

www.itcon.org - Journal of Information Technology in Construction - ISSN 1874-4753

ITcon Vol. 20 (2015), Zach et al., pg. 159

A DISTRIBUTED AND SCALABLE APPROACH TO BUILDING
MONITORING

SUBMITTED: November 2014

REVISED: December 2014

PUBLISHED: January 2015 at http://www.itcon.org/2015/12

GUEST EDITORS: Mahdavi A. & Martens B.

Robert Zach

Department of Building Physics and Building Ecology, Vienna University of Technology, Austria

robert.zach@gmail.com

Harald Hofstätter

Department of Building Physics and Building Ecology, Vienna University of Technology, Austria

harald.e259.hofstaetter@tuwien.ac.at

Christian Tauber

Department of Building Physics and Building Ecology, Vienna University of Technology, Austria

christian.tauber@tuwien.ac.at, http://bpi.tuwien.ac.at/

Ardeshir Mahdavi

Department of Building Physics and Building Ecology, Vienna University of Technology, Austria

bpi@tuwien.ac.at

SUMMARY: The present contribution describes a scalable approach to vendor and technology independent

building monitoring and data processing. Powerful data pre-processing algorithms, virtual data points,

automated building model calibration and various software interfaces are implemented across different software

modules. The distributed software architecture enables scalable processing of desired data streams for various

applications from the building to the urban level.

KEYWORDS: building monitoring, building management system, building automation, building simulation.

REFERENCE: Robert Zach, Harald Hofstätter, Christian Taube, Ardeshir Mahdavi (2015). A distributed and

scalable approach to building monitoring. Journal of Information Technology in Construction (ITcon), Special

Issue: ECPPM 2014, Vol. 20, pg. 159-172, http://www.itcon.org/2015/12

COPYRIGHT: © 2015 The authors. This is an open access article distributed under the terms of the Creative

Commons Attribution 3.0 unported (http://creativecommons.org/licenses/by/3.0/), which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

ITcon Vol. 20 (2015), Zach et al., pg. 160

1. INTRODUCTION

Existing monitoring solutions and building management systems (BMS) could be enhanced with regard to a

number of potentially important functionalities. Data pre-processing functionalities could be offered, involving,

for example, the calculation of data in a structured temporal manner (e.g. periodic values). Virtual datapoints

could be used to provide non-measured data streams (e.g. thermal comfort within a zone, overall energy use of a

zone, etc.) based on related sensor measurements. Different software interfaces could enable various data

processing applications (Excel, MATLAB, BMS, etc.) to batch process required data streams. These

advancements would facilitate the exploitation of the critical benefits that could result from the integrated and

concurrent analysis of multiple building data streams (Raftery et al. 2010, O'Donnell 2009, Neumann and Jacob

2008). Such benefits include:

 Minimization of energy use through improved management of technical systems.

 Better informed building users regarding their impact on buildings’ energy use.

 Facilitating a preventive maintenance regime via early detection of deficiencies and malfunctions

in energy systems and devices.

 Continuous building performance improvement and optimization via the analyses of dynamically

updated building energy and performance databases.

 Long-term accumulation of empirical information on buildings' energy and environmental

performance toward improving the design, construction, and operation of existing and new

buildings.

The present contribution proposes a modular monitoring infrastructure to collect and process building

measurements (energy use, comfort parameter, etc.), which can be optimized in order to meet the requirements

of each individual application. The proposed algorithms and design patterns are implemented in an Open-Source

toolkit, called the Monitoring System Toolkit (MOST 2014, http://most.bpi.tuwien.ac.at). The toolkit facilitates

beneficial use of building data in various processing applications. It provides powerful pre-processing functions

(e.g., generation of temporally structured data sets, virtual data points, etc.), supports different data storage

technologies (e.g. MySQL, Cassandra, Neo4j), offers interfaces for batch processing (oBIX, OPC-UA, custom

RESTful web service, etc.) and includes applications for simulation model calibration, data aggregation, display,

visualization, and analysis (see Figure 1).

