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SUMMARY: Over the past few years, the AECO Industry has undergone a shift toward digital transformation, 

with a growing trend towards adopting innovative technologies such as Digital Twin (DT). DT offers a wide range 

of applications throughout the building development process. However, some specific factors impede its 

widespread adoption in the building industry. This study aims to systematically review the available literature on 

the building project development process from the perspective of DT, with a particular focus on predictive 

simulations, i.e., co-sims. The review provides a comprehensive overview of drivers and barriers to DT adoption 

through an analysis of 147 studies between 2013 and 2023. The research identifies seven external and 41 internal 

drivers, including efficient project management and monitoring, predictive maintenance, and the collection and 

visualization of real-time data, all of which contribute to improved decision-making processes and reduced 

operational expenses. Further, the study identifies nine external and 31 internal barriers that impede the adoption 

of DT in the building development process. These barriers encompass challenges such as a high initial investment 

cost, a scarcity of a skilled workforce, difficulties in data interoperability, and resistance to change within the 

organization. A key outcome of the literature review is having identified the opportunity to exploit technologies 

developed in the automotive sector that enable a seamless integration of specialized simulator models in building 

development processes, resulting in collaborative simulations. Thus, we propose the concept of a Building 

Simulation Identity Card (BSIC) to be pursued in future research that would enable stakeholders to address the 

challenges of collaboration, cooperation, coordination, and communication by creating a common vocabulary to 

effectively facilitate the adoption of DT in the building's development process. 
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1. INTRODUCTION 

The design of future sustainable and smart buildings is growing in complexity, coupled with growing 

environmental and economic concerns. This underscores the crucial need for substantial innovation in the AECO 

(Architecture, Engineering, Construction, and Operation) (Vial 2019) industry in terms of digital transformation 

(Ebert and Duarte 2018) and technologies such as Information and Communication Technologies (ICT) (Kaware 

and Sain 2015), Artificial Intelligence (AI) (Winston 1984; Baduge et al. 2022) Industry 4.0 (Ghobakhloo 2020), 

the Internet of Things (IoT) (Madakam et al. 2015; Shishehgarkhaneh et al. 2022), Big Data (Sagiroglu and Sinanc 

2013), Blockchain Technologies (Liu, Han, and Zhu 2023), and Building Information Modeling (BIM) (Eastman 

et al. 2011; Smith 2014). 

The incorporation of the aforementioned technologies has increased the performance complexity of buildings and 

their development processes (Kim and Nevatia 2004). To understand these complexities, it is necessary to 

decompose the various systems involved. The AECO industry typically develops models at various abstraction 

levels, encompassing high-level decompositions of building systems and detailed specifications of individual 

components. Engineering disciplines use domain-specific languages (Fowler 2010), tools, and methodologies to 

represent and simulate the concerned building. This process involves creating, reusing, and exchanging domain-

level simulation models to construct a complete building model, forming a system of systems. The building project 

sector encompasses disciplines such as structural, mechanical, and electrical. For instance, a building may be 

divided into a Structural Frame System (SFS), HVAC (Heating, Ventilation, and Air Conditioning), Lighting, 

Electrical Power, and Security sub-systems. This approach allows design consultancies to delegate tasks, roles, 

and simulation model creation between related engineering disciplines.  

The integration of Digital Twin (DT) simulation models has become essential in this context, providing a 

comprehensive solution to manage the challenges of modern building projects. DT facilites the digital 

transformation of physical buildings by integrating their digital models with analytical simulation engines, i.e., 

specialized simulators with their real-world data, maximizing the value of data and creating beneficial synergies 

across their development stages (Lu et al. 2022). Simulators are used in building DT to predict the behaviour of a 

building, allowing architects and engineers to test different design scenarios and optimize the system’s 

performance. DT can also be exploited to monitor the system’s performance in real-time, allowing facility 

management teams to detect and diagnose problems before they become critical. In addition, DT can help to ensure 

the availability of digital building information throughout the entire development process of a building.  DT 

technology elevates BIM models (e.g., for clash detection, cost analysis, project efficiency, etc.) to a new tier of 

sophistication, allowing stakeholders to visualize data in real-time.  

The advancements and growing research in DT within the AECO industry represent significant progress, they also 

highlight a range of challenges that prevent its widespread adoption for predictive simulations. Researcher like 

(Opoku et al. 2023) and (Naderi and Shojaei 2023) have been examining the applications and implementation 

requirements of DT, contributing to the growing body of knowledge through scientific articles and reports. 

Addressing these challenges is crucial for the successful implementation of these technologies. The critical 

challenges are (a) to identify potential inconsistencies and errors that may hinder the creation and combination of 

accurate simulation models and their associated outcomes, and (b) to properly coordinate the different specialized 

simulators in a unified collaborative simulation (co-sim). 

In light of the identified challenges, it has become important to understand the complex nature of building 

simulations. Simulation model for buildings draws data from a variety of sources, including building digital model 

data (e.g., concerning construction material information, occupancy levels, and cost analysis), building monitoring 

data (e.g., IoT solutions and multi-view data analysis), user preferences (e.g. regarding comfort, safety, and energy 

efficiency), environmental conditions (e.g., environmental impact, biodiversity), etc., which must be reconciled 

before the configuration of a simulation model can be initiated. Moreover, depending on the overall aim and 

function of a DT, there is a need to perform multiple computations and simulations for different purposes and with 

different characteristics, features, requirements, degrees of complexity, etc. The problem becomes yet more 

complicated when the simulation outcomes of each specialized simulator need to be merged or used as input for 

other specialized simulators, thereby creating an intricate and complex network of dependencies between 

specialized simulators where initiating one simulation entails completing one or multiple prior operations.  
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For example, consider a prediction scenario of an emergency evacuation of a building during an earthquake, 

conducted within the design or operational phase of a building. Running simulations that model critical details 

about many facets of the scenario is essential. Necessary aspects that require simulation include the propagation 

of the earthquake within the building, occupant and emergency services communication during the event, densities 

and flows of dynamic occupant crowds during egress, the establishment of safe evacuation routes, geometric 

modelling of the building structure, assessment of structural integrity under seismic conditions, identification of 

potential evacuation challenges through physical simulations, estimation of evacuation time, monitoring 

temperature changes within the building to prevent casualties, and analyzing occupant movement patterns. These 

simulations are essential to ensuring an efficient exit strategy in emergency situations and maintaining personal 

safety. Effectively integrating different criteria and attributes of simulation models is a persistent challenge in the 

building industry (Ozturk 2021). This limits our ability to fully exploit the potential of these simulations and 

compromises analysis efficiency and accuracy. 

1.1 Reseach aims and contributions 

This paper aims to provide a thorough review of the  drivers and barriers influencing the adoption of DT in the 

AECO industry, with a focus  on integrating advanced, specialized simulators for making holistic, comprehensive, 

and accurate predictions in the context of building DT.  

In this framework, the present study will address the following research questions: 

RQ1. What are the key internal and external factors that influence the drivers and barriers to the adoption of 

DT in the building industry? How do these factors contribute to the overall integration of DT? 

RQ2. What are the phase-specific drivers and barriers for integrating DT across various stages of a building's 

development process? How can stakeholders leverage this understanding to optimize decision-making, 

efficiency, and sustainability throughout the building's development process? 

Building upon the research questions mentioned above, this paper's contributions are as follows: 

C 1. To adress RQ1, this study provides a comprehensive analysis for integrating DT technology into the 

building industry. It examines internal organizational factors as well as external market and regulatory 

influences. This approach enables the identification of various drivers and barriers associated with the 

adoption of DT technology in the building industry. 

C 2. In the response to RQ2, a framework is proposed that identifies corresponding drivers and barriers for 

each phase in a building’s development process, including design, construction, operation and 

maintenance, and demolition. Within this framework, we have identified a total of 48 drivers and 40 

barriers across all phases. With the aim to adapt DT, this phase-specific approach will enable stakeholders 

to integrate DT technologies more effectively at each stage, thereby ensuring optimized decision-making, 

enhanced efficiency, and improved sustainability. 

Reviewing existing literature on drivers and barriers to DT reveals a need to identify specific strategies to 

effectively enhance the integration and interoperability of specialized simulation models in the development of 

DT. From this background, our exploration of existing solutions for the identified barriers gives an introduction to 

a cutting-edge classifying analysis modeling knowledge from the automative industry called Model Identity Card 

(MIC) to formally integrate simulators into collaborative simulations. Inspired by this, and to be developed in 

future research, we propose the concept of a novel framework, the Building Simulation Identity Card (BSIC), 

specifically designed to address the integration of specialized building simulators. 

1.2 Research structure 

The remaining sections of this paper are structured as follows: Section 2 provides a background, defining DT and 

discussing key concepts such as collaborative simulations, the Functional Mockup Interface (FMI), and the Model 

Identity Card (MIC). Section 3 outlines our research methodology, including the selection of databases and search 

queries. Section 4 categorizes the drivers and barriers to DT adoption in the building industry, dividing them into 

four phases: design, construction, operation and maintenance, and demolition. Furthermore, each section builds 

upon the findings and discussions of the preceding ones, creating a comprehensive and interconnected analysis of 

the topic. Section 5 discusses the implications of these drivers and barriers and introduces the BSIC concept. 

Section 6 presents the study's key insights and offers concluding remarks, while Section 7 identifies the research's 
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limitations and proposes directions for future investigations. Figure 1 represents the overview of the research 

structure followed in the paper. 

 

 

Figure 1: Overview of research structure followed in paper. 

2. BACKGROUND 

This section provides a compilation of DT definitions used for various applications in several industries. 

Additionally, it elucidates the fundamental principles and concepts crucial for comprehending DT essence. 

