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SUMMARY: Operations and Maintenance (O&M) costs account for 60-80% of a facility’s lifecycle costs. Using 

Digital Twins (DTs) can aid in making O&M more effective and efficient, leading to time and cost savings. The 

concept of DT started in the Aerospace domain, and other industries eventually adopted it. DTs are a new concept 

to the Architecture, Engineering, Construction, and Operations (AECO) Industry, and there is a lot of confusion 

around this concept. The purpose of this paper is to provide a DT definition along with a classification structure 

to create a common ground for understanding DTs in the AECO industry, which leads to easier adoption of DTs. 

A systematic literature review was completed to identify the existing DT definitions and classification approaches. 

Then, through a content analysis, the core components of definitions were extracted. The identified components 

were used to develop a comprehensive and inclusive DT definition for the AECO industry, using the domain 

language. In a similar fashion, existing DT classification structures were studied, and their components were 

identified through content analysis. Using the identified components, a DT classification structure was proposed 

for the AECO industry using domain concepts and terms. The results were validated and refined through a series 

of semi-structured expert interviews and surveys. Interviewees and survey participants comprised DT experts from 

academia and industry with diverse backgrounds. The components of the proposed DT definition include virtual 

representation, data connection between physical and digital entities, analysis, actuation, and frequency of 

updates. The classification structure consisted of three DT categories, namely Digital Twin Prototype (DTP), 

Digital Shadow (DS), and Cyber-Physical System (CPS). 
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1. INTRODUCTION 

Research shows that Operations and Maintenance (O&M) costs for a building are typically greater than three times 

the initial construction costs (Fuller, 2016). Leveraging Digital Twins (DTs) can aid in the effective and efficient 

operations of facilities. Moreover, it can help reduce O&M costs significantly and ultimately lead to more 

sustainable built environments (Corrado et al, 2022).  

1.1 Current State of Digital Twins in the AECO Industry 

There has been a growing interest in DTs in the Architecture, Engineering, Construction, and Operations (AECO) 

domain on the industry and academic side. On the academic side, research trends show a growing number of DT 

peer-reviewed publications (Emmert-Streib et al, 2023; Ghorbani and Dubler, 2021). In addition, there have been 

various national and international initiatives to streamline DT implementation in the AECO industry in the past 

five years. To start with, the Center for Digital Built Britain created a National Digital Twin program to create the 

foundation for a country-scale DT (Walters, 2019). The Digital Twin Consortium (DTC) was launched in 2020 

with members from companies that want to drive DT adoption in multiple industries, including Manufacturing, 

AECO, Aerospace, Healthcare, and Transportation domains (DTC, 2020). In 2023, the National Institute of 

Building Sciences (NIBS) created the Digital Twin Integration Subcommittee (DTI-S) to establish the relationship 

between DTs and building information management (BIM) (NIBS DTI-S, 2023). Moreover, several DT platforms 

have been developed to aid in implementing DTs, including Microsoft Azure, Autodesk Tandem, Bentley iTwin, 

and Siemens Building X. These platforms provide the software infrastructure needed to develop DTs. Despite these 

efforts, there is still confusion around DTs, and people have different concepts in mind when discussing DTs.  

1.2 Digital Twins Definitions 

A number of papers have gathered and documented the existing DT definitions (Negri et al, 2017; Onaji et al, 

2022; Opoku et al, 2021). Other studies have reviewed and analyzed the existing DT definitions. Boje et al. (2020) 

analyzed twenty-one DT definitions from various industries, including Manufacturing, Aerospace Engineering, 

and AECO. They concluded that DTs have three main parts (the physical, the virtual, and the data) and identified 

DT abilities within each part. The physical part has the ability to sense, monitor, and actuate. The data part has the 

ability to link data and store knowledge, and the virtual part has the ability to simulate, predict, optimize, and 

delegate tasks to AI agents. In addition, they developed a three-tier generation evolution for the construction of 

DTs: Generation 1 included monitoring platforms, Generation 2 included intelligent semantic platforms, and 

Generation 3 included agent-driven socio-technical platforms. VanDerHorn and Mahadevan (2021) reviewed the 

existing DT definitions and analyzed their characteristics. These characteristics include a physical reality, a virtual 

representation, and the interconnections between the two. They proposed the concept of “digital twin qualifiers” 

that distinguish a DT from a digital model. The qualifiers include a virtual representation representing a single 

instance of a physical system and data from the physical system used to update the virtual representation. Data 

update frequency falls within the second category of qualifiers and refers to “the rate at which data is exchanged 

between the physical system and the virtual representation.”  

In another study, Semeraro et al. (2021) analyzed thirty DT definitions and, through content analysis, identified 

the core concepts in those definitions. They then introduced a DT definition in Manufacturing that includes those 

concepts: “a set of adaptive models that emulate the behavior of a physical system in a virtual system getting real-

time data to update itself along its lifecycle. The digital twin replicates the physical system to predict failures and 

opportunities for changing, to prescribe real-time actions for optimizing and mitigating unexpected events 

observing and evaluating the operating profile system.” Al-Sehrawy and Kumar (2021) reviewed eighteen DT 

definitions from Manufacturing, Aerospace Engineering, and AECO Industries and analyzed their aim, function, 

and main components. They concluded that key features of DTs were data communication, vertical integration 

(i.e., combining all lifecycle phases of a system), horizontal integration (i.e., the connection between different 

entities – cyber or physical), and fidelity (including visual fidelity, reflectivity fidelity, and performance fidelity). 