Figure 1. Services provided by the Monitoring System Toolkit (MOST)

ITcon Vol. 20 (2015), Zach et al., pg. 161

2. APPROACH

Monitoring systems in general and building monitoring systems like MOST in particular have to (i) collect, (ii)

store and (iii) pre-process data before (iv) providing access to it. These seemingly trivial steps increase in

complexity as soon as different data sources, pre-processing strategies, storages and data access interfaces are

required. To build such a system in a stable, reliable, maintainable and extensible way it is vital to separate the

system into distinct parts addressing multiple concerns. Therefore MOST is composed of several modules,

communicating only over well-defined interfaces. Each module is responsible for a particular task like

collecting, storing, pre-processing or providing data.

Modules communicate with each other only via well-defined interfaces, hiding implementation details. This fact

allows to transparently interchange one implementation with another as long as the interface remains. Other

modules do not notice the change because only implementation was swapped, but importantly, not the interface.

This behaviour can be used to enable different module-implementations and deployment-strategies, which are

optimized for distinct use cases.

3. MONITORING SYSTEM TOOLKIT

MOST collects measurements from various data sources (sensors/actors, BMS, weather forecast, etc.), stores

historical data, enables various preprocessing algorithms and provides desired information with different

software interfaces (oBIX, OPC UA, etc.). Each point of interest is called a “data point” and can provide data

from a physical sensor/actor or calculated by different algorithms (virutal data point – formula based, simulation

based, etc.). This results in a generic building data interface, which provides values (measurements) as tuples of

type <timestamp, value> belonging to a data point. Furthermore, MOST stores information regarding the

association of data-sources and data points, grouping of data points, etc. Future work could get this metadata

from Building Information Models (BIM). BIM information could be imported from a file (e.g. import of an IFC

file) or integrated as a service (requesting information from a BIM-server on demand). To enable a clean

separation of building metadata and runtime building measurements, BIM standards as the Industrial Foundation

Classes (IFC) or Green Building XML are required to include attributes to link sensors in the BIM model (e.g.

IfcSensor) to the respective data point in the monitoring system. The architecture of MOST is composed of

different modules as illustrated in Figure 2. Data is either stored into or read from MOST.

Figure 2. Software architecture of MOST modules

The connector module reads measurements from sensors and stores it in the database. All requests go through

the service layer, which delegates it to the correct module. Historic measurements are provided from the

database module. Requests to virtual data points are calculated by the respective virtual data point module.

Different software interfaces are provided with the modules OPC UA, oBIX, and RESTful WS to support many

processing applications (Excel, MATLAB, BMS solutions, etc.). The web interface module includes a

prototypical implementation of a web visualization. The module calibration enables automated calibration of a

building simulation model (such as EnergyPlus 2014), which, for example, can be used for a virtual data point

(to compute non measured data).

4. POSSIBLE QUERIES

Different data points will produce data at different points in time. Sensors send their data periodically (every 5

minutes) or only when values change (e.g. event triggered contact sensors). To allow reasonable analysis and

comparison of data point values, data pre-processing algorithms are required. For example window state

information (contact sensor) is stored, marking the window as open or closed. Subsequent data processing

ITcon Vol. 20 (2015), Zach et al., pg. 162

applications may want to obtain this information in a periodic manner (e.g., hourly). Therefore, the pre-

processing algorithm must deliver, for each discrete interval, either the value "open", or "closed". This is

achieved via appropriate reasoning depending on the use case of the processing application. For example, a

window may be declared open or closed if a corresponding action took place in the respective interval.

Alternatively, a window may be declared open if it was open during most of the respective interval. To account

for this and other data pre-processing challenges, a number of data pre-processing algorithms are developed.

Figure 3 to Figure 7 show examples of data requested with the method get-ValuesPeriodic(dp, start, end, period,

mode) using different modes. Crosses mark stored measurements while circles show calculated return values. Dp

is the id of the requested datapoint. Start and end define the requested timeframe. Period contains the desired

interval in seconds. Mode enables data pre-processing with different algorithms.

In mode 1, a linear interpolation and temporally weighted arithmetic averages are used for calculating periodic

values. If the requested period contains more than one measurement, the temporally weighted arithmetic average

is calculated. If no measurement is available for the requested period, a linear interpolation to the next

measurement is performed. Mode 2 uses sample & hold instead of linear interpolation. Mode 3 (majority/sample

& hold) returns the majority of non-zero (true) or zero (false) values if more than one measurement is available

in the requested period. If no measurement is available, the last value of the previous period is returned. Mode 4

(dominating "0"/default "1") returns "0", if one or more measurements in the requested period are "0". If no

measurement is available, the default value "1" is returned. Mode 5 (dominating "1"/default "0") works the same

way, but swaps "0" and “1”. By using the proposed data pre-processing algorithm and virtual data points,

processing applications can query desired information in the required data structure. This enables the processing

application to focus on the respective use case.