2.1 Definition of Digital Twin (DT) 

A DT integrates data from multiple sources to accurately replicate the behaviour and dynamics of a physical entity, 

system, or process, e.g., a building's development process. It establishes real-time connectivity for data exchange 

between the physical and digital worlds (Khajavi et al. 2019; Rafsanjani and Nabizadeh 2023). In the last decade, 

DT has started gaining more attention in the AECO industry as a tool for virtually replicating numerous aspects of 

a building product, process, or service. This growing focus on DT enables companies to detect and resolve physical 

problems, design and build improved models, and achieve value and benefits more efficiently (Zhang, Yang, and 

Wang 2023; Tuhaise, Tah, and Abanda 2023; Opoku et al. 2021). The origin of DT can be traced back to the 

aerospace industry, specifically when the National Aeronautics and Space Administration (NASA) published a 

roadmap for modeling and simulation (Schroeder et al. 2016). While DT is gaining recognition in academic 

literature and industrial practice, there is no universally accepted definition. A literature review reveals that while 

specific definitions of DT may differ, the general idea or focus remains consistent. Table 1 provides an overview 

of a few definitions of DT from the perspective of their applications in various industries. 

The transition from BIM to DT within the building and construction sector signifies a paradigm shift towards more 

dynamic and interconnected digital representations of built assets. While BIM (see section 2.2.8) has been useful 

in creating detailed digital models of buildings (BuildingSMART), the emergence of DT introduces a deeper layer 

of digitalization by not only replicating the physical building but also by capturing real-time data and interactions, 

thus forming a DT that mirrors its physical counterpart throughout its entire lifecycle. 
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Table 1: Definitions of DT in various related industries and academic publications. 

No Definitions Applications References 

1 

“Integrated multi-physics, multi-scale, probabilistic simulation of a 

vehicle or system that uses the best available physical models, sensor 
updates, fleet history, etc., to mirror the life of its corresponding 

flying twin.” 

NASA’s 

Integrated 

simulations 

(Glaessgen and Stargel 2012; 

Knapp et al. 2017; Rafsanjani 

and Nabizadeh 2023) 

2 

“In the context of Centre for Digital Built Britain a DT is a realistic 

digital representation of assets, processes, or systems in the built or 

natural environment.” 

Information 

Management 
(Bolton et al. 2018) 

3 

“The DT is a set of virtual information constructs that fully describes 

a potential or actual physical manufactured product from the micro 

atomic level to the macro geometrical level. At its optimum, any 

information that could be obtained from inspecting a physical 
manufactured product can be obtained from its DT” 

Complex 

systems 
(Grieves and Vickers 2017) 

4 

“The concept of connecting a physical system to its virtual 

representation via bidirectional communication (with or without a 

human in the loop) allowing for the exploitation of Artificial 

Intelligence and Big Data Analytics to unlock value.” 

Big Data 

Analytics 
(Al-Sehrawy and Kumar 2021) 

5 

“A model of the physical object or system, which connects digital 
and physical assets, transmits data in at least one direction, and 

monitors the physical system in real-time. In addition, it also should 

support analytics, control, and simulation functions.” 

Manufacturing 

systems 
(Catapult 2018) 

6 
“A DT is a real mapping of all components in the product life cycle 

using physical, virtual, and interaction data between them.” 

Cyber-physical 

data 
(Tao et al. 2018) 

7 
“Digital entity that reflects physical entity’s behavior rule and keeps 

updating throughout the lifecycle.” 

Industrial 

Applications 
(Liu et al. 2021) 

8 

“A dynamic digital representation of an industrial asset that enables 

companies to better understand and predict the performance of their 

machines find new revenue streams and change how their business 

operates.” 

Industrial 

Equipment 
(Digital 2017) 

9 

“DT can be regarded as a paradigm by means of which selected 
online are dynamically assimilated into the simulation world, with 

the running simulation model guiding the real world adaptively in 

reverse.” 

Anti-

Submarine 
(Wang, Yang, et al. 2019) 

10 

“DT is defined as a digital copy of a physical asset, collecting real-

time data from the asset and deriving information not being 

measured directly in the hardware.” 

Offshore 

vessels with 

cranes 

(Fotland, Haskins, and Rølvåg 

2020) 

11 

“The new technology, accessing realistic models of the current state 

of the process and their behaviors in interaction with their 

environment in the real world is called the DT.” 

Machining 

Process 

Planning 

(Liu et al. 2019) 

12 

“DT is essentially a unique living model of the physical system with 

the support of enabling technologies including multi-physics 

simulation, machine learning, AR/VR and cloud service, etc.” 

Machinery 

fault diagnosis 
(Wang, Ye, et al. 2019) 

14 

“Faster optimization algorithms, increased computer power and 

amount of available data can leverage the area of simulation toward 

real-time control and optimization of products and production 

systems – a concept often referred to as a DT.” 

Real-time 

control and 

optimization 

(Söderberg et al. 2017) 

15 

“The real-time digital representation of the physical building or 

infrastructure. Usually, data is gathered by on-site sensors that 

continuously monitor changes in the building and the environment 

and update the BIM model with the most recent data and 

measurements.” 

Construction 

Industry 
(Ammar et al. 2022b) 

In the building and construction sector context, DT can be stratified into three layers: the physical building, the 

digital replica of the building, and the way the two are interconnected (Qian et al. 2022).  
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Based on the flow of information, the physical-digital system that is the outcome of a building digitalization 

process can be classified into three types: Digital Model, Digital Shadow, and DT (Madni, Madni, and Lucero 

2019; Naderi and Shojaei 2023). Figure 2 illustrates this architectural representation. 

a) Digital Model 

Digital models are simplified digital representation of buildings. It may include static information, such as the 

geometry of building components and other properties. Still, it doesn't contain real-time data nor information about 

how the building behaves in the real world. A change in the physical building does not automatically affect the 

digital representation of that building, and vice versa (Kritzinger et al. 2018). 

b) Digital Shadow 

A digital shadow is an advanced type of digital model that incorporates real-time data from sensors, cameras, and 

other sources to accurately represent an object or system. It can monitor, analyze, and optimize data but cannot 

interact with a physical object or system. A change in the physical building leads to an automatic change in the 

digital model of the building. However, a change in the digital model does not automatically result in a change to 

the physical building, i.e. the flow of information is uni-directional from the physical building to the digital 

building model (Sepasgozar 2021). 

c) Digital Twin 

A DT represents the most advanced type of digital model that replicates a physical building in a virtual 

environment. It incorporates real-time data and information about the building's behaviour, performance, and 

interactions with its surrounding environment (Ladj et al. 2021). IoT devices link DT to physical buildings, 

enabling both virtual and physical entities to interact automatically. DT allows bi-directional data exchange 

between the physical and digital model of the building. 

 

Figure 2: Level of Integration for DT. 

2.2 Key Concepts 

2.2.1 Significance of DT in Industry 4.0 

Industry 4.0 is based on core design ideas, which includes decentralization, virtualization, interoperability, service 

orientation, real-time capabilities, and modularity. These principles serve as guidance for its implementation (Pires 

et al. 2019). Among these concepts, virtualization can be defined as the capability of the cyber-physical system 

(CPS) to create a digital replica of the physical model and establish a connection between the physical and digital 

model to gather information that will affect the model's simulation. Eventually, this idea developed into the concept 

of the DT (Hermann, Pentek, and Otto 2016). DT plays a key role in Industry 4.0 development, according to the 

Gartner hype cycle, which sets the DT as an innovation trigger of emerging technologies in 2017 (Panetta 2017) 

and at the pinnacle of inflated expectations in 2018 (Panetta 2018; Pires et al. 2019). 

2.2.2 Collaborative Simulations 

Collaborative simulation, also known as co-simulation and co-sim, is a sophisticated process that involves running 

multiple specialized simulations simultaneously to model an entire system. This approach is particularly significant 
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in the realm of DT, addressing the intricate interactions and dependencies within building systems that isolated 

simulations cannot capture accurately. It combines individual models or simulations, each representing specific 

aspect of the larger system despite being developed using different simulation tools, programming languages, or 

platforms. This diversity introduces additional complexity in the analysis of interconnected heterogeneous systems 

(Hansen et al. 2024) within the realm of digital twins.. By leveraging the Functional Mock-up Interface (FMI), 

model interoperability is facilitated, allowing the seamless exchange of simulation models among various 

simulation tools (Schwan, Unger, and Pipiorke 2017). As a result, the co-simulation process generates a 

comprehensive output that represents the behaviour and performance of the complete system. 

To enable this seamless integration and communication between diverse simulations, a software component called 

the Collaborative Simulation Orchestration Engine (COE) is employed (Larsen et al. 2016). The COE serves as 

the central control unit, managing interactions between different simulation instances. It synchronizes their 

behaviours and facilitates communication among users involved in co-simulation by running a so-called master 

algorithm. 

2.2.3 Functional Mockup Interface (FMI) 

DT facilitates the monitoring and predicting various scenarios for buildings and the systems installed in them. In 

the AECO sector, DT is critical due to its ability to accurately and dynamically model interconnected systems, 

which is key to predictive analysis and informed decision-making. Integrating multi-domain models is critical for 

developing a comprehensive building model. The FMI interface is a standardized interface that allows for model 

exchange and co-simulation within system simulations (Gomes et al. 2021). While FMI has gained widespread 

recognition in automotive engineering (Ravi et al. 2023), its potential and application in the AECO industry have 

received little attention. T. Schwan et al. (Schwan, Unger, and Pipiorke 2017) investigated four different 

applications of FMI in building simulations that went beyond simple model exchange. They first demonstrated 

FMI’s role in developing an advanced, high-level building control system. Secondly, FMI facilitates smooth 

communication between a real-world HVAC component and a complex model of a virtually connected building. 

Thirdly, it integrates a fast-calculation simulation model into a complex virtual power plant controller. Lastly, FMI 

allows the combination of various simulation platforms, incorporating individually optimized numerical solvers. 

These applications highlight FMI's effectiveness in handling complex simulation needs within the AECO industry, 

particularly in the development and operation of DT. 

2.2.4 Model Identity Card 

Simulation models are virtual entities that reproduce and mimic real-world scenarios, systems, or processes. They 

represent and simulate complex systems or events, providing valuable insights, analysis, and predictions (Angjeliu, 

Coronelli, and Cardani 2020). Simulating full systems requires a multidisciplinary approach, and different teams 

of domain experts must use the same strategies. DT creates simulation models of a building by integrating data 

from different sources. They employ an integrated multi-physics model to simulate the behavior of the physical 

twin, system, and process (Boyes and Watson 2022). A significant reduction in inconsistencies resulting from 

miscommunications or misinformation can be achieved by implementing measures that restrict large groups of 

users to a uniform vocabulary and standardized options. The aim is to create a universally accepted lexicon titled 

"Model Identity Card (MIC)" that seeks to simplify the procedure of specifying and exchanging simulation models 

while mitigating ambiguity (Sirin et al. 2015). MIC implementation facilitates collaboration among stakeholders 

and reduces model development complexity. MIC allows users to reduce the time it takes to get a correct model 

by checking the completeness and consistency of their models throughout the modelling process. 