Similarly, Liu et al. (2021) reviewed twenty-one DT definitions from academic publications and extracted key 

points from each definition.  They concluded that a DT should be individualized (i.e., there is only one digital twin 

for each physical twin), high-fidelity (i.e., DT can simulate the behavior of the physical twin with high levels of 

accuracy), real-time (i.e., DT should be updated regularly), and controllable (i.e., changes in one twin (digital or 

physical)) results in changes in the other twin (physical or digital). Shahzad et al. (2022) reviewed ten DT 
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definitions. They identified several DT characteristics, including 3D visualization, real-time virtual model, live 

model updates, data standardization, increased collaboration, time management, budget management, live 

monitoring of assets, improved building sustainability, and enhanced site logistics. However, their definition of 

characteristics is not clear. Their list of characteristics includes a combination of features (e.g., virtual model), 

capabilities (e.g., data visualization), requirements (e.g., necessary use of a Common Data Environment (CDE)), 

benefits (e.g., increased collaboration), and use cases (e.g., asset monitoring). While these studies provide insights 

into DT components and characteristics, they do not provide classification systems for categorizing the variety of 

DTs within the AECO industry. 

1.3 Digital Twins Classification Structures in Other Industries 

Several studies in the Manufacturing domain discuss different types of DTs. Grieves and Vickers (2017) introduced 

different manifestations of Digital Twins, including Digital Twin (DT), Digital Twin Prototype (DTP), Digital 

Twin Instance (DTI), and Digital Twin Environment (DTE). According to them, a DT is “a set of virtual 

information constructs that fully describes a potential or actual physical manufactured product from the micro 

atomic level to the macro geometrical level.” A DTP “describes the prototypical physical artifact and contains the 

information necessary to describe and produce a physical version that duplicates or twins the virtual version.” 

DTI “describes a specific corresponding physical product that an individual DT remains linked to throughout the 

life of that physical product.” Lastly, a DTE “is an integrated multi-domain physics application space for operating 

on DTs for a variety of purposes.” Enders and Hoßbach (2019) proposed a DT classification scheme with six 

dimensions, including the industrial sector (options: Manufacturing, Aerospace, Energy, Automotive, Marine, 

Petroleum, Agricultural, Healthcare, Public Sector, Mining), purpose (options: simulation, monitoring, control), 

physical reference object (options: manufacturing asset, product, human, infrastructure), completeness (options: 

1-3 features, more than 4 features), creation time (options: before physical twin creation, after physical twin 

creation), and connection (options: no connection, one-directional, bi-directional). 

Kritzinger et al. (2018) conducted a categorical literature review of Digital Twin publications in the Manufacturing 

domain. They introduced DT classification systems based on the level of integration, area of focus, and 

technologies. The level-of-integration categories included digital model (“a digital representation of an existing 

or planned physical object that does not use any form of automated data exchange between the physical object 

and the digital object”), digital shadow (“if there further exists an automated one-way data flow between the state 

of an existing physical object and a digital object, one might refer to such a combination a digital shadow,” and 

digital twin (“if further, the data flows between an existing physical object and a digital object are fully integrated 

in both directions, one might refer to it as Digital Twin”). The area of focus categories included production planning 

and control, maintenance, and layout planning, and key enabling technologies included simulation methods, 

communication protocols, and other core technologies. Similarly, Singh et al. (2021) classified DTs based on the 

creation time, level of integration, hierarchical perspective, level of maturity, and sophistication level. Creation 

time categories included Digital Twin Prototype (DTP) (which contains a set of information to create a physical 

entity) and Digital Twin Instance (DTI) (which is connected to a physical counterpart). Level of integration 

categories included digital models, digital shadows, and digital twins. The hierarchical perspective included three 

levels: System of System (SoS) level, System level, and Unit level. Level of maturity classes included: (1) partial 

DT (contains a small number of data points such as pressure, temperature, and humidity), (2) clone DT (contains 

all significant and relevant data from the product/system that can be used to make a prototype), and (3) Augmented 

DT (uses data from the asset along with its historical data and leverages useful data using algorithms and analytics). 

Finally, sophistication level categories were: (1) Pre-Digital Twin (DT is created before the physical asset is 

created), (2) Digital Twin (incorporated data from the physical asset related to its performance, health, and 

maintenance), (3) Adaptive Digital Twin (provides an adaptive user interface and has the capability to learn from 

preferences of human operators), and (4) Intelligent Digital Twin (in addition to all the above-mentioned features, 

it has unsupervised machine learning capabilities). 