Figure 3. Data pre-processing - mode 1: time-weighted average / linear interpolation

Figure 4. Data pre-processing - mode 2: time-weighted average / sample & hold

Figure 5. Data pre-processing - mode 3: majority decision / sample & hold

ITcon Vol. 20 (2015), Zach et al., pg. 163

Figure 6. Data pre-processing - mode 4: forced 0 / default 1

Figure 7. Data pre-processing - mode 5: forced 1 / default 0

5. MOST MODULES

Table 1 provides an overview of MOST’s currently available modules.

Table 1 Overview of currently available modules

MOST-Module

Name

Description

Connector

(most-connector)

Driver for different data-source to MOST

MySQL

(most-mysql)

Handles database access for meta-data like Data points and Zones. It optionally supports the storage of

pure measurement for small sized deployments.

Neo4j

(most-neo4j)

Handles database requests for data point measurements stored in Neo4j.

Cassandra

(most-casandra)

Handles database requests for data point measurements stored in Cassandra.

Calibration

(most-calibration)

Calibrates a building simulation model (currently EnergyPlus only) in an automated and periodic

manner.

Virtual Datapoint

(most-vdp)

Contains several implementations of so-called virtual data points, which provide access to not directly

measured data.

MOST Server

(most-server)

Routes requests between different MOST modules. Only required for distributed deployments

REST

(most-rest)

Exposes MOST data with a RESTful web service.

OPC UA

(most-opcua)

Exposes MOST data through OPC Unified Architecture.

Obix

(most-obix)

Exposes MOST data through oBIX.

Web

(most-web)

Provides an out of the box web application to query, visualize and export monitored data.

ITcon Vol. 20 (2015), Zach et al., pg. 164

5.1 Connector Module

The target of the module connector is to collect measurements from various sensors, fieldbus technologies and

building management systems (BMS). Currently support for the following Technologies is implemented. (i)

JDBC compatible data sources and therefore most relational databases (MySQL, Microsoft SQL, Oracle, etc.)

and structured file formats (e.g. CVS). This way access to many BMS is supported. (ii) OPC DA data sources,

which enables access to most sensor and fieldbus technologies (KNX, BACnet, LonWorks, M-Bus, etc.). (iii)

EnOcean USB 300 supporting low cost monitoring with a Raspberry Pi and energy harvesting sensors (Zach et

al. 2014).

Zach et al. 2012 describes the proposed data collection approach in more detail. Future work could be based on

the project IoTSyS (Jung et al. 2012), which allows native access to several building automation technologies

like BACnet, KNX, ZigBee, DALI and Lon Works.

5.2 MySQL Module

To enable historical data access compatible modules with different persistence strategies are evaluated and

implemented in the modules (i) most-mysql, (ii) most-cassandra and (iii) most-neo4j.

At the moment the module MySQL is mandatory as it stores BIM related information (e.g. Zones, Attributes of

Sensors, etc.). Additionally it realizes one of currently three backends to store pure data point measurements.

Previous work (Zach et al. 2012) has shown the limits of storing measurements in a relational database like

MySQL. Therefore, two alternative storage solutions based on NoSQL are evaluated, namely Cassandra (Apache

Cassandra 2014) and Neo4J (Neo4j 2014).

5.3 Neo4j Module

Neo4J is a graph database (Indrawan-Santiago 2012), where data is stored as graph. Vertices are called nodes

and edges are called relationships in Neo4J. Both are able to store additional data in so called properties.

Hierarchical data like BIM information and its associated data can be stored very naturally as graph in Neo4J.

Foreign keys of the MySQL schema are transformed to explicit relationships between entities. Instead of joining

to tables to link associated data, you have to traverse from one node through relationship to its neighbors.

Neo4j's distributed implementation and scaling capabilities made it a reasonable candidate for storing data point

measurements. In the future it may be used for storing hierarchical data like zones and data points too because

this simplifies queries on recursive associations.