The method of developing a MIC for simulation models involves two key steps. In the initial step, the principal 

classes and attributes of the model are identified. Once the classes and attributes are identified, they are grouped 

in a logical manner. This helps in structuring the simulation model and organizing the different elements. Assuming 

each numerical model is treated as an object, possessing distinct attributes that define its nature, the majority of 

these objects will exist within a physical system. They will engage in interactions with other objects to form a 

larger object. To comprehend and extract individual objects within a system, including their interfaces, it becomes 

imperative to ascertain and leverage the qualities and interconnections of an object and its role within the system. 

Table 2 highlights the most significant classes and attributes that play a major role in the development of the 

simulation model (Sirin et al. 2015; Blattnig et al. 2008). This table serves as a visual representation to emphasize 

the key components and their contributions to the overall model. 
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Table 2: MIC Development Procedure (inspired from Sirin et al. 2015). 

Main Classes and Attributes Attributes Grouping 

Physical Object Physical Object 

Method Object Physics 

• Model Dimension 

• Chosen Method  

• Precision 

• Solver 

• Time step 

• Linearity  

• Continuity  

• Tool Name 

• Developer name 

• Scalability 

• Time Computation 

• Hardware Requirements 

Usage Method 

• Compilability 

• Time Computation 

• Scalability  

• Software Name 

• Software and Hardware Version 

• Model Dimension 

• Chosen Method  

• Time step 

• Linearity  

• Physical Equations 

Verification and Validation Verification and Validation 

• Accuracy 

• Code Verification 

• Level of technical review 

• process control 

• Accuracy 

• Code Verification 

• Level of technical review 

• process control 

Interface Object Interface 

Control Attributes 

• Signal 

• Human 

• Monitor 

• Nature 

• Domain 

• Sub-domain 

• Variable 

• Unit 

Physics Assumptions 

• Geometry 

• Mechanics 

• Boundary Condition 

• Material Property 

• Energy Transfer 

• Closed System 

• Uniformity 

• Stability 

• Rationality  

• Complete Information 

Parameters Dependence 

 

Object Context 

• Historical Information 

• Usage 

• Software Use 

 

2.2.5 Internet of Things (IoT) 

Kevin Ashton, a British technology pioneer, coined the term "Internet of Things" (IoT) in 1999 to refer to a network 

where sensors connect physical objects to the Internet (Li, Xu, and Zhao 2015).  The term was created by Ashton 

to highlight the potential of using the Internet to link Radio-Frequency Identification (RFID) tags used in corporate 

supply chains to count and monitor things without the assistance of humans (Li, Xu, and Zhao 2015; Attaran 2017). 

By continuously updating data, IoT enables DT applications to create a real-time virtual representation of a 

physical object. Therefore, IoT is the primary technology used in all DT applications (Attaran and Celik 2023). 

For example, real-time gathered from smart infrastructure enables the authorities to monitor and manage the 

structures more efficiently. This can lead to improved building efficiency, reduced traffic congestion, better 

management of natural resources, and enhanced public safety. 
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2.2.6 Data Analytics  

Data analytics refers to the process of collecting, analyzing, and interpreting data generated by the DT (Erikstad 

2017). It involves using advanced technologies and algorithms to extract insights and predict outcomes based on 

the captured data. DT technology enables the collection of large amounts of data from sensors and other connected 

devices. Data analytics allows this data to be processed and analyzed in real time, enabling organizations to identify 

trends, anomalies, and potential problems before they occur (Datta 2016). 

Data analytics helps the AECO industry make informed decisions, optimize operations, and reduce costs. For 

example, it can be used in the building industry to simulate the performance of buildings or infrastructure, identify 

potential issues, and devise strategies to resolve them (Ram, Afridi, and Khan 2019). 

2.2.7 Block Chain 

A blockchain can be defined as “a distributed ledger of transactions implemented as data batched into blocks that 

use cryptographic validation to link the blocks together. Each block references and identifies the previous block 

using a hashing function which forms an unbroken  

chain (i.e., blockchain)” (Bambara and Allen 2018). In the context of DT, blockchain technology can be used to 

securely store and share data, such as sensor readings, machine performance metrics, and maintenance logs, 

between the physical asset and its digital representation (Hasan et al. 2020). This ensures that the DT reflects the 

current state of the physical asset and that the data being used to make decisions is accurate and reliable, along 

with a record of the predicative simulation results. By recording and tracking both the predictions and the actual 

sensor data collected in reality, the prediction error made by simulations can also be carefully tracked and exploited 

to improve predictive accuracy over time. This would enhance decision traceability, accountability, and 

(computational) reproducibility of the simulations. Figure 3 presents the benefits of using blockchain for DT 

(Yaqoob et al. 2020).  

 

 

Figure 3: Benefits of Blockchain for DT. 

2.2.8 Building Information Modelling (BIM) 

Building Information Modelling (BIM) is a tool which enables the physical and functional aspects of a building to 

be digitally represented in one shared platform using 3D objects (ISO_29481-1 2016; Jung, Häkkinen, and Rekola 

2018). However, BIM alone may not be sufficient for asset management throughout the entire development process 

in the AECO industry due to its reliance on fixed information regarding the built environment. BIM is unable to 

automatically incorporate real-time data updates into the models unless supplemented with additional data sources 

(Deng, Menassa, and Kamat 2021; Pishdad-Bozorgi et al. 2018). An object that does not exist or has not yet been 

constructed may be represented by a BIM model, but a DT must promptly reflect the physical counterpart's current 

state (Jiang et al. 2021). Therefore, a proposed approach to the advancement of smart asset management integrates 

the principle of DT (Lu, Xie, Heaton, et al. 2020). 
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3. RESEARCH METHODOLOGY  

3.1 Database and Search Query  

This section gives an overview of the methodology used to systematically review the literature and prior research 

on drivers and barriers to DT applications for buildings. This systematic review adheres to the PRISMA guidelines 

(Preferred Reporting Items for Systematic Reviews and Meta-analyses) (Moher et al. 2010). This is crucial when 

the systematic review concerns an important subject, like DT. Combining data from several sources, such as the 

Scopus, Web of Science, and Google Scholar, allows us to search for more DT data for building-related studies 

(Kugley et al. 2016). However, Google Scholar is not considered a suitable platform for systematic reviews; thus, 

to identify studies related to DT for buildings, we combined Scopus and WoS (Gusenbauer and Haddaway 2020; 

Naderi and Shojaei 2023). 

In identifying relevant articles in the field of study, query-based searches are used. It is, however, challenging to 

formulate a search query that is appropriate for including DT studies in the building industry, because "Digital 

Twins" is used in different fields of study. Therefore, a comprehensive search query was formulated. The search 

query was constructed using the keywords family (Digital Twin, and Building). It is important to note that this 

method of constructing a search query allows for a targeted and specific search. 

 

 

Figure 4: The list of search keywords and how they were logically combined for the literature survey. 

 

To commence the identification of relevant studies for this review, we initiated the formulation of appropriate 

search queries and then determined potential databases that may contain pertinent information. The keywords 

depicted in Figure 4 are linked through the logical OR operator within their respective groups, and the combination 

between the groups is represented by the following expression: (G1 OR (G2 AND G3)) AND (G4 AND G5). Here, 

G1 identifies the DT block, G2 represents the BIM block, G3 refers to the sensor block, G4 indicates the built 

environment block, and G5 corresponds to the building type block. Research on Digital Twin-based predictive co-

simulations is encompassed by the phrases “Digital Twin”, “Machine Learning”, “Big Data”, “Data Analytics”, 

and “Cyber-Physical Systems”. The review is conducted in three sequential steps: study identification, exclusion 

criteria, and screening process. 

As per our search query, Figure 5 illustrates annual publication trends related to DT. This graphical representation 

delineates the volume of scholarly articles in journals and conference papers over the last ten years. This 

information is sourced from databases of Scopus and Web of Science. The data we have is up to December 31st. 
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Figure 5: Yearly Publications on DT from Scopus and WOS. 

 

3.1.1 Step 1: Study Identification 

Firstly, we utilized the OR and AND commands to apply the search query to both the "Title" and "Abstract" fields 

of the selected platforms. This process ensures that any studies contained within the Scopus and WOS and Scopus 

databases that include search keywords in their abstracts or titles are captured. Moreover, our methodology permits 

researchers to concentrate on studies within their area of interest. By applying the OR command, the search query's 

scope is broadened to encompass any studies with one or more of the query keywords in their title or abstract, 

while the AND command ensures relevance to the field of study. This methodology guarantees that all relevant 

studies are identified and included in the review. As of December 31st, 2023, we identified 1612 and 3775 records 

in the WoS and Scopus databases, respectively. 

3.1.2 Step 2: Exclusion Criteria 

We limited the search to articles published in English in the last ten years between 2013 and 2023. Systematic 

reviews (Santos, Costa, and Grilo 2017) are considerably influenced by journal articles, which enhance the quality 

of research studies. Moreover, several DT-enabling technologies are derived from computer science, whose 

research findings are often published in conference papers. (Vardi 2009). Consequently, we have restricted the 

selected document types to journal and conference proceedings articles. As a result of these limitations and the 

removal of 1483 duplicate studies from Scopus and WOS, the number of records has been reduced to 3904. 

3.1.3 Step 3: Screening 

We identified the studies based on the following criteria after narrowing our search and removing duplicate articles:  

• Identified studies must be within the AECO industry context. 

• The selected articles should involve the DT or a combination of a static model with real-time data 

that allows the flow of information. 

• There must be relevance to the buildings in the developed DT. 

A preliminary screening of the articles was conducted based on their titles, resulting in the removal of 1326 articles 

that were unrelated to the AECO industry. Subsequently, 767 articles were eliminated after reading their abstracts 

as they did not pertain to the building industry. Upon further screening according to our research questions and 

criteria, we identified 138 articles that were inclined toward other research areas, such as computer science, and 

subsequently excluded them from our study. This resulted in 147 articles that served as the basis for further 

analysis. Figure 6 represents the PRISMA diagram of systematic review. 