1.4 Digital Twins Classification Structures in the AECO Industry 

In the AECO domain, Arup (2019) classified DTs based on their level of sophistication and defined five levels of 

DTs: (Level 1): “A digital model linked to the real-world system but lacking intelligence, learning, or autonomy; 

limited functionality.” (Level 2): “A digital model with some capacity for feedback and control, often limited to the 

modelling of small-scale systems.” (Level 3): “A digital model able to provide predictive maintenance, analytics, 
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and insights.” (Level 4): “A digital model with the capacity to learn efficiently from various sources of data, 

including the surrounding environment.” (Level 5): “A digital model with a wider range of capacities and 

responsibilities, ultimately approaching the ability to autonomously reason and to act on behalf of users.” Seaton 

et al. (2022) took the classification by Arup and named the categories: (Level 1): Descriptive DTs (for collecting 

and visualizing data); (Level 2): Informative DTs (converting data into information for generating insights); 

(Level 3): Predictive DTs (using real-time data to predict future state); (Level 4): Comprehensive DTs (combining 

level 1,2, and 3 to propose interventions for avoiding problems and achieving better outcomes); (Level 5): 

Autonomous and Connected DTs (using artificial intelligence and machine learning to reduce dependence on 

human intervention). This classification system brings a lot of value. However, levels are very reliant on and 

described through use cases, and each use case can be achieved through different levels. As an example, predictive 

DTs can have different levels of connection to the physical world. Therefore, the categories are not defined to a 

level of specificity to be mutually exclusive. For instance, a DT that uses artificial intelligence to make predictions 

can either be in level 3 or level 5. 

1.5 Knowledge Gaps 

In the realm of the AECO industry, it has become increasingly evident that the DT concept is disparate and often 

misunderstood. Siloed DT definitions have proliferated within this sector, leading to confusion and hindrance in 

the broader adoption of this transformative technology. Unlike other sectors, AECO’s unique characteristics, such 

as diverse stakeholders with varying levels of expertise and different interests, necessitate a tailored approach to 

understanding DTs. Existing DT classification systems, while effective in the manufacturing industry, fall short in 

addressing AECO’s multifaceted requirements, leaving them largely overlooked. For instance, while a DT in 

manufacturing may focus on optimizing a specific production process, in AECO, it could range from monitoring 

a single asset to monitoring an entire multi-building campus operation. In performing research on the breadth of 

DTs, we did not identify a definition that caters to AECO’s unique characteristics. Despite a notable Arup’s 

classification system defining five levels, its complexity inhibits widespread adoption within the industry. Each 

level is linked to use cases that create the challenge of applying a uniform taxonomy across diverse projects. 

Without a common domain language and tangible examples, bridging these knowledge gaps remains elusive and 

limits the widespread implementation of DTs in the AECO industry.  Therefore, this paper addresses these critical 

issues by presenting a comprehensive DT classification structure tailored to the unique needs of the AECO 

industry. In addition to providing a succinct and inclusive definition of DTs within this context, the primary 

objective of this research is to demystify the confusion surrounding DTs and promote and facilitate their adoption 

in the AECO domain. 

2. RESEARCH METHODS 

The DT definition and classification structure were developed through a focused content analysis of existing 

literature combined with expert surveys and interviews (see Figure 1). 

 

Figure 1: Research Methodology Overview to Develop the DT Definition & Classification Structure. 



 

 

 
ITcon Vol. 29 (2024), Ghorbani & Messner, pg. 202 

2.1 Systematic Literature Review 

A systematic literature review was completed to identify the definitions and classification structures for DTs. The 

following keywords were used to search for sources: “Digital Twin definition,” “Digital Twin attributes,” “Digital 

Twin characteristics,” “Digital Twin Components,” “Digital Twin Classification System,” “Digital Twin 

Taxonomy,” and “Digital Twin Ontology.” Academic and industry sources from the AECO Industry, as well as 

other industries (e.g., Manufacturing, Electrical Engineering, Aerospace Engineering, Systems Engineering, 

Industrial Design, Mechatronics, and Healthcare), were searched. For academic papers, the Compendex database 

was used to identify the related academic papers. The following criteria were used to select the publications: 

1. Only papers written in English were considered for the review. 

2. Similar studies by the same authors were removed from the review. 

3. Non-peer-reviewed academic papers were removed. 

4. Papers published in predatory journals were removed. Beall’s list of potential predatory journals and 

publishers was leveraged to identify and remove such papers from the review (Beall’s List of Potential 

Predatory Journals and Publishers, 2023).  

Industry sources included the following: 

1. Vendor sources such as white papers or websites (e.g., Bentley website, Microsoft white paper, Siemens 

white paper) 

2. Associations and non-profit organizations reports (e.g., Digital Twin Consortium (DTC) reports, Royal 

Institute of Chartered Surveyors (RICS) report, Aerospace Industries Association (AIA) report) 

3. Consulting reports (e.g., Arup Digital Twin report) 

4. Magazines (e.g., Engineering News-Record (ENR)) 

After identifying the sources, the abstracts were studied to ensure that the paper’s content was related to the topic 

of this research, and the list of papers was refined. Initially, 421 sources were identified. After reading the 

manuscripts, papers that did not include any original DT definition were removed. After reviewing the manuscripts, 

35 sources were included in the analysis (all definitions are included in Appendix A). 

