis method first order
Beams pinned, fixed
Column fixed
Supports pinned, fixed
Wind bracings no bracing, diagonal bracing (/), diagonal bracing (\), K bracing, V

bracing, simple X bracing, and X bracing
CA representation parameters:
CA type 1D, 1D totalistic
CA neighborhood radius 1
Number of CA cell values 7 (bracings), 2 (beams)
Evolutionary algorithm parameters:
EA ES
Pop. sizes (parent, offspring) (1,25), (5,25), (1,125), (5,125)
Generational model overlapping
Selection (parent, survival) (uniform stochastic, truncation)
Mutation rate 0.05, 0.1, 0.3, or 0.5
Crossover (type, rate) (uniform, 0.0), (uniform, 0.2), (uniform, 0.5)
Fitness weight of the steel structure (minimization problem)
Initialization method random
Constraint handling method death penalty (infeasible designs assigned 0 fitness)
Simulation parameters:
Termination criterion 1000 fitness evaluations
Number of runs 5 (in each experiment)

Fig. 6 shows the range of available sizing and topology optimization algorithms offered by the system’s Concept
Generation and Optimization Component and the flexibility of specifying their parameters. Thus, it can be used
to conduct extensive experimental studies investigating the influence of certain parameters, and their
combinations, on the performance of design processes.

The evaluation model employed in the conducted experiments was specified using Evaluation and Simulation
Component presented in Fig. 7. The top part of Fig. 7 shows the objective with respect to which the designs were

ITcon Vol. 10 (2005), Kicinger et al, pg. 344

optimized as well as types of loads and load combinations applied in the structural analysis. The progress of
design processes can be monitored graphically in real-time as shown in the bottom part of Fig 7.

When the design experiment is completed, a detailed report summarizing its results as well as applied parameters
and their values can be generated, similarly as presented in Fig. 11. Then, advanced statistical analysis tools and
methods may be applied to more accurately analyze the experimental data and compare results of several
experiments. For example, Fig. 15 shows a comparison of the performance of parameterized and generative
representations. The experimental data presented in Fig. 15 have been initially processed by Advanced Statistical
Analysis Component to more accurately estimate average performance and confidence intervals. Specifically, the
95% confidence intervals were calculated using Johnson’s modified t test (Johnson, 1978) and subsequently
visualized using Emergent Designer’s Visualization component.

Emergent Designer also supports visualization of generated designs using SODA’s visualization capabilities. For
example, Fig. 16 compares the structural shaping patterns produced by generative representations based on CAs
and the ones produced by parameterized representations. This type of visual analysis allowed distinguishing
significant qualitative differences produced by these two types of representations, a fact that is important from
the structural design perspective.

FIG. 15: Typical average best-so-far curves obtained in the design experiments with parameterized and
generative representations of the entire steel structural systems in tall buildings

ITcon Vol. 10 (2005), Kicinger et al, pg. 345

a) b)

FIG. 16: Comparison of the structural shaping patterns produced using a) generative representations,
b) parameterized representations

5. CONCLUSIONS
Engineering design is in the process of transition to meet the globalization and innovation challenges of the 21st
century. The traditional focus on quantitative/numerical aspects of engineering is simply insufficient when
dealing with these challenges. In particular, our analytical approaches to design and creativity limit the progress
and impact on the society. Thus, new perspectives, methods, and tools are needed to successfully address these
problems.

One of such emerging tools, called Emergent Designer, is discussed in this paper. It is a complex computer
system which belongs to a new generation of design tools being developed at George Mason University. They
result from several years of intense research on evolutionary designing, on complex adaptive systems, and on
cellular automata. It allows conducting design experiments in the area of structural design and for the analysis of
their results using various statistical and time series analysis methods. It implements state-of-the-art
representations supporting generation of novel design concepts and efficient mechanisms for their subsequent
optimization at the topological and sizing levels.

Emergent Designer can be considered as a powerful knowledge acquisition tool. It can be used by an
experienced researcher, or an engineer, to acquire knowledge about a given engineering system and its behavior
through conducting various kinds of experiments and generating data about its many characteristics. Such
information, integrated and analyzed using the tools implemented in Emergent Designer and subsequently
interpreted by an expert, may become a body of knowledge on a given engineering domain.

As of now, Emergent Designer is intended mainly for research purposes, but in the future it will be adapted for
the practical engineering design applications. The initial experience with Emergent Designer has clearly
demonstrated that the concept of the integrated research and design support tool is feasible. It is too early to
provide a balanced evaluation of the system’s advantages and disadvantages, but the authors believe that its use
will soon lead to various discoveries related to design and engineering creativity, particularly related to
emergence.

6. REFERENCES
Arciszewski T. and De Jong K.A. (2001). Evolutionary computation in civil engineering: research frontiers.

Eight International Conference on Civil and Structural Engineering Computing (Topping B. H. V., ed.),
Saxe-Coburg Publications, Eisenstadt, Vienna, Austria.

ITcon Vol. 10 (2005), Kicinger et al, pg. 346

Arciszewski T., Michalski R.S. and Wnek J. (1995). Constructive induction: the key to design creativity.
Preprints of the Third International Round-Table Conference on Computational Models of Creative
Design (Gero J. S. and Maher M. L., eds.), Heron Island, Queensland, Australia, 397-426.

Axtell R. and Epstein J.M. (1996). Growing artificial societies: social science from the bottom, MIT Press.