 

 

 
ITcon Vol. 29 (2024), Jahangir et. al., pg. 152 

 

Figure 6: PRISMA Diagram for the systematic review of DT for Buildings. 

 

Figure 7: Visualization of co-occurrence network of keywords (generated by using VoSViewer). 



 

 

 
ITcon Vol. 29 (2024), Jahangir et. al., pg. 153 

3.1.4 Co-Occurrence Network of Keywords of DT in Building Industry Research 

The keywords used in a research study convey its theme, help identify the article through indexing and contribute 

to understanding a specific field of study by mapping out all the relevant keywords (Wuni, Shen, and Osei-Kyei 

2019). It is imperative to note that the strength of the association between two keywords in a keyword co-

occurrence network depends on how often they appear together in research papers (Nees Jan van Eck 2019). The 

software tool VOS viewer was employed to generate the keyword co-occurrence network. A "minimum number 

of occurrences" criterion was established to achieve an optimal network, requiring a keyword to appear at least 

four times before inclusion in the network. Out of the initial pool of 572, we selected 51 keywords. This ensured 

an optimal and easily reproducible network while maintaining readability. 

Figure 7 illustrates the co-occurrence network of keywords. It highlights the interconnected nature of key drivers 

and barriers to DT adoption within the building industry. It provides a visual validation of the analytical analysis 

presented, showing clusters that represent critical areas of focus such as integration, sustainability, and 

collaboration, which are essential for understanding the motivation behind DT adoption and the complexities 

involved in its implementation. 

4. FINDINGS 

This section presents the research findings and descriptive analysis, as well as the categorization of the drivers and 

barriers to DT adoption in building construction identified through content analysis. Also, it introduces the idea of 

MIC as a way to overcome those barriers. 

 

 

Figure 8: DT related publications over the last ten years from WoS. 

The search term was "Digital Twin", and the database used was the Web of Science in the category of Engineering 

Civil and Construction Building Technology. Consequently, an annual publication on DT in the AECO industry 

was generated for the last ten years, as portrayed in Figure 8. Figure 8 was intended to thoroughly explore the 

publication of DT in the AECO industry, utilizing a single, high-quality data source for a more precise examination. 

The years 2015 and 2016 were excluded from the study as no papers were published in those years in the Web of 

Science (WoS) database for the aforementioned field of study. 

4.1 Drivers to the Adoption of DT in the Building Development Process  

External and internal factors influence DT adoption throughout a building’s development process. External drivers 

are those related to the market or the industry at large. They include demand for sustainable building practices, 

regulatory changes, and technological advancements. Internal drivers, on the other hand, are those specific to a 

given organization or project. These can include the desire to improve collaboration between stakeholders, increase 

construction efficiency, or reduce costs. While external drivers may influence the decision to adopt DT, internal 

factors are crucial in determining how they are implemented and utilized. Ultimately, the successful adoption of 

DT requires a balance between external and internal drivers. 
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Table 3: Internal and External drivers for the adoption of DT in Building Construction. 

  Drivers Description 
Internal/ 

External 
References 

(a) Design Phase 

D1 

Improve the 

efficiency of the 

overall design 

process 

DT enhances the overall design process by allowing 

real-time data monitoring and analysis, resulting in 

faster problem identification and resolution. 

Internal 

(Opoku et al. 2022; Pan and Zhang 

2023; Rafsanjani and Nabizadeh 2023; 

Sepasgozar et al. 2021; Xia et al. 2022; 

Osadcha, Jurelionis, and Fokaides 

2023) 

D2 
Visualization of 

real-time data 

DT creates a virtual representation of physical assets or 

systems, allowing users to easily comprehend and 

interpret complex data. It improves the ability to 

monitor, analyze, and predict real-world scenarios, 

resulting in better decision-making and problem-

solving abilities. 

Internal 

(Aleksandrova, Vinogradova, and 

Tokunova 2019; Antonino et al. 2019; 

Belaroussi et al. 2023; Kor, Yitmen, 

and Alizadehsalehi 2023; 

Mavrokapnidis et al. 2021) 

D3 
Popularity of the 

Term DT 

In literature, the popularity of the term DT has also 

been discussed as one of the factors driving its 

implementation, since organizations often implement 

DT to follow what appears to be a global trend 

External  (Neto et al. 2020) 

D4 

Incoorporation of 

social 

sustainability 

DT analyzes different design options, enabling 

stakeholders to evaluate social impact and make 

informed decisions for creating more inclusive spaces. 

Internal 

(Boje et al. 2020; Evangelou, Gkeli, 

and Potsiou 2022; Naderi and Shojaei 

2022; Tagliabue et al. 2021) 

D5 
Maintenance of 

occupant comfort 

It enables real-time monitoring and analysis of 

building systems and occupant behavior for proactive 

maintenance interventions, maximizing comfort and 

ensuring a pleasant indoor environment. 

Internal 

(Almusaed and Yitmen 2023; Opoku et 

al. 2021; Banfi et al. 2022; Bortolini et 

al. 2022; Clausen et al. 2021) 

D6 
Optimizing 

building design 

DT enables real-time simulations and predictive 

analytics to optimize building design. 
Internal 

(Gopinath et al. 2018; Zhou et al. 2021; 

Kaewunruen, Rungskunroch, and 

Welsh 2019) 

D7 
Installation of a 

secure system 

It enables architects and designers to simulate and 

optimize security system installation. This ensures that 

it is integrated effectively, reducing vulnerabilities and 

flaws. 

Internal 
(Boje et al. 2020; Samanta, Sarkar, and 

Bulo 2022) 

D8 

Effective 

coordination 

between 

stakeholders 

By providing a virtual replica of the building that 

facilitates real-time collaboration, DT allows early 

detection of design clashes and allows stakeholders to 

explore design options before implementation. 

Internal 

(Bohner et al. 2019; Broo and 

Schooling 2020; Camposano, 

Smolander, and Ruippo 2021; Jiang et 

al. 2023; Naderi and Shojaei 2022) 

D9 

Ability to 

enhance building 

data management 

DT allows real-time monitoring and analysis of data 

across different systems. This helps to centralize and 

streamline building data management processes, 

improving overall efficiency and data-driven decision-

making. 

Internal 

(Alaloul et al. 2022; Almatared et al. 

2022; Ariyachandra, Samarakkody, and 

Perera 2019; Belaroussi et al. 2023; 

Bello et al. 2021) 

D10 

Evaluating and 

identifying the 

design flaws 

Real-time simulation and monitoring in DT enable 

continuous testing and analysis to quickly identify and 

evaluate design flaws. 

Internal 

(Boje et al. 2020; Opoku et al. 2022; 

Deng, Menassa, and Kamat 2021; 

Hosamo, Imran, et al. 2022) 
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  Drivers Description 
Internal/ 

External 
References 

D11 

Aid discussion 

with customers 

during the 

development 

process 

DT offers interactive building design representation, 

enabling customers to explore and understand the 

project comprehensively. This promotes informed and 

collaborative customer feedback, leading to improved 

decisions and greater satisfaction. 

Internal 
(Alanne and Sierla 2022; Opoku et al. 

2022) 

(b) Construction Phase 

D1 

Improvement in 

the selection of 

materials 

DT can be used to simulate different materials 

performance under various conditions. This aids in the 

evaluation of factors such as sustainability, cost, and 

performance. 

Internal 

(Ali and Badinelli 2016; Baduge et al. 

2022; Bohner et al. 2019; Cogswell et 

al. 2022; Niu et al. 2016) 

D2 
Enhance logistics 

monitoring 

DT integrates data from sensors, drones, and schedules 

for real-time logistics monitoring, improving 

coordination, resource allocation, and risk mitigation 

on construction sites. 

Internal 
(Greif, Stein, and Flath 2020; Opoku et 

al. 2021) 

D3 

Mitigating risks 

of climate 

change 

The development of accurate DT is essential for 

understanding how climate change and associated risks 

affect buildings and advising on ways to mitigate these 

risks. 

External (Petri et al. 2023) 

D4 
Better 

management  

DT helps manage construction projects by providing 

real-time progress updates, resource allocation, and 

issue identification. 

Internal 

(Liu, Han, and Zhu 2023; Oliveira 

2020; Ozturk 2021; Lu, Parlikad, et al. 

2020) 

D5 

Remote 

monitoring and 

control 

Due to technological advancements, construction 

operations and assets can be monitored and controlled 

remotely, leading to the development of DT for 

constructed facilities. 

External (Khallaf et al. 2022a) 

D6 
Resource 

management 

DT optimizes resource management by providing real-

time data on equipment, materials, and manpower 

utilization. 

Internal 
(Bohner et al. 2019; Cogswell et al. 

2022; Kineber et al. 2023) 

D7 

Automated 

progress 

monitoring 

Progress monitoring is automated by integrating data 

from sensors and BIM models, providing a real-time 

visual representation of construction activities. 

Internal 
(Greif, Stein, and Flath 2020; Opoku et 

al. 2022) 

D8 

Reducing the 

number of 

injuries 

Proactive risk mitigation strategies are identified by 

simulating and identifying potential construction risks, 

thus improving safety. 

Internal 

(Park et al. 2023; Akanmu, Anumba, 

and Ogunseiju 2021; Ghansah and Lu 

2023; Teizer, Johansen, and Schultz 

2022) 

D9 

Enhanced 

Construction Site 

Management. 

In the AECO industry, DT appeals to a broad range of 

stakeholders due to their ability to manage and monitor 

construction sites by extending levels of detail for BIM 

models 

External (Opoku et al. 2022) 

D10 Accurate 

information on 

By combining data from various sources, DT offers 

real-time, data-driven insights into a project's status, 

ensuring accurate and up-to-date monitoring. 

Internal 
(Khallaf et al. 2022b; Ammar et al. 

2022a; Opoku et al. 2021) 
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  Drivers Description 
Internal/ 

External 
References 

the status of the 

Project 

D11 

Reducing 

construction 

costs 

DT can reduce construction costs by optimizing 

resource allocation, detecting issues early on to 

minimize rework, and enhancing project efficiency, 

resulting in cost savings throughout the construction 

process. 