2.2 Content Analysis 

After reviewing the full manuscripts, content analysis was conducted to extract DT definitions, their core 

components, and classification structures from the sources. For this research, NVivo V14 software was used for 

the content analysis. After extracting definitions from the sources, they were analyzed to identify the core 

components of each definition, and the components were documented with the exact lexicon used in the sources. 

After an initial round of analysis, similar terms were grouped, and a lexicon was proposed for each component 

group.  For instance, the following terms were grouped together since they refer to similar concepts: “virtual 

reflection,” “computational model,” “virtual representation,” “digital replica,” “digital copy,” and “computerized 

model.” In this instance, “virtual representation” was selected as the term used to describe this core component 

group. A DT definition was developed and documented by using the identified core components. The same 

procedure was conducted for developing the classification system. The identified categories were grouped based 

on similarity, and a classification system was derived for the AECO industry using those categories and common 

domain language. 

2.3 Validation: Surveys 

The results were validated through surveys and semi-structured expert interviews. This approach enabled us to 

triangulate our data sources, ensuring the robustness and richness of our study’s qualitative insights. Purposeful 

and snowball sampling were used to collect participants. An initial list of industry and academic DT experts was 

prepared through our professional network. The survey link was sent to the experts on the list. The participants 

were asked to complete the survey, and there was a question at the end to indicate whether they were interested in 

a follow-up interview. Surveys were collected anonymously. However, if a participant indicated an interest in a 

follow-up interview, they would voluntarily provide their email address to be contacted for setting up the interview. 

For snowball sampling, there was a question at the end of the survey to ask if the participant knew any other DT 

experts that could be contacted for this study. The surveys were administered through Qualtrics.  
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The survey encompassed three main sections: (1) demographics, (2) DT definition and core components, and (3) 

DT classification structure. These sections included a mix of question types, incorporating both open-ended 

questions that encouraged participants to provide additional insights and questions that required participants to 

gauge their agreement on a Likert scale. The open-ended questions allowed participants to offer nuanced feedback 

on the research findings. The Likert scale questions were used to evaluate the comprehensiveness, ease of 

understanding, and accuracy of DT definition and classification structure on a scale of 1 to 10. Furthermore, 

participants were asked to categorize each DT component as required, optional, or not part of DT. A copy of the 

survey can be accessed at  https://scholarsphere.psu.edu/resources/e3057cf0-c4ba-4195-a560-3228fcea9c6b. 

Only data from completed surveys were included in the subsequent data analysis. The survey encompassed a 

diverse and well-represented set of participants. The responses of only one participant per organization were 

considered for the analysis to limit the potential bias of any one organization’s perspective of DTs, resulting in 22 

data points for the analysis.  

The survey was directly sent to 40 experts, and 22 completed the survey for a response rate of 55%. 11 additional 

people responded based upon one expert forwarding the survey link to a group in their organization. Such responses 

were reviewed but not included since only one response per organization was considered for the analysis. Among 

those participants, 14 held industry jobs, and 8 worked in academia. Geographically, the majority of the 

participants were based in the United States, accounting for 18 individuals, while Europe was represented by 2 

participants. The remaining 2 participants were located in other regions of the world. In terms of academic 

participants, they all held the job title of faculty, with years of experience ranging from 5 to 40 years, with an 

average of 17.6 years. The industry participants were distributed across a range of job categories, including 

executives, individuals in technology-related roles, project engineers, and architects (see Figure 2 for the 

distribution of job categories of participants.) Their industry experience varied from 3 to 43 years, with an average 

of 22.9 years. 

 

Figure 2: Distribution of Participants’ Job Categories. 

2.4 Validation: Interviews 

Semi-structured interviews were conducted to validate the research results. Interview questions included follow-

up questions from participants’ survey responses on DT definition and core components and DT classification 

structure. Since the participants were geographically dispersed, the majority of the interviews were carried out via 

a video call. The number of interviews was determined by the data saturation principle, ensuring a comprehensive 

exploration of the study’s objectives. A total of 18 interviews were carried out with an approximate length of time 

of 30 minutes each. Among those interviews, 14 were conducted remotely, and 4 were conducted in person. 

Interviews were transcribed using an automated tool, Otter.ai. An online mapping tool (MindMeister) was used for 

the initial note-taking and documentation of the interview results. NVivo 14 was used for coding and analysis of 

the interview transcripts. 

https://scholarsphere.psu.edu/resources/e3057cf0-c4ba-4195-a560-3228fcea9c6b
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2.5 Survey and Interview Data Analysis 

The DT definition and classification structure were refined and documented based on data from validation 

surveys and expert interviews. Potential suggestions for each change from the interviews were identified and 

documented using an online mapping tool (Mural). For each question theme, interview and survey comments were 

grouped based on similarities. Then, the comments were categorized and addressed accordingly:  

1. Comments that were based solely on the interviewee’s opinion without any supportive information or 

logic: these comments were documented. However, no change was made to the research results.  