5.4 Cassandra Module

The second NoSQL storage we are evaluating is the column family (Indrawan-Santiago 2012) database Apache

Cassandra. Designing a Cassandra-based model starts with the query domain, instead of starting with the domain

model (Wang & Tang 2012). Therefore we analyzed required data queries for MOST and built a scalable

Keyspace utilizing shards to distribute data across multiple nodes. Measurements of each data point and each

month are stored in an independent set of data described by the Keyspace shown in Figure 8. Multiples of these

datasets can be stored on individual nodes in the Cassandra cluster. The distribution of this datasets is done

randomly. By splitting data in time and source in a random way, a linear scalability of the overall storage cluster

is reached. The Cassandra module of MOST distributes and collects requested data from respective nodes,

transparent for the client applications. Further details can be found in Glawischnig et al. 2014.

ITcon Vol. 20 (2015), Zach et al., pg. 165

Figure 8. Keyspace of the MOST Cassandra Modul

5.5 Calibration Module

This module enables the automatic calibration of a building simulation model based on measurements stored in

MOST. By periodically calibrating the simulation model with the latest measurements various applications are

possible (virtual data points based on simulation tools, simulation based fault detection, etc.).

The proposed layer-based structure of the calibration module allows simple component exchangeability and

expandability, including implementations for different simulation and optimization tools. The current

implementation extends GenOpt 2014 (version 3.1.0). The native version of GenOpt calculates the cost function

for the optimization process within the respective simulation tool. Technology issues make it very complicated

to implement cost functions within the simulation software if they depend on values from external data sources

(e.g. measurements from a building monitoring system). For this reason, the cost function calculation was moved

from the individual simulation software to the optimization domain (GenOpt). This was done by extending

GenOpt with a plugin-interface, which enables the implementation of the cost function in the optimization

domain. The plugin-interface provides the output paths from the simulation tool used and requires from

respective implementations to return the calculated cost function value.

Figure 9 shows the layer-based structure of the proposed implementation with EnergyPlus 8.2 as currently used

simulation tool. The MOST Calibration Service is schematically separated in:

1) Pre-processing: contains jobs such as the creation of a weather file for the calibration period;

2) Calibration: includes the driver for the optimization program;

3) Post-processing: contains any tasks that should be done after a calibration, e.g. deployment of the

calibrated model.

ITcon Vol. 20 (2015), Zach et al., pg. 166

Figure 9. Proposed layer-model using the example of the Monitoring System Toolkit and EnergyPlus.

In the current implementation optimizes an EnergyPlus simulation model based on measurements from the

Monitoring System Toolkit. It is further separated in cost function calculation, currently realized as RMSD

calculation, and the basic data reader objects. This layer approach shows how components could be exchanged

easily, for example when switching to another simulation tool without having to adjust the whole solution. In this

case a new custom reader object has to be implemented that could provide the simulation output to the cost

function algorithm in a standardized way.

The target of the overall calibration process is to optimize certain variables in the building simulation model.

These variables can be classified into two fundamental types:

 Time independent variables, which display no (or negligible) change in the regarded time period

(e.g. U-Value of a window).

 Time dependent variables, which are defined with an array of values over time, known as

schedules (e.g., state of a window: open/closed).

Time-dependent variables involve more complexities in model calibration because an optimum of a series of

values has to be found to reach optimum model performance. A less computationally expensive approach could

be populating the model with a pool of possible schedules for time-dependent variables, where the best-fitting

one is selected in the calibration process. To provide this pool of schedules in a simple manner, a number of

daily schedules can be picked randomly from the relevant monitored data of a certain period of time. Each set of

schedules pertaining to occupant presence and interactions with building systems should be obtained from the

same day to avoid inconsistencies in the schedules. Alternatively, occupants’ presence and behavioural models,

trained with the monitored data, can be used in order to generate occupancy-related profiles, among other things,

based on environmental factors. Tauber et al. 2014 describes these issues in more detail.

Monitoring System Toolkit

GenOpt
Plugin Extension

Cost function calculation

PREPROCESSING POSTPROCESSINGCALIBRATION

MOST Calibration ServiceMOST Calibration Service

 EnergyPlus
 Output Reader

 MOST
 Database Reader

 MOST EnergyPlus Plugin

 EnergyPlus
MOST
Database

Simulation results Monitored data

ITcon Vol. 20 (2015), Zach et al., pg. 167

5.6 Virtual Data point Module

This module can provide data, which is not directly measured with a physical sensor. Currently the following

examples of virtual data points (VDP) are evaluated.