Internal 
(Khallaf et al. 2022b; Ariyachandra, 

Samarakkody, and Perera 2019) 

D12 

Enhanced 

Collaboration 

between 

stakeholders 

DT allows stakeholders to collaborate in real-time on 

project data and make informed decisions together. 
Internal 

(Bohner et al. 2019; Broo and 

Schooling 2020) 

(c) Operation and Maintenance Phase 

D1 
Real-time safety 

assessment 

DT integrates sensors and data analytics to monitor 

building conditions for real-time safety assessments. 
Internal 

(Arsiwala, Elghaish, and Zoher 2023; 

Petri et al. 2023; Opoku et al. 2021; 

Henzel et al. 2022) 

D2 
Effective 

decision-making 

DT allows facility managers to make informed 

decisions about maintenance, energy efficiency, and 

resource allocation through real-time data and 

simulations. 

Internal 

(Evangelou, Gkeli, and Potsiou 2022; 

Greif, Stein, and Flath 2020; Henzel et 

al. 2022; Kor, Yitmen, and 

Alizadehsalehi 2023; Naderi and 

Shojaei 2022; Parusheva and 

Aleksandrova 2021; Rojas-Mercedes, 

Erazo, and Di Sarno 2022; Torrecilla-

García, Pardo-Ferreira, and Rubio-

Romero 2021) 

D3 
Continuous asset 

surveillance 

DT integrates sensors and IoT devices to monitor 

building components in real-time, enabling continuous 

asset surveillance of their condition and performance. 

Internal 

(Alshammari, Beach, and Rezgui 2021; 

Boje et al. 2020; Angjeliu, Coronelli, 

and Cardani 2020; Akanmu, Anumba, 

and Ogunseiju 2021; Rojas-Mercedes, 

Erazo, and Di Sarno 2022) 

D4 
Reduction in 

operational cost 

Real-time data is provided to enable efficient resource 

allocation, predictive maintenance, and energy 

management, resulting in lower energy consumption 

and maintenance expenses. 

Internal 

(Harode, Thabet, and Dongre 2023; 

Opoku et al. 2022; Seo and Yun 2022; 

Spudys et al. 2023) 

D5 

Increasing 

Business 

Competition and 

Demand 

Increasing business competition has led companies to 

look for solutions to reduce costs and improve quality 

and productivity. This has resulted in increased 

demand for DT. 

External 
(Ammar et al. 2022b; Shahzad et al. 

2022) 

D6 
Increased 

productivity 

DT improves productivity by automating tasks, 

monitoring systems for anomalies, and optimizing 

space and resource allocation. 

Internal 

(Alaloul et al. 2022; Azimi and O'Brien 

2022; Opoku et al. 2021; Sajjad and 

Pan 2019; Drobnyi et al. 2023) 

D7 
Resilience and 

sustainability 

DT continuously monitors building systems, predicting 

and preventing failures and optimizing energy usage. 
Internal 

(Bortolini et al. 2022; Kaewunruen and 

Xu 2018; Sajjad and Pan 2019; 

Tagliabue et al. 2021) 
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  Drivers Description 
Internal/ 

External 
References 

This reduces environmental impact and ensures long-

term functionality in a changing environment. 

D8 

Increased 

Transparency of 

Information 

DT enhances transparency by allowing stakeholders to 

access real-time data on building operations and 

performance. This promotes accountability, informed 

decision-making, and improved collaboration. 

Internal 
(Opoku et al. 2022; Ammar et al. 

2022b; Napp 2022) 

D9 

Enhanced safety 

and risk 

management 

DT offers real-time data and simulations that enable 

predictive maintenance and risk assessment, ultimately 

enhancing safety by proactively identifying potential 

risks and optimizing maintenance strategies. 

Internal 

(Afzal, Shafiq, and Al Jassmi 2021; 

Baduge et al. 2022; Haupt, Akinlolu, 

and Raliile 2019; Levine and Spencer 

2022; Newaz et al. 2022; Park et al. 

2023; Xu, Duo, and Tang 2022; 

Aribisala et al. 2022; Torrecilla-García, 

Pardo-Ferreira, and Rubio-Romero 

2021) 

D10 
Preservance of 

historic buildings 

DT can aid in the preservation of historic buildings by 

monitoring and analyzing their structural integrity for 

early signs of deterioration or damage. 

Internal 

(Ni et al. 2022; Shishehgarkhaneh et al. 

2022; Ćosović and Maksimović 2022; 

Opoku et al. 2022) 

D11 

Improved 

retrofitting for 

buildings 

DT offers detailed insights into a building's 

infrastructure, enabling accurate retrofit planning and 

design. 

Internal 

(Arsiwala, Elghaish, and Zoher 2023; 

Zhao et al. 2021; Almatared et al. 2022; 

Opoku et al. 2022; Duch‐zebrowska 

and Zielonko‐jung 2021) 

D12 

Optimization of 

space utilization 

and energy 

performance 

DT allows for real-time monitoring of space usage and 

energy consumption data, enabling data-driven 

decisions to optimize layouts and HVAC systems for 

improved space utilization and energy efficiency. 

Internal 
(Opoku et al. 2022; Azimi and O'Brien 

2022; Spudys et al. 2023) 

D13 
Integration of 

Historical Data 

A DT can be used to integrate historical data from past 

usage in order to compare deviations from a baseline 

and inform future decisions. 

External (Almatared et al. 2022) 

D14 
Anomaly 

Detection  

DT compares real-time sensor data to expected 

performance, flagging anomalies like temperature 

fluctuations or equipment malfunctions. 

Internal 

(Hosamo, Nielsen, et al. 2022; Peng et 

al. 2020; Rojas-Mercedes, Erazo, and 

Di Sarno 2022; Lu, Xie, Parlikad, and 

Schooling 2020) 

D15 
Improved 

Planning  

DT offers a detailed 3D model of a building, 

improving data-driven planning and decision-making 

by providing insights into asset conditions and 

performance trends. 

Internal 

(Torrecilla-García, Pardo-Ferreira, and 

Rubio-Romero 2021; Xia et al. 2022; 

Zhao et al. 2022; Broo and Schooling 

2020; Bujari et al. 2021) 

D16 
Asset 

Management  

DT provides real-time data on asset conditions, usage 

patterns, and maintenance history, streamlining asset 

management. 

Internal 

(Evangelou, Gkeli, and Potsiou 2022; 

Guo et al. 2022; Lu, Xie, Parlikad, 

Schooling, et al. 2020; Lu, Xie, 

Parlikad, and Schooling 2020; Xie, 

Moretti, et al. 2022; Azimi and O'Brien 

2022) 
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  Drivers Description 
Internal/ 

External 
References 

D17 

Enhanced 

renovation 

projects  

DT aids in precise visualization and analysis of 

building components for renovation planning and 

execution. 

Internal 
(Banfi et al. 2022; Daniotti et al. 2022; 

Kaewunruen and Xu 2018) 

D18 
Predictive 

maintenance 

DT utilizes real-time data and analytics to predict 

equipment failures and maintenance needs, enabling 

timely interventions before critical issues arise. 

Internal 

(Arsiwala, Elghaish, and Zoher 2023; 

Hosamo, Imran, et al. 2022; Khajavi et 

al. 2019; Ozturk 2021; Opoku et al. 

2021; Hosamo et al. 2023) 

(d) Demolition Phase 

D1 Data Utilization 

DT uses accumulated data throughout the building's 

development process to develop comprehensive 

demolition plans, incorporating insights from the 

building's history. 

Internal 

(Ammar et al. 2022b) 

(Ammar et al. 2022b; Jin et al. 2021) 

D2 

Sustainable 

resource 

management and 

waste reduction 

DT utilize the sustainable materials to effectively 

manage demolition waste, thereby reducing 

environmental impact and promoting circular economy 

principles. 

Internal (Yang, Lv, and Wang 2022) 

D3 
Circular 

economy 

It helps to promote circular economy strategies in the 

construction industry by facilitating the reuse and 

recycling of building demolition waste, 

External 

(Su, Yu, et al. 2023; Meng, Das, and 

Meng 2023) 

(Su, Yu, et al. 2023; Meng, Das, and 

Meng 2023) 

D4 

Efficient 

resource 

management 

By digitally representing the demolition process, it 

helps to optimize the allocation of resources, such as 

labor and materials, leading to cost savings and 

reduced waste 

Internal 
(Su, Yu, et al. 2023; Jin et al. 2021; 

Kang et al. 2022) 

D5 
Real-time 

monitoring 

It facilitates the provision of real-time data during 

demolition activities, ensuring improved oversight and 

management of the operations. 

Internal  (Meng, Das, and Meng 2023) 

D6 
Virtual site 

accuracy 

DT enhances demolition site mapping accuracy, 

allowing for precise planning and execution, and 

minimizing risks, thereby improving safety. 

Internal   (Su, Yu, et al. 2023) 

D7 

Technology 

Integration for 

building 

demolition waste 

Management 

It utilizes IoT, big data, and robotics to accurately track 

and manage building demolition waste, enhancing 

efficiency and sustainability. 

Internal (Su, Yu, et al. 2023) 

Based on the literature review, the internal and external drivers of DT adoption in building construction can be 

divided into four categories: design, construction, operation and maintenance, and demolition. They are explored 

in more detail in Table 3. 

4.1.1 Design Phase 

During the design phase, DT offers architects and engineers a virtual environment to test and optimize building 

systems, design, and performance(Xia et al. 2022; Osadcha, Jurelionis, and Fokaides 2023). This allows designers 

to create accurate simulations and evaluate different design options. This can help them make better-informed 
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decisions throughout the whole building development process(Rafsanjani and Nabizadeh 2023). Furthermore, DT 

in the design phase can improve communication and collaboration among various stakeholders, reducing the 

possibility of errors and delays by providing accurate and up-to-date information (Broo and Schooling 2020). DT 

enhances project efficiency by allowing managers to simulate design options and assess performance prior to 

construction, eliminating errors and delays. 

4.1.2 Construction Phase 

During construction, DT can monitor project progress, provide real-time information about material usage, and 

manage resources efficiently to prevent delays and cost overruns (Ariyachandra, Samarakkody, and Perera 2019). 