2. Comments that were backed up by logic, a set of facts, literature, collective expert opinions, or other type 

of meaningful information: changes were made to address these comments. 

3. Comments that made logical sense but did not fit into the scope of this research: these comments were 

documented. However, no change was made to the research results.  

4. Comments that were not supported by a logical justification; these comments were documented. 

However, no change was made to the research results.  

 

After addressing the comments, the final revised definition and classification structure were developed and 

documented. 

3. RESULTS AND DISCUSSION 

Figure 3 includes the results of the validation survey pertaining to the DT classification structure, components, and 

definitions. Participants were asked to rate their level of agreement with statements assessing the 

comprehensiveness, ease of use, and accuracy of each concept using a 10-point Likert scale. The mean and standard 

deviation (SD) of ratings, along with the box plots, are presented in Figure 3. 

 

Figure 3: Survey Results. 

In the context of classification structure assessment, the medians for the three metrics, namely comprehensiveness, 

ease of use, and accuracy, are 8, 9, and 8, respectively. These values signify that 50% of the survey participants 

rated these indicators above 8, 9 and 8, indicating a substantial level of agreement on the comprehensiveness, ease 

of use, and accuracy of the classification structure. Box plots further emphasize this substantial level of agreement 

by revealing the interquartile range, where the lower and upper boundaries encapsulate the 1st and 3rd quartiles. In 

this range, the responses for comprehensiveness, ease of use, and accuracy predominantly fall within the intervals 

of 7 to 10, 8 to 10, and 6 to 10. Consequently, it is evident that a significant portion of participants expressed 

positive opinions regarding these aspects of the DT classification structure. For DT components, the medians for 

comprehensiveness, ease of use, and accuracy are 10, 9.5, and 8. The majority of responses within these categories 

predominantly fall within the 8 to 10 range for comprehensiveness, 8 to 10 for ease of use, and 7 to 10 for accuracy. 

In the context of DT definition, the medians for comprehensiveness, ease of use, and accuracy are situated at 8, 9, 
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and 8. Responses for these parameters fall within the ranges of 7 to 9, 8 to 10, and 6 to 8. Overall, the box plots 

highlight the positive consensus among survey participants, supported by a large majority expressing high levels 

of agreement, as indicated by the median and quartile values.  

The next section delves into the refined research results after the validation process. 

3.1 Digital Twin Classification Structure 

A structure was developed to classify DTs in the AECO Industry based on their level of integration and the 

connection between digital and physical twins. The three classes include Digital Twin Prototype (DTP), Digital 

Shadow (DS), and Cyber-Physical System (CPS) (see Figure 4). 

 

Figure 4: Digital Twin Classification Structure. 
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The terms for all three classes (DTP, DS, and CPS) have been previously used by researchers to describe different 

aspects of digital twins.  The definitions presented below are aligned to clearly distinguish between the three 

classes, so the following definitions leverage previous efforts but are unique to this classification structure and the 

AECO industry. 

3.1.1 Digital Twin Prototype (DTP) 

A Digital Twin Prototype (DTP) is a virtual representation of an asset designed to be connected to the physical 

asset in the future.  

Within this classification structure, a DTP is not just a digital model. The key distinction is that a DTP includes 

simulations of future connections to the physical environment. An example use of DTP is to simulate different 

design scenarios and assess their impact on indoor air quality through virtual sensors.  

3.1.2 Digital Shadow (DS) 

A Digital Shadow (DS) is a virtual representation of an asset with data flow from the built asset to its digital twin.  

An example use of DS use is to capture asset conditions through the use of technologies such as laser scanning or 

photogrammetry. 

3.1.3 Cyber-Physical System (CPS) 

A cyber-physical system (CPS) is a virtual representation of an asset with bi-directional data flow between the 

digital and physical twins, often including an actuation layer.  

An example use of CPS is to remotely actuate assets, such as fans, pumps, or electrical equipment.  

 

An asset can have multiple DTs in different categories. For instance, there could be a CPS of a building automation 

system (BAS), where bidirectional interactions occur between the digital BAS and the physical building system 

components, e.g., pumps, fans, and sensors. Simultaneously, the scenario may involve a DTP to simulate future 

situations that do not exist yet. Alternatively, there could be several DTPs in the planning stage for renovation 

projects for the same assets. There is no inherent hierarchy of maturity among these categories of DTs, and they 

can coexist and collaborate. Ultimately, selecting the appropriate category for each DT is contingent upon its 

intended purpose(s) and use case(s). 

3.2 Digital Twin Components  

The identified DT components in the literature included virtual representation, analysis, data flow from physical 

to digital, data flow from digital to physical, actuation, and frequency of updates (see Table 1 for the proposed and 

alternate components along with their frequency). A more detailed discussion of each is provided in this section. 

Table 1: Proposed vs Alternate Lexicons for DT Components. 