Baron P., Fisher R., Mill F., Sherlock A. and Tuson A. (1997). A voxel-based representation for the evolutionary
shape optimization of a simplified beam: a case-study of a problem-centered approach to genetic operator
design. 2nd On-line World Conference on Soft Computing in Engineering Design and Manufacturing
(WSC2).

Bentley P.J. (1999). An introduction to evolutionary design by computers. Evolutionary Design by Computers
(Bentley P. J., ed.), Morgan Kaufmann Publishers, San Francisco, CA.

Bentley P.J. and Kumar S. (1999). Three ways to grow designs: a comparison of embryogenies for an
evolutionary design problem. Genetic and Evolutionary Computation Conference (GECCO'99) (Banzhaf
W., Daida J., Eiben A. E., Garzon M. H., Honavar V., Jakiela M. J. and Smith R. E., eds.), Morgan
Kaufmann Publishers, Orlando, Florida, USA, 35-43.

De Jong K.A. (to appear). Evolutionary computation: a unified approach, MIT Press, Cambridge, MA.

d'Humieres D. and Lallemand P. (1986). Lattice gas automata for fluid dynamics. Physica, Vol. 140A, 326-335.

Franceschetti D.R., Campbell B.W. and Hamneken J.W. (1992). Hamming nets, Ising sets, cellular automata,
neural nets and random walks. American Journal of Physics, Vol. 61, 50-53.

Frazer J. (1995). An evolutionary architecture, Architectural Association Publications, London.

Funes P. and Pollack J.B. (1999). Computer evolution of buildable objects. Evolutionary design by computers
(Bentley P. J., ed.), Morgan Kaufmann Publishers, San Francisco, CA.

Gerhadrt M. and Schuster H. (1989). A cellular automaton describing the formation of spatially ordered
structures in chemical systems. Physica, Vol. 36D, 209-221.

Grierson D.E. (1989). Computer-automated optimal design for structural steel frameworks. NATO ASI
Conference on Optimization and Decision Support Systems in Civil Engineering (Topping B. H. V., ed.),
Kluwer Academic Publishers, Edinburgh, UK, 327-354.

Hajela P. and Kim B. (2001). On the use of energy minimization for CA based analysis in elasticity. Structural
and Multidisciplinary Optimization, Vol. 23, No. 1, 24-33.

Inou N., Uesugi T., Iwasaki A. and Ujihashi S. (1998). Self-organization of mechanical structure by cellular
automata. Fracture and strength of solids. Part 2: Behavior of materials and structure (Tong P., Zhang T.
Y. and Kim J., eds.), 1115-1120.

Johnson N.J. (1978). Modified t tests and confidence intervals for asymmetrical populations. Journal of the
American Statistical Association, Vol. 73, No. 363, 536-544.

Kane C. and Schoenauer M. (1995). Genetic operators for two-dimensional shape optimization. Artificial
Evolution (Alliot J.-M., Lutton E., Ronald E., Schoenauer M. and Snyers D., eds.), Springer Verlag.

Kessler D.A., Levine H. and Reynolds W.N. (1990). Coupled-map lattice model for crystal growth. Physics
Review, Vol. 42A, No. 6125.

Kicinger R. (2004). Emergent Engineering Design: Design creativity and optimality inspired by nature, Ph.D.
Dissertation, School of Information Technology and Engineering, George Mason University, Fairfax, VA,
USA.

Kicinger R., Arciszewski T. and De Jong K.A. (2004). Morphogenic evolutionary design: cellular automata
representations in topological structural design. Adaptive Computing in Design and Manufacture VI
(Parmee I. C., ed.), Springer-Verlag, London, UK, 25-38.

Kicinger R., Arciszewski T. and De Jong K.A. (2005). Generative design in structural engineering. Proceedings
of the 2005 ASCE International Conference on Computing in Civil Engineering, Cancun, Mexico, July

ITcon Vol. 10 (2005), Kicinger et al, pg. 347

12-15, 2005 (Soibelman L. and Peña-Mora F., eds.), American Society of Civil Engineers Press, Reston,
VA.

Kita E. and Toyoda T. (2000). Structural design using cellular automata. Structural and Multidisciplinary
Optimization, Vol. 19, 64-73.

Kita E. and Toyoda T. (2001). Truss structural design based on concept of cellular automata. International
Association for Shell and Spatial Structures Symposium (IASS2001), IASS, Nagoya, Japan.

Koch P.N., Evans J.P. and Powell D. (2002). Interdigitation for effective design space exploration using
iSIGHT. Structural and Multidisciplinary Optimization, Vol. 23, No. 2, 111-126.

Kundu S., Oda J. and Koishi T. (1997). A self-organizing approach to optimization of structural plates using
cellular automata. Second World Congress on Structural and Multidisciplinary Optimization (WCSMO-2)
(Gutkowski W. and Mroz Z., eds.), Polish Academy of Science, Zakopane, Poland, 173-180.

O'Reilly U.-M., Kangas M. and Testa P. (2000). MoSS: Morphogenetic Surface Structure: a software tool for
design exploration. Greenwich 2000: Digital Creativity Symposium, University of Greenwich, London,
UK, 71-80.

Stiny G. (1980). Introduction to shape and shape grammars. Environment and Planning B: Planning and Design,
Vol. 7, No. 3, 343-351.

Wolfram S. (1994). Cellular automata and complexity: collected papers, Addison-Wesley, Reading, MA.

Wolfram S. (2002). A new kind of science, Wolfram Media, Champaign, IL.

Wolfram S. (2003). The Mathematica book, 5th edition, Wolfram Media, Champaign, IL.