By providing comprehensive visibility into the construction process from start to finish, DT can lead to efficient 

construction (Oliveira 2020). Before using DT on a construction site, firms need to ensure compliance with local 

laws and regulations. However, DT should allow contractors to accelerate the processes of approval and permitting, 

as well as facilitate the rapid development of  executable plans (Al-Sehrawy and Kumar 2021). 

4.1.3 Operation and Maintenance Phase 

The operation and maintenance phase of a building is critical for DT implementation. In this phase, the building 

development process is characterized by a heterogeneous, complex structure and multiple layers of data 

representing the utilization and operation of buildings. A defect during this phase could result in system 

malfunctions and safety issues (Opoku et al. 2021), which is why regular maintenance in this phase is of the utmost 

importance to the building. It collects real-time data and information relevant to a wide range of applications, from 

stakeholder communication to energy usage monitoring in the building. 

Through continuous monitoring of various building systems and data analytics, DT can preemptively detect 

potential problems, consequently reducing maintenance costs and minimizing operational downtime (Khajavi et 

al. 2019; Hosamo, Imran, et al. 2022). Furthermore, building engineers are equipped with essential data and 

knowledge to promptly address issues. This results in improved system reliability and enhanced occupant 

experience. 

 DT in maintenance makes it easy to track the history of building systems, giving engineers access to data that can 

help identify patterns and optimization opportunities. A DT of a commercial office building can continuously 

monitor the HVAC system and detect any abnormal fluctuations in temperature or pressure (Ammar et al. 2022b). 

This information can help the building engineer identify a potential malfunctioning compressor and schedule a 

repair before it completely fails (Zhao et al. 2022). 

4.1.4 Demolition Phase 

In the demolition phase of a building, the adoption of Digital Twins (DT) is driven by factors that enhance process 

efficiency, safety, and sustainability(Su, Zhong, et al. 2023). Utilizing data from a building's entire development 

process, DT creates effective demolition plans, offering a predictive and adaptive planning approach that 

minimizes unforeseen risks(Jin et al. 2021). DT also promotes sustainable resource management and waste 

reduction by advocating the use of environmentally friendly materials, which contributes to resource conservation 

and diminishes environmental impact(Yang, Lv, and Wang 2022). This strategy involves prioritizing materials for 

repurposing or recycling, thereby extending their lifecycle. 

Furthermore, DT supports Circular Economy strategies, encouraging the recycling and reuse of demolition 

materials, and integrates advanced technologies such as IoT, big data, and robotics to manage demolition waste 

more effectively(Su, Yu, et al. 2023). This technological integration not only ensures precise tracking but also 

efficient handling of waste, thereby enhancing the demolition process’s overall effectiveness. In doing so, DT 

transitions waste management towards a circular approach, aligning with global environmental goals. 

4.2 Barriers to the Adoption of DT in the Building Development Process  

There has been significant progress in DT technology in the building industry. However, numerous internal and 

external barriers must be thoroughly examined to understand this paradigm shift. Internally, organizations struggle 

with data integration, cultural resistance, and a shortage of skilled employees. Externally, issues like regulatory 

constraints, interoperability, and cybersecurity pose significant challenges on the path to widespread DT adoption. 

Based on a comprehensive review of existing literature, the barriers to DT adoption in the building Industry can 
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be classified into four distinct phases: design, construction, operation and maintenance, and demolition. Table 4 

represents the internal and external barriers to the adoption of DT. 

Table 4: Internal and external Barriers to the adoption of DT in buildings across four development phases. 

 Barriers Description 
Internal/ 

External 
References 

(a) Design Phase 

B1 
Lack of 

standardization 

It impedes DT adoption by creating data 

compatibility issues and integration challenges 

between different design tools and disciplines. 

Internal (Shahzad et al. 2022; Xie, Qiu, et al. 2022) 

B2 

Lack of 

confidence in 

data security 

Sharing sensitive design information in the DT 

environment can be discouraging, leading to 

incomplete and inaccurate adoption. 

Internal (Shahzad et al. 2022; Opoku et al. 2023) 

B3 
Silos between 

departments 

The fragmentation of data and lack of effective 

collaboration can hinder the adoption of DT. 
Internal 

(Rafsanjani and Nabizadeh 2023; Xia et al. 

2022) 

B4 

Difficulties in 

setting realistic 

expectations 

It hinders DT adoption by leading to overambitious 

goals or underestimating implementation complexity. 
Internal 

(Greif, Stein, and Flath 2020; Opoku et al. 

2023) 

B5 

Permitting and 

licensing 

obstacles 

Legal and regulatory complexities can hinder DT 

adoption. Unclear or outdated regulations regarding 

DT data use and sharing may impede the free flow of 

information. 

External (Opoku et al. 2023) 

B6 
Lack of research 

and development 

Limiting the availability of innovative tools and 

methodologies tailored for DT implementation 

hinders its adoption. 

External  (Opoku et al. 2021; Napp 2022)  

B7 

Absence of 

necessary 

Infrastructure 

Limitations in collecting, storing, and processing 

large amounts of data restrict DT adoption. 
Internal (Napp 2022; Opoku et al. 2023) 

B8 

Challenges in 

validating and 

verifying 

The difficulties in validating and verifying data and 

models limit the use of DT by undermining 

confidence in its accuracy and reliability. 

Internal (Ammar et al. 2022b) 

B9 

Shortage of 

Skilled 

Professionals 

It limits the ability to effectively create and manage 

complex digital models, reducing design quality and 

efficiency and potentially resulting in costly errors. 

 

Internal 
('Lack of Vision, Organizational Silos 

Challenge Strategy for Industry 4.0'  2020) 

(b) Construction Phase 

B1 

Technology and 

sensor 

availability 

The lack of real-time data acquisition and monitoring 

infrastructure makes it more difficult to update and 

maintain an accurate DT representation. 

Internal (Opoku et al. 2023) 

B2 
Lack of data 

interoperability 

Incompatible data formats and systems create data 

silos, hindering comprehensive representation of 

building progress and performance. 

Internal 

(Boje et al. 2020; Shahzad et al. 2022; 

Sacks, Girolami, and Brilakis 2020; 

Osadcha, Jurelionis, and Fokaides 2023) 
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 Barriers Description 
Internal/ 

External 
References 

B3 

Lack of constant 

internet 

connectivity 

The connectivity gap between the physical and digital 

realms can reduce DT technology effectiveness in 

construction projects. 

Internal 

(Opoku et al. 2021; Opoku et al. 2022; 

Greif, Stein, and Flath 2020; Rafsanjani and 

Nabizadeh 2023; Broo and Schooling 2023; 

Barkokebas, Al-Hussein, and Hamzeh 

2023) 

B4 

High 

Construction 

Cost 

Smaller organizations with tight budgets may see DT 

technology as a financial burden rather than a cost-

effective investment in project management. 
External (Broo and Schooling 2023) 

B5 Scalability issues 

Creating and maintaining accurate virtual 

representations of complex, large-scale building 

projects is challenging, hindering DT adoption and 

often resulting in incomplete or outdated DT. 

Internal 

(Rafsanjani and Nabizadeh 2023; Greif, 

Stein, and Flath 2020; Opoku et al. 2023; 

Kineber et al. 2023) 

B6 

Uncertainties 

with data quality 

and reliability 

Fluctuations in data quality can compromise the 

effectiveness of DT in managing construction 

projects by producing flawed insights. 

Internal 

(Opoku et al. 2023; Jacobellis and Ilbeigi 

2022; Alaloul et al. 2021; Belaroussi et al. 

2023) 

B7 
Transparency in 

data sharing. 

It prevents collaboration between project stakeholders 

and restricts access to crucial data needed for 

maintaining an accurate DT. 

Internal 
(Ammar et al. 2022a; Broo and Schooling 

2023) 

B8 

Resistance to 

change and 

traditional 

construction 

practices. 

Integrating DT into established workflows is 

hindered by the slow adoption of cutting-edge 

technologies and methods. 

Internal 
(Napp 2022; Opoku et al. 2023; Zhang et 

al. 2022) 

B9 

Limited 

availability of 

case studies 

Industry professionals are deprived of practical 

examples and success stories that showcase the 

benefits and potential applications of DT. 

Internal 
(Ammar et al. 2022b; Khallaf et al. 2022b; 

Salem and Dragomir 2022) 

B10 

Integration of 

software and 

tools 

The integration of multiple construction software and 

tools into a DT platform is complex and requires 

substantial resources and expertise, which may result 

in compatibility issues and implementation delays. 

Internal 
(Opoku et al. 2021; Osadcha, Jurelionis, 

and Fokaides 2023) 

(c) Operation and Maintenance Phase 

B1 
Static nature of 

building data 

DT functionality depends on current data, and static 

data can result in inaccuracies and reduced relevance 

in ongoing operational decision-making. 

Internal 

(Boje et al. 2020; Opoku et al. 2021; 

Khajavi et al. 2019; Broo and Schooling 

2020; Turner et al. 2021) 

B2 
Project 

complexities 

The complexity of creating and maintaining an 

accurate virtual replica of the building is crucial for 

effective monitoring and management of complex 

systems and processes within the facility. 

Internal 

(Lu, Chen, et al. 2020; Greif, Stein, and 

Flath 2020; Rafsanjani and Nabizadeh 

2023) 

B3 

Effective 

governance and 

management 

DT projects may become disorganized or stagnant, 

limiting their ability to deliver value for ongoing 

facility operation and maintenance. 

Internal 
(Broo and Schooling 2023; Salem and 

Dragomir 2022) 

B4 

Difficulties in 

systems 

integration 

Limitations in connecting building systems and IoT 

devices hinder DT adoption, limiting its ability to 

provide real-time insights and control. 

Internal 
(Rafsanjani and Nabizadeh 2023; 

Mavrokapnidis et al. 2021) 
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 Barriers Description 
Internal/ 

External 
References 

B5 

Legal and 

regulatory 

challenges 

Introducing complexities related to data privacy, 

security, and compliance hinders DT adoption, which 

makes it challenging to navigate the legal landscape 

and ensure DT responsible use. 

External 
(Hoeft and Trask 2022; Ammar et al. 