 A virtual data point, which takes the mean surface temperature of a radiator and calculates its

heating power based on geometric information of the radiator and the surrounding room

temperature.

 A virtual data point wrapping the MOST domain specific language (most-DSL) implemented in

Scala. It enables users to weave datapoint's values into mathematical expressions where particular

values are evaluated at runtime based on the requested timeframe for evaluation. An expression

computing the average temperature in °C of two data points “tem1” and “tem2” would be written

as follows:

(dp(“tem1”) + dp(“tem2”)) / 2

 Integrating most-DSL as VDP allows nesting an arbitrary graph of most-DSL expressions,

whereas loops are not allowed. Assuming the last expression would be accessible as the VDP

“avgTem”, we could build a new VDP converting the result to °F:

dp("avgTem") * 1.8 + 32

 A prototype of a simulation based virtual data point is currently in development. Using the

simulation tool EnergyPlus it calculates data, which is not directly measured (e.g. thermal

comfort). A calibrated simulation model is used to provide reliable simulated results.

5.7 MOST Server Module

As discussed later MOST can be deployed in a distributed fashion, so that different modules are running on

different machines. The MOST Server's core capability is to provide facilities for inter-module communication

in form of a Message oriented Middleware (MoM) resulting in loosely coupled components. Modules register its

communication channel at the server at startup, so that they can communicate with each other via message

passing. Consequently all communication flows through the Most Server's provided MoM. Data point’s values

can be observed by subscribing to a data point’s “OBSRV” topic as described in Glawischnig et al. 2014. Virtual

data points share a queue per type, that means all virtual data points from type “mostDsl” listen to the same

queue so that incoming messages are taken by at most one instance. For simpler implementation we created

helper classes to hide the asynchronous nature of message passing. This makes it easy to develop new

components without paying too much attention to communication details.

5.8 REST Module

This module provides data access via a simplified REST service over HTTP with XML/JSON-marshalling. For

example, to retrieve data from data point “tem1” the following URL can be called:

http://your.server.com/most-

rest/v1/dp/tem1/data?from={UCTdatetime}&to={UCTdatetime}

For periodic data the required period in seconds and an optional mode are part of the query parameters:

http://your.server.com/most-

rest/v1/dp/{name}/periodicdata?from={UCTdatetime}&to={UCTdatetime}&period={

integer}&mode={integer}

Every system able to perform HTTP requests and XML/JSON manipulation is able to integrate requested via this

interface. This ranges from websites, to Office Software (e.g. Microsoft Excel), to Business Process

Management Suits.

5.9 OPC Unified Architecture Module

Based on the subproject opcua4j (Hofstätter 2012), the module OPC Unified Architecture (UA) server was

developed. Zone information is used for the OPC UA address space. A zone connects to its data points with a

ITcon Vol. 20 (2015), Zach et al., pg. 168

hasComponent references. Attributes such as a data point’s unit are represented as OPC UA properties. This

module enables data access for all processing applications supporting the OPC UA interface.

5.10 oBIX Module

The module oBIX provides data access based on the Open Building Information eXchange (oBIX 2014)

standard. This standard provides data with the default contracts Points, Alarm and History. To support the

proposed pre-processed queries a new contract was developed.

5.11 Web Module

In addition to the REST, OPC UA and oBIX interface that allows machine-to-machine communication, there

exists a ready-to-go rich web application (RIA) written in Java (GWT), deployable in any Servlet container. The

application acts as simple user interface for endusers and serves two use cases for: data visualization and data

export. Visualization is realized by charts where values from one or more data points are shown for a user

specified time intervals. Data points may be hard to find if one does not know their names. Therefore we in-

troduced 3D visualization based on a BIM model (IFC) to illustrate a datapoints location and simplify search.

Interaction is mainly realized via drag and drop gestures to support natural behavior. While dragging an object,

only droppable areas are highlighted to guide the user and increase usability (Zach et al. 2013). Regarding data

export, it is possible to export one or more data point values in a given time interval into CSV files. This allows

users without much technical know-how, to query required data and process it further in any application

supporting CSV import. A screenshot of the web interface is shown in Figure 10.