Proposed Lexicon Frequency (in 35 

references) 

Alternate Lexicons Used in the Literature 

Virtual Representation 35 Mirror image, digital representation, digital replica, computerized model, near-real-time 

digital image, virtual model, living model, virtual substitute, a set of virtual information, 

virtual replica, digital copy, dynamic virtual representation, virtual reflection, comprehensive 

digital representation, semantic data model, exact and real-time cyber copy 

Analysis 15 Computational model, designed to optimize, simulated data flow, optimize business 

performance, it can simulate its physical counterparts’ characteristics, behaviour, life, and 

performance, simulation models, functionality, data processing, simulation,  

Data Flow from 

Physical to Digital 

16 Physical data, getting real-time data to update the DT, synchronization, DT evolves along 

with the real system, dynamic status data, working data captured during real-time operation, 

collecting real-time data from the asset, sensor updates, dynamically updated with data from 

its physical twin, receive product information 
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Data Flow from Digital 

to Physical 

7 Feedback, data transmitted by sensors, virtual data (and interaction between physical and 

virtual data), synchronization, knowledge that can be transferred to the real object, receive 

product information 

Frequency of Updates 8 It should be updated regularly, synchronized in real-time, collecting real-time data from the 

asset, continually updated, throughout the lifecycle, real-time updates, synchronized at a 

specified frequency 

Actuation 3 Prescribe real-time actions for optimizing and mitigating unexpected events, inform decisions 

that realize value 

3.2.1 Virtual Representation 

Virtual representation, as an integral component of DTs, serves as the medium through which the digital 

counterpart is created and linked to its physical counterpart. It acts as the entity that corresponds to and mirrors 

the physical entity in the virtual environment, allowing analysis of the physical system. While 3D geometric 

models are the most commonly associated form of virtual representation in the context of DTs in AECO, it is 

essential to acknowledge that virtual representations can manifest in a variety of forms (see Figure 5). 2D 

representations, for instance, can represent objects or systems where a third dimension is not a crucial factor. Such 

representations are prevalent for use cases such as space planning, where a simplified 2D visual representation 

effectively captures and presents the essential information for analysis. A schematic is another example that offers 

a way to represent complex systems using symbols and interconnected diagrams. These schematics are invaluable 

where there is a network of components, and they need to be documented and analyzed as a system along with the 

interaction among them. In such cases, the use of schematics as virtual representations can enhance the 

understanding of DT. 

 

Figure 5: Various Types of Virtual Representation. 

3.2.2 Analysis 

Analysis plays a pivotal role in enhancing the intelligence of DTs. Among the various forms of analysis discussed 

in the literature, simulation stands as a prominent one. Simulation-based analysis allows DTs to replicate the real-

world behavior of physical entities and predict their responses under different conditions. There are other analytical 

tools for DTs that encompass machine learning (ML) and deep learning (DL) models. These models not only 

mimic real-world systems but also continuously learn, adapt, and make data-driven predictions. By integrating ML 

and DL models in DTs, DTs gain the capacity to recognize patterns, anomalies, and trends in the data, thereby 

facilitating more informed decision-making. 

3.2.3 Data Flow from Physical to Digital 

Integrating physical and digital twins is an essential aspect of DTs that facilitates the exchange of information and 

synchronization between the physical and virtual environment. This connectivity is achieved through the transition 

of data from the physical twin to the digital twin. In DTs, this data flow takes place within both Digital Shadows 

and Cyber-Physical System categories. The data itself is collected from the physical environment using a diverse 

array of sources such as sensors, IoT devices, laser scanners, drones, and other data collection devices. The data is 

then transmitted to the DT, where it can be incorporated into its raw, unprocessed form or undergo processing, 

cleaning, and structuring to transform it into actionable information. The transition process may be automated, 
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semi-automated, or manual, depending on the specific DT use case and the level of precision required. Regardless 

of the data’s nature or the transfer process, a crucial step in the data exchange is the implementation of a data 

governance process (Alreshidi et al, 2014). This process ensures that the data is not only valid but also meets the 

necessary quality standards, which is paramount for achieving accurate and reliable insights within the DT system. 

This interplay between the physical and digital twins through controlled data flow is fundamental to the 

effectiveness and functionality of DTs. 

3.2.4 Data Flow from Digital to Physical 

The exchange of data from the digital environment to the physical environment represents a fundamental 

characteristic of DTs and is a feature exclusive to DTs operating at the CPS level. This transmission plays a pivotal 

role in enhancing the real-time responsiveness of the physical twin by infusing it with data-driven insights. The 

transmitted data from the DT can serve as a valuable informant, influencing the decision-making process in two 

potential ways: Firstly, it can inform human operators, providing them with critical information to make informed 

decisions and take action accordingly. Secondly, it can inform automated controllers, which can execute pre-

defined actions or algorithms in response to the data received, enabling autonomous adjustments in the physical 

environment. This dynamic data flow from the digital to physical environments, guided by principles of data-

driven decision-making, highlights the transformative potential of DTs in realizing the vision of intelligent and 

adaptive systems. 