2022a) 

B6 

Integration with 

existing legacy 

systems and 

databases 

It hinders DT adoption by creating compatibility 

issues and data silos that limit the ability to leverage 

historical data. It also limits the ability to establish 

complete connectivity between the DT and a well-

established operational infrastructure. 

Internal (Fuller et al. 2020; Kineber et al. 2023) 

B7 
Issues of 

maintainability 

The challenge of maintaining data accuracy and 

updating it continually can lead to reduced 

effectiveness of the DT over time and increased 

resource demands for upkeep. 

Internal (Meža et al. 2021; Opoku et al. 2023) 

B8 

Insufficient 

knowledge of the 

use of complex 

databases. 

It limits the ability of DT to effectively manage and 

extract valuable information from intricate data 

structures, impeding the efficiency of DT to optimize 

building operations and maintenance. 

Internal 
(Ammar et al. 2022a; Napp 2022; Guo et al. 

2022) 

B9 

Multicultural 

project 

challenges 

Diverse cultural norms, communication styles, and 

expectations can hinder effective DT management. 
Internal 

(Rafsanjani and Nabizadeh 2023; Opoku et 

al. 2023) 

B10 

Limited 

availability of DT 

technology 

service providers 

Implementing and managing DT systems can be 

challenging for organizations due to insufficient 

expertise and support. 

Internal (Opoku et al. 2023) 

B11 
Lack of Standard 

Protocols 

Currently, there are no standard protocols for data 

exchange and communication between different types 

of software and systems used in building operation 

and maintenance. 

External (Opoku et al. 2023; Kineber et al. 2023) 

B12 

System 

instability and 

sudden failure 

Disruptions to data streams can make the DT 

unreliable, posing risks to building management. 
Internal (Li et al. 2021; Opoku et al. 2023) 

B13 
Scope 

management 

Defining the boundaries and objectives of DT 

projects in building management can be complex. 

Overambitious or vague scopes can hinder DT 

implementation and maintenance. 

Internal 
(Opoku et al. 2023; Salem and Dragomir 

2022) 

B14 
Methodological 

Gaps 

This makes it difficult for organizations to create 

effective maintenance plans, leading to potential 

errors and inefficiencies in managing DT systems. 

External (Lünnemann, Lindow, and Goßlau 2023) 

B15 

Limited 

interoperability 

solution between 

different software 

and systems 

 
 

Impeded by the lack of seamless integration, diverse 

data sources and tools hamper the DT's ability to 

provide comprehensive insights and optimization 

capabilities for building operation and maintenance. 

Internal 
(Fuller et al. 2020; Opoku et al. 2023; 

Kineber et al. 2023) 
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 Barriers Description 
Internal/ 

External 
References 

(d) Demolition Phase 

B1 
Low digitalization 

in demolition 

Challenge in adopting advanced digital 

technologies like DT, in the traditionally low-tech 

demolition phase, where manual processes are 

predominant 

Internal  (Su, Yu, et al. 2023; Su, Zhong, et al. 2023) 

B2 

Systematic 

technology 

convergence 

challenges 

The complexities in harmonizing various advanced 

technologies like IoT and big data within 

demolition processes of buildings to effectively 

manage demolition waste. 

Internal (Su, Yu, et al. 2023) 

B3 

Lack of building 

demolition waste 

market mechanism 

There is absence of a well-developed market 

framework for trading and recycling building 

demolition waste, which is crucial for the effective 

implementation of DT in demolition phase. 

External (Su, Yu, et al. 2023; Al-Raqeb et al. 2023) 

B4 
Regulatory 

Challenges 

Inadequate regulatory frameworks in construction 

impede the integration of DT, as they provide little 

motivation for stakeholders to adopt these 

advanced technological systems. 

External (Al-Raqeb et al. 2023; Opoku et al. 2023) 

B5 
Logistical 

Challenges 

It involves the integration and management of 

complex data systems and coordinating physical 

processes like waste transport and site access, 

which are critical for effective DT implementation. 

Internal (Al-Raqeb et al. 2023) 

B6 

Human capital and 

organizational 

barriers 

Limited training and reluctance to share data 

among stakeholders affect the collaborative efforts 

required for effective demolition planning. 
External (Jin et al. 2021; Su, Jiang, et al. 2023) 

 

4.2.1 Design Phase 

The adoption of DT during the design phase of the building development process faces several barriers (Shahzad 

et al. 2022). One of the primary barriers is the lack of research and development within the industry (Napp 2022). 

A traditional design approach has been deeply ingrained in the industry for many years, and transitioning to a DT 

approach requires a significant change in mindset and working methods. Another challenge is the absence of 

standardized industry-wide protocols and standards for implementing DT technology, making it difficult to ensure 

compatibility and interoperability between different software tools and platforms (Attaran and Celik 2023). 

Furthermore, the complexity and scale of building projects can pose challenges in accurately capturing and 

modeling the entire structure within the DT. This requires comprehensive data collection and integration from 

various stakeholders involved in building construction (Shahzad et al. 2022). 

 

4.2.2 Construction Phase 

Various obstacles impede DT implementation in the construction phase of a the building (Opoku et al. 2023). 

Firstly, resistance to changing traditional construction practices has hindered DT adoption (Napp 2022). Many 

individuals in the AECO industry fail to grasp the potential benefits and applications of DT, leading to hesitancy 

in its implementation. The complexity and interoperability challenges of integrating building information systems 

with DT can create technical barriers (Boje et al. 2020; Kineber et al. 2023). Construction processes involve various 

stakeholders and numerous data sources, making it difficult to streamline and synchronize information effectively. 

Furthermore, the limited availability of case studies in the industry has made DT adoption difficult (Khallaf et al. 

2022b). 
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4.2.3 Operation and Maintenance Phase 

The adoption of DT technology in the building development process can be hindered by several internal and 

external barriers during the operation and maintenance phase. The primary obstacle to DT implementation is a 

lack of awareness and understanding among building operators and management (Ammar et al. 2022a; Napp 

2022). Due to this limited understanding of the intricate nature of this technology, companies may be hesitant to 

invest in DT platforms or allocate resources for personnel training. As well as apprehensions regarding the 

integration of emerging technology into existing systems or concerns regarding potential disruptions during the 

transition phase have contributed to the barriers to DT adoption (Mavrokapnidis et al. 2021).  

DT in building operation and maintenance requires close coordination and cooperation among operational teams, 

facility managers, and other relevant personnel (Broo and Schooling 2023). In the absence of a unified approach, 

fragmented data management systems, duplicated efforts, and inconsistent decision-making could undermine the 

implementation of digital transformations. 

During this phase, various software and systems are utilized to monitor energy consumption, analyze structural 

integrity, manage assets, ensure compliance with regulations, and schedule maintenance activities. However, these 

software and systems may come from different vendors or be developed independently, resulting in limited 

interoperability (Fuller et al. 2020). Another barrier encountered in this process is scope management, where the 

complexity of DT projects may require diligent monitoring and control to ensure effective implementation (Salem 

and Dragomir 2022). Further, the integration of DT technology with existing tools can be challenging, as the 

compatibility and integration of these systems may pose technical difficulties (Botín-Sanabria et al. 2022). 

4.2.4 Demolition Phase 

The integration of DT in the demolition phase is hindered by several interconnected barriers. A primary challenge 

is the prevalence of low digitalization in demolition, where manual processes are still the norm, making the 

adoption of advanced technologies difficult. This issue is compounded by systematic technology convergence 

challenges, where harmonizing technologies like IoT and big data with demolition processes poses significant 

difficulties (Su, Yu, et al. 2023). Another external barrier is the absence of a robust market mechanism for building 

demolition waste, essential for DT effectiveness. Regulatory challenges further complicate this integration, as 

inadequate frameworks provide little motivation for stakeholder adoption.  

Additionally, logistical challenges, such as managing complex data systems and coordinating physical processes, 

are critical for digital twin implementation (Al-Raqeb et al. 2023). Lastly, human capital and organizational 

barriers, including limited training and data-sharing reluctance among stakeholders, impede the collaborative 

efforts necessary for effective demolition planning (Su, Jiang, et al. 2023). These barriers represent a complex mix 

of technological, regulatory, logistical, and human factors that need addressing for successful DT adoption in the 

building demolition phase. 

5. DISCUSSION 

In this article, we have investigated both the drivers and the barriers related to the adoption of DT in the building 

development process through a systematic literature review. Furthermore, we raised a flag for the integration of 

diverse, specialized simulation models, which we elaborate on in the following. To structure this section 

comprehensively, we cite and answer the research questions presented in the introduction.  

5.1 Understanding the Impact and Implications of Key Drivers 

The findings section on DT drivers summarizes how the increasing complexity and size of construction projects 

drive the need for DT to enhance efficiencies and reduce errors. Secondly, technological advancements such as 

IoT and AI enable the development and implementation of DT solutions. Furthermore, the demand for real-time 

monitoring and data-driven decision-making drives DT adoption. Finally, the potential benefits of cost reduction, 

improved sustainability, and improved project management motivate organizations to invest in building DT. Figure 

9 represents the selected drivers in the adoption of DT in different phases.  

There are various successful case studies in the building industry where DT has been effectively implemented, and 

its associated challenges have been successfully addressed. One of the possible applications is to reduce energy 

consumption. According to (Peng et al. 2020), their research indicates that DT can achieve an annual energy 
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consumption savings of 1% and reduce requests for repairs and facility faults by 10%. (Zhao et al. 2021) 

demonstrated in their study that DT can significantly reduce building energy consumption by 7.52% through 

retrofitting existing buildings into nearly zero-energy buildings (nZEBS), resulting in an 85.9% reduction in carbon 

emissions. Similarly, (Kaewunruen, Rungskunroch, and Welsh 2019) highlighted in their study that a Net zero 

energy building (NZEB) solution for an existing building can provide a 23-year return period. (Arsiwala, Elghaish, 

and Zoher 2023) also highlighted DT’s capability to predict buildings’ CO2 emissions by utilizing AI, which 

processes time series data from installed devices. In a study, (Khajavi et al. 2019) established that DT can aid 

architects in designing buildings that optimize airflow and lighting by leveraging natural resources. 