Figure 10. Prototypical web interface for accessing data from the Monitoring System Toolkit-MOST

6. INTER-MODULE COMMUNICATION

All introduces modules communicate with each other only via well-defined Java interfaces. These interface are

mapped on a Message oriented Middleware (MoM) as shown in Figure 11. This way, diverse modules can be

transparently moved to different computer hardware. Some modules (e.g. the Virtual Data point Modul) can

even be deployed multiple times. On user request, the instance with the shortest queue will be used for

processing. Figure 12 shows a typical user request. The most server recognizes that the requested data

(“avgTem”) comes from a virtual data point of type “mostDSL”. It finds an instance providing a virtual data

point of type “mostDSL” and forwards the request. The requested data is calculated and sent back to the client.

ITcon Vol. 20 (2015), Zach et al., pg. 169

Figure 11. Inter-module communication based on a Message oriented Middleware

Figure 12. Typical request to a virtual data point of type “mostDSL”

7. POSSIBLE DEPLOYMENT SETUPS

With the proposed modular approach MOST's deployment options range from a single embedded system (Zach

et al. 2014) to a multi-server high performance setup. This is possible due to the fact that MOST supports a

middleware (message bus) between the modules. For example, MOST can be deployed on a low cost (i) single

machine (Figure 13) or within a scalable (ii) distributed setup (Figure 14). The first option is reasonable for

simple deployments, where the whole MOST application is packaged into a single runnable and deployed on a

single machine. In this configuration, the service layer realizes inter-module communication via direct method

calls between modules. In a distributed setup, all modules are connected to the MOST Server's MoM to

communicate with each other. The MOST Server creates communication channels at runtime, based on the

number of connected modules. This allows distributed and redundant deployment of components (see VDP 2 is

deployed two times on different machines in Figure 14) as well as adding/removing parts during runtime.

ITcon Vol. 20 (2015), Zach et al., pg. 170

Figure 15 and Figure 16 show how the proposed framework can be applied in a real world monitoring setup.

Figure 15. Four layer model of a comprehensive monitoring setup in the building “Lehartrakt” of the University

of Technology Vienna

Figure 13. MOST deployed on an Raspberry Pi

Figure 14. MOST modules deployed on several distributed

machines

ITcon Vol. 20 (2015), Zach et al., pg. 171

Figure 16. Some sensors installed in the building “Lehartrakt”

8. CONCLUSION AND FUTURE OUTLOOK

The proposed pre-processing algorithms and the support of virtual data points enables processing applications to

query desired information in the required data structure (e.g. hourly data of the overall energy use in zone X).

Client applications can access building data in a uniform way independent of the installed sensor, fieldbus and

BMS technology. By supporting access with different software interfaces in real-time, batch processing in

various client application is possible. These steps significantly simplify the challenge of processing building

related data and enables reuse of processing applications (Figure 17).

Creating a domain specific language for MOST is a novel approach to describe data evaluation expressions

without much technical knowledge. Wrapping the most-dsl with a virtual data point facilitates deep integration

in the system.

Future work could include further integration of simulation based virtual data points, extending the MOST

connector with additional technology support and the integration of BIM technologies. Improvements in stability

can be accomplished by keeping track of active components and recognize partial failures of the system.

Dynamic (un)registration of modules needs to be monitored by the MOST Server. Performance analysis is

crucial to test scalability of the proposed system.

Figure 17. Proposed approach for building monitoring

9. ACKNOWLEDGMENT

The research presented in this paper is supported by funds from the "Klima- und Energiefonds" within the

program "Neue Energien 2020”. Since MOST is an Open-Source project, a number of people have been

involved. Namely, Prof. Ardeshir Mahdavi, Robert Zach, Harald Hofstätter, Rainer Bräuer, Stefan Glawischnig,

Christian Tauber, Reinhard Zach, Paul Alexander, Michael Hönisch, Regina Appel, Jakob Korherr, Alexej

Strelzow, Christoph Lauscher, David Bittermann, Christoph Kaltenriner and Michael Leichtfried.