3.2.5 Frequency of Updates 

The time dimension of DTs, as governed by the update frequency, constitutes a critical component that directly 

impacts their relevance in various use cases. The update frequency signifies how often the DT data gets updated 

and is closely tailored to the specific use case at hand. The choice of update frequency is inherently tied to the 

nature of the use case and the associated urgency of response. For instance, in high-stakes scenarios like a hospital’s 

operation room, where indoor air quality can be a matter of life and death, real-time updates are indispensable, 

often occurring at minute intervals to enable rapid interventions. In contrast, when assessing indoor air quality in 

a residential apartment, the urgency may be lower, and hourly updates can provide sufficiently informative and 

efficient data. This critical aspect of DT, reflecting the dynamic interplay between use case demands and data 

acquisition, underscores the adaptability and versatility of DTs across a spectrum of applications, ensuring that 

their temporal dimensions align seamlessly with the specific needs of each scenario. 

3.2.6 Actuation 

Actuation embodies the power to make changes in the physical environment. This capability can manifest in two 

ways, either through automated processes driven by data-driven insights and algorithms or through user-informed 

actions, where human decision-making plays a role in influencing the physical environment. Actuation is a 

component exclusively present in DTs operating at the CPS level. In this context, a DT serves as a dynamic and 

responsive entity that not only observes and mirrors the physical world but also actively participates in it, taking 

actions that can range from optimizing energy consumption in a building to controlling the humidity of a room. 

This critical aspect of DTs which is unique to DTs operating at the CPS level highlights their potential in enabling 

intelligent, real-time control and decision-making. It should be noted that the actuation component is closely tied 

to the other component and dependent on it, “data flow from digital to physical.” In other words, actuation would 

not be possible without data flow from digital to physical twin. 

3.3 Digital Twin Definition 

Leveraging the identified DT components, a comprehensive and adaptable DT definition was developed as 

follows: 

“A digital twin of an asset is a fit-for-purpose and intelligent virtual representation of it synchronized at specific 

frequencies, with an existing or planned connection between the virtual and physical twin that may include analysis 

and the ability to actuate physical changes from the virtual twin.” 

The definition encapsulates the core components of DTs, allowing it to be adaptable and inclusive, catering to all 

the defined categories (i.e., DTP, DS, and CPS). By highlighting the importance of synchronization, the potential 

of data-driven analysis, and the capacity of actuation, this definition, along with the classification structure, 

provides a framework that accommodates the diverse array of DT use cases in the AECO Industry. 
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3.4 Cyber-Physical-Human System 

Amidst the complex web of interconnected components within DTs, the role of human interaction emerges as a 

pivotal aspect that is often overlooked. Understanding the relationship between humans and the components of the 

DT system is critical and can shape the efficiency, efficacy, and usability of such systems. In this section, we delve 

into the critical interplay between different components of DT systems and emphasize the role of humans within 

these DT systems. Through the exploration of various modes and mechanisms of human interaction with DT 

systems, we explore ways to enhance their functionality and accessibility. In DT systems, the interaction between 

humans and DT systems can take place at various junctures (see Figure 6). 

 

Figure 6: Cyber-Physical-Human System. 

There are various means that serve as conduits to interact with DT systems, each offering unique opportunities and 

challenges. One avenue of interaction lies in interfaces, where users can interact with various components of a DT 

system through user interfaces. These interfaces facilitate communication between users and the diverse 

components of the DT system, including the virtual representation, common data environment (CDE), and 

analytical tools. Within this framework, user interfaces can range from touch control interfaces leveraging touch 

technology, such as mobile applications, to immersive interfaces experienced through technologies like 

Augmented Reality (AR) and Mixed Reality (MR), where users engage with DTs through head-mounted displays. 

Additionally, digital interfaces provide alternative pathways, accommodating interactions via desktop computers 

or similar devices. Lastly, direct control offers a more tactile dimension to interaction, enabling users to manipulate 

physical entities within the DT ecosystem directly. For instance, a mechanical technician might respond to a system 

fault notification by physically shutting down equipment. Understanding and leveraging these diverse modes of 

interaction are essential steps toward advancing the implementation and efficacy of DT systems. 

3.5 Different Types of Relationships Between Digital and Physical Twins 

The integration of DT technology with physical entities has revolutionized the way we perceive and interact with 

real-world systems. The relationship between digital twins and their physical twins extends beyond simple one-to-

one connections, encompassing a spectrum of arrangements, from one-to-many to many-to-many (see Figure 7). 

Understanding and leveraging these diverse relationships is essential for unlocking the full potential of DTs. 
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Figure 7: Various Types of Relationships between Digital and Physical Twins. 

3.5.1 One-to-one relationship 

In a one-to-one relationship, a single digital twin corresponds directly to one physical twin. A prominent illustration 

of this configuration is the DT of a building.  

3.5.2 One-to-many relationship 

A one-to-many relationship represents a DT linked to multiple physical twins. For example, within a campus-wide 

DT at the CPS level, a single DT can be connected to several buildings on campus. This interconnected web allows 

for centralized management of assets. 

3.5.3 Many-to-one relationship 

Conversely, a many-to-one relationship involves multiple DTs converging on a single physical twin. Consider, for 

example, a complex asset, such as a building. In this scenario, various DTs can serve distinct purposes, each 

focusing on a specific aspect of the asset. One DT (at the DS level) could monitor energy consumption, while 

another DT (at the CPS level) could monitor and control mechanical equipment like boilers and air handling units. 