DT can also be used to improve the efficiency of management processes. (Zhao et al. 2022) reported a 10% increase 

in management staff satisfaction when using DT in the facility management system of a hospital building. Their 

study concluded that DT improves efficiency by 50% during university building maintenance and operation. 

Security can also be enhanced by using DT. (Gopinath et al. 2018) reported in their research that DT for smart 

buildings can enhance security by automatically notifying owners and locking doors if an intruder attempts 

unauthorized access. 

 

Figure 9: Drivers in the adoption of DT. 

(Ghansah and Lu 2023) outlined DT’s potential to create virtual environments of physical sites, providing on-site 

operators with guidance during work execution. Similarly, (Xu, Duo, and Tang 2022) introduced a framework for 

implementing DT in a radioactive waste repository (RWR), offering comprehensive 7D management capabilities.  

5.2 Analyzing Challenges and Overcoming Barriers to Implementation 

Although DT technology has a large number of applications in the building industry, many barriers hinder its 

widespread adoption. These barriers include high implementation costs, a lack of standardized data integration 

methods, a scarcity of skilled professionals, concerns about data security and privacy, and organizational resistance 

to change. Figure 10 represents the selected barriers to the adoption of DT in different phases.  

Based on the research findings, several studies have identified various approaches to mitigate challenges hindering 

DT adoption in the building industry. (Tagliabue et al. 2021) suggested implementing data collection systems to 

address the challenge of evolving information needs throughout the lengthy process of creating a DT project. Their 

primary objective was to facilitate data mining for predictive maintenance, with a specific emphasis on energy 

efficiency. In their study, (Broo and Schooling 2023) introduced a technique aimed at overcoming technology 

adoption barriers by raising awareness among individuals both within and outside the organization about DT 
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advantages. Additionally, it emphasizes the importance of identifying and aligning achievements through DT 

implementation, thereby facilitating a clearer understanding and acceptance of the technology.  

(Paolo Pileggi 2021) in their position paper, discussed strategies to mitigate the nine barriers related to DT for 

manufacturing SMEs. These barriers are consistent with the external and internal barriers discussed in the findings 

section of our paper. To address these barriers, the paper proposes a mitigation process that begins with identifying 

the problems faced by stakeholders. Next, a joint system creates and innovates scenarios to solve these identified 

problems. The marketplace offers a range of solutions to support the transformation towards a DT, and careful 

selection is necessary. Additionally, it should be considered if new technology is required to overcome these 

barriers. Lastly, ensuring that the introduced framework is sustainable and facilitates a seamless transition is 

crucial. 

 

Figure 10: Barriers to the adoption of DT. 

Similarly, for enhancing DT understanding and integration into the AECO industry, (Opoku et al. 2023) proposed 

organizing various workshops, science fairs, innovative forums, conferences, and seminars to educate 

stakeholders, top-level management, and clients on DT benefits. Furthermore, it was suggested by (Naderi and 

Shojaei 2022) that conducting interdisciplinary research across various knowledge domains is crucial for DT 

implementation. Additionally, they proposed that prominent journals should establish special issues focused on 

sustainability, encompassing the social, organizational, and economic dimensions of implementing DT. 

5.3 BSIC: A new Approach Enabling Simulation Integration 

During the process of introducing a DT for predictive simulation in the different phases of building development 

process, a frequent challenge is the lack of shared terminology, from the extraction of data to the simulation model 

integration phase. Consequently, this increases the likelihood of errors in the simulation model integration phase 

due to inaccurate or insufficient knowledge. To overcome the challenges of standardized storage and sharing 

simulation model information, we introduce the concept of a Building Simulation Identity Card (BSIC).  

The core idea of BSIC is to develop a standard formal framework for characterizing specialized building 

simulators. This encompasses the creation of standardized building simulator ontologies and meta-models, along 

with standardized interfaces, frameworks, and algorithms for their integration in collaborative simulations. This 

would then enable users (i.e., design teams) to make informed choices about the combination of building simulators 

that they will integrate to answer specific questions about a building when conducting collaborative simulations. 
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BSIC can be a potential solution for addressing the challenges of collaboration, coordination, cooperation, and 

communication among the various stakeholders involved in the creation of a DT simulation model. An effective 

strategy involves the design of a BSIC that can be shared among stakeholders. This BSIC would assign a distinct 

identifier to each DT simulation model (Angjeliu, Coronelli, and Cardani 2020). It would also encompass pertinent 

information pertaining to DT objectives, ownership, and data access authorizations. Through creating a BSIC, 

various stakeholders can readily recognize and establish lines of communication with one another. They can also 

seamlessly exchange data and foster efficient collaboration. This solution holds significant promise in resolving 

the challenges encountered in managing DT simulation models, ultimately leading to enhanced stakeholder 

engagement and more streamlined cooperation within the system. Figure 11 illustrates the importance of BSIC for 

collaborative simulations. 

Let us discuss the concept of BSIC in light of the above-provided example of emergency evacuation of a building 

during an earthquake. In addressing occupant safety challenges in buildings, an engineer will be tasked with 

developing a comprehensive digital model for the target building. This model will then be meticulously validated. 

If any discrepancies or inaccuracies are discovered, they will be calibrated and reorganized accordingly. The 

engineer will use specific scenarios, such as densities and flows of dynamic occupant crowds during egress, and 

test them on various DT simulators. These simulators will undergo a thorough evaluation process to ensure they 

adequately address safety concerns. However, the lack of a common vocabulary for determining which simulator 

to use and for integrating different simulators poses a high risk of simulation model integration failure. To address 

this problem, the concept of BSIC will be employed. This decision is based on the simulator's underlying physics 

model, its interface, and its context.   

 

Figure 11: Process diagram for occupant safety concerns with the help of BSIC. 

The characteristics of a simulation model’s physics can be divided into several subcategories. These elements 

encompass features related to the model's description, such as its inception date and associated documentation. In 

this classification, a subset of attributes deals with the methodology used, which includes the chosen techniques, 

computational time considerations, and levels of precision. The usage segment involves exploring the tools used 

for developing the simulation model. This includes specific details about the tool's version and the model's 
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scalability. Lastly, the validation and verification process evaluate critical factors like accuracy and process control, 

among others.  

The simulator interface is crucial in facilitating communication between various components of the integrated 

model, whether that communication occurs within the model itself or between these components and the external 

environment (Halbach et al. 2010). The interface specification defines the simulation model's scope, including 

variables and pertinent attributes. Additionally, the simulation model's context includes historical data, distinct 

parameters, and usage, among other relevant considerations. This integrated approach ensures a cohesive and 

structured understanding of the simulation model. 

BSIC is critical to determining the importance of each simulator in the context of a specific safety problem. The 

identified simulators through BSIC will then be converted into FMUs, which will be integrated and linked together 

in a so-called meta-model. A Co-sim Orchestration Engine (COE) finally executes a collaborative simulation using 

this meta-model. The outcome is a series of holistic simulation runs for analysing occupant safety challenges in 

building design. 

6. CONCLUSIONS 

This study presents a thorough analysis of DT integration in the building industry, identifying various internal 

organizational and external market-related drivers and barriers. A framework categorizes these factors across 

different building development phases—design, construction, operation, maintenance, and demolition. This 

approach provides a holistic view of DT adoption challenges and opportunities, facilitating more effective 

implementation of DT technologies throughout the building development process. In the following, we highlight 

the contribution based on the three key questions presented in the introduction: 

In response to our first research question (RQ1), we have identified and thoroughly analyzed drivers to DT 

adoption in the building industry. These drivers include the increasing complexity of construction projects, 

advancements in technology, the demand for real-time monitoring, and the potential advantages in terms of cost 

reduction and sustainability. These drivers underscore the substantial benefits DT can offer in enhancing efficiency, 

sustainability, and security across the entire building development process. 

In response to our second research question (RQ2), we have identified that adopting DT is associated with 

significant challenges. High implementation costs, issues related to data integration, a shortage of skilled 

professionals, concerns about data security, and resistance to organizational change all constitute significant 

barriers to DT adoption. 

To address these challenges and answer our third research question (RQ3), we introduced the first concept for a 

Building Simulation Identity Card (BSIC) as a potential solution. This standardized framework facilitates 

collaboration, coordination, cooperation, and communication among stakeholders engaged in DT simulation 

models. BSIC aims to establish a shared platform for selecting and integrating various simulation models to 

enhance the effectiveness of DT simulations. 

6.1 Limitations and Plan for Future Work 

Because this study is based solely on the Scopus and Web of Science databases, some publications on factors 

affecting DT implementation in buildings may not have been included. Therefore, this research may not 

comprehensively represent all available literature on this topic. In addition, although significant publications were 

carefully selected, some specific keywords may have been overlooked in the literature search. This review 

considers the adoption of DT in the building industry from a global perspective. However, factors affecting DT 

adoption can vary significantly by region due to differences in regulations, industry standards, and technological 

infrastructure. The robustness of the findings depends on the quality and availability of the literature reviewed. 

The limitations of the individual studies included in this review may affect the scope and validity of the conclusions 

drawn. 

The existing literature has inconsistencies and challenges when attempting to achieve optimal model accuracy and 

performance. This is because no clear criteria exist for selecting and integrating simulations into DT systems. 

Future research will focus on advancing BSIC as a transformative tool for the building industry. The goal will be 

to create a well-structured BSIC framework incorporating standardized ontologies, meta-models, and interfaces 
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for characterizing simulators and their associated data. The BSIC framework will be thoroughly tested and refined 

through collaboration with building industry experts, software developers, and stakeholders to ensure its 

practicality and effectiveness. To implement BSIC, software ecosystems and technical challenges, i.e., interfaces 

and data integration protocols, need to be addressed to facilitate seamless communication and data exchange 

between specialized simulation models. 

Future research can also consist of case studies and pilot projects in various scenarios to demonstrate the 

practicality of BSIC and identify areas for improvement. Similarly, there is a need to investigate the interrelated 

factors that impact DT adoption and formulate strategies to enhance its adoption. Additionally, there is a need to 

explore advanced simulation and modeling techniques that integrate physics-based and data-driven approaches to 

assess how these methods can improve the accuracy and efficiency of DT. This effort aims to create a more efficient 

and connected future for building simulations and DT. 
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