ITcon Vol. 20 (2015), Zach et al., pg. 172

10. REFERENCES

Apache Cassandra. (2014). NoSQL database, http://cassandra.apache.org/

EnergyPlus. (2014). Building Performance Simulation Tool, http://apps1.eere.energy.gov/buildings/energyplus/.

Glawischnig S., Hofstätter H., and Mahdavi A. (2014). A distributed generic data structure for urban level

building data monitoring. ICT-EurAsia 2014, Bali, Indonesia

GenOpt. (2014). GenOpt – generic optimization program. Available at: http://simulationresearch.lbl.gov/GO/

Hofstätter H. (2012). opcua4j - open source implementation of an opc ua server in java. Available:

https://code.google.com/p/opcua4j/

Indrawan-Santiago M. (2012). Database research: are we at a crossroad? Reflection on NoSQL. NBiS 2012

Jung M., Weidinger J., Reinisch C., Kastner W., Crettaz C., Olivieri A., and Bocchi Y. (2012). A transparent

IPv6 multi-protocol gateway to integrate building automation systems in the internet of things. IThings

2012.

MOST (2014). Monitoring system toolkit. http://most.bpi.tuwien.ac.at

Neo4j (2014). Graph based database. http://www.neo4j.org

Neumann C. and Jacob D. (2008). Guidelines for the evaluation of building performance. Freiburg, Germany:

Fraunhofer Institute for Solar Energy Systems.

Tauber C., Tahmasebi F., Zach R. and Mahdavi A. (2014). Automated simulation model calibration based on

runtime building monitoring. ECPPM Vienna

oBIX. (2014). Open Building Information eXchange. http://www.obix.org

O'Donnell J. (2009). Specification of optimum holistic building environmental and energy performance

information to support informed decision making. Dissertation, University College Cork, Ireland.

Raftery P., Keane M., O’Donnell J. and Costa A. (2010). Energy monitoring systems: value, issues and

recommendations based on five case studies. 9 – 12 May, Antalya, Clima 2010, International Conference

on Sustainable Energy Use in Buildings.

Wang G., Tang J. (2012). The NoSQL principles and basic application of cassandra model. CSSS 2012

Weber J., Zach R., Tahmasebi F. and Mahdavi A. (2012). Inclusion of user-related monitoring data in the run-

time calibration of building performance simulation models. in: BauSIM 2012 - Gebäudesimulation auf

den Größenskalen Bauteil, Raum, Gebäude, Stadtquartier, C. Nytsch-Geusen et al. (Ed.); IBPSA

Germany-Austria, 1 (2012), Paper-Nr. 164, 7 p.

Zach R., Glawischnig S., Hönisch M., Appel R. and Mahdavi A. (2012). MOST: An open-source, vendor and

technology independent toolkit for building monitoring, data preprocessing, and visualization. in: "eWork

and eBusiness in Architecture, Engineering and Construction", G. Gudnason, R. Scherer et al. (Ed.);

Taylor & Francis, (2012), ISBN: 978-0-415-62128-1; P. 97 - 103.

Zach R., Schuss M., Bräuer R. and Mahdavi A. (2012). Improving building monitoring using a data

preprocessing storage engine based on MySQL. in: "eWork and eBusiness in Architecture, Engineering

and Construction", G. Gudnason, R. Scherer et al. (Ed.); Taylor & Francis, (2012), ISBN: 978-0-415-

62128-1; p. 151 - 157.

Zach R., Glawischnig S. and Mahdavi A., (2013). Advanced building data visualization using the monitoring

system toolkit. in: CLIMA 2013 - 11th REHVA World Congress and the 8th International Conference on

Indoor Air Quality, Ventilation and Energy Conservation in Buildings, K. Kabele, M. Urban, K. Suchý,

M. Lain (Ed.); Society of Environmental Engineering (STP), 1/1/1 (2013), Paper-Nr. 283, 9 p.

Zach R., Paul A., Zach R. and Mahdavi A. (2014). Plug and play building monitoring: the potential of low cost

components. in: Proceedings of the 10th European Conference on Product and Process Modelling

(ECPPM2014), Vienna, Austria, 17-19 September 2014, A. Mahdavi, B. Martens, R.J. Scherer (Ed.);

Taylor & Francis - Balkema, 1/1/Boca Raton|London|New York|Leiden (2014), ISBN: 978-1-138-02710-

7; p. 265 - 270.