These DTs can interact and communicate with each other.  

3.5.4 Many-to-many relationship  

The most interconnected relationship is the many-to-many configuration. In such a configuration, numerous DTs 

are connected to multiple physical twins.  

To illustrate this, envision buildings on a campus, each having their individual DTs. If each element of each 

building is integrated into each system (e.g., Space Management System DT), and each system (e.g., Space 

Management System) is incorporated into each building, we will have a many-to-many relationship. 

4. SUMMARY AND CONCLUSIONS 

The concept of Digital Twins (DTs) has gained significant attention within the Architecture, Engineering, 

Construction, and Operations (AECO) Industry. However, the adoption of DTs in the AECO Industry is still in its 

early stages, primarily due to the lack of a common language and a clear understanding of the DT concept. This 

paper addressed this issue by developing a definition for DTs in the AECO industry through a systematic literature 

review and content analysis: “A digital twin of an asset is a fit-for-purpose and intelligent virtual representation 
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of it synchronized at specific frequencies, with an existing or planned connection between the virtual and physical 

twin that may include analysis and the ability to actuate physical changes from the virtual twin.”  

The definition emphasizes that each DT is created for a specific purpose. In other words, the purpose and use 

case(s) of a DT should be determined prior to creating it. Furthermore, a classification structure was developed to 

demonstrate various categories of DTs based on the level of integration and connection between digital and 

physical twins. The structure comprises three categories of DTs, including Digital Twin Prototype (DTP), Digital 

Shadow (DS), and Cyber-Physical System (CPS). The proposed DT definition is flexible and accommodates all 

three categories of DTs. Importantly, the classification structure recognizes that an asset can have multiple DTs 

from different categories simultaneously, reflecting the diverse nature of DT applications. The developed definition 

and classification structure were rigorously validated through expert surveys and interviews, providing a 

foundation to clarify the ambiguity surrounding DTs and encourage DT implementation in the AECO industry. 

In conclusion, this research contributes to demystifying the ambiguity surrounding DTs and provides a common 

language and ground for the AECO Industry. The results facilitate the communication of DT discussions between 

various project stakeholders. In addition, the findings foster creativity and help users understand the concept of 

DTs more clearly. The research results pave the way for enhanced integration of DTs into industry practices and 

set the stage for further exploration, including the development of an ontology for DT use cases. As the AECO 

Industry continues to embrace digitalization, the DT classification structure and definition presented in this paper 

will play a pivotal role in shaping the future of the industry. 

LIMITATIONS AND FUTURE WORK 

The exploration of the DT concept in the AECO industry is still in its early stages. Real-life examples of larger-

scale DTs are limited, leading to a reliance on focused system-level DTs or hypothetical scenarios to illustrate 

certain concepts, such as the dynamics of many-to-many relationships between digital and physical twins. The 

scarcity of empirical evidence may affect the depth of understanding and applicability of DT principles in practical 

contexts. Furthermore, the DT elements presented in each DT category may not be comprehensive. As technology 

continues to evolve, novel elements may emerge that will need to be included in these systems. For instance, the 

advent of new data collection tools beyond IoT devices, sensors, and laser scanners could necessitate revisions or 

expansion to the DT elements. 

To advance the understanding and implementation of DT within the AECO domain, we propose the following 

avenues for future research. (1) Development of a DT Use Ontology: establishing a standardized terminology and 

ontology specific to DT applications can enhance clarity and facilitate effective communication within the industry. 

by delineating and formalizing various DT uses, stakeholders can better comprehend their potential applications 

and implications across diverse projects and organizations. (2) Development of a DT Implementation Plan: 

formulating a DT implementation plan is crucial for guiding organizations through the process of creating and 

integrating DTs into their operations. The implementation plan would encompass a range of considerations, 

including selecting DT uses, technological requirements, and data management strategies. By creating clear 

guidelines and best practices, organizations can streamline the adoption of DTs, thereby maximizing their potential 

benefits while mitigating challenges.  (3) Detailed case studies of existing and future DT initiatives. 
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APPENDIX A: DIGITAL TWIN DEFINITIONS TABLE 

Industry Year Definition Reference  

AECO 2018 A digital twin is a mirror image of a physical process that is 

articulated alongside the process in question, usually matching 

exactly the operation of the physical process which takes place in 

real-time. 

Batty, 2018 

AECO 2018 A realistic digital representation of assets, processes or systems in 

the built or natural environment 

Bolton et al., 2018 

AECO 2019 A digital twin is a digital replica of a physical built asset. What a 

digital twin should contain and how it represents the physical asset 

are determined by its purpose. It should be updated regularly to 

represent the current condition of the physical asset. A digital twin 

should be standardized yet extensible, able to address key use cases 

directly and specialty use cases with extensions, cloud and 

computationally friendly, scalable, and verifiable. 

Brilakis et al., 2019 

AECO 2019 A digital twin is the combination of a computational model and a 

real-world system, designed to monitor, control, and optimize its 

functionality. Through data and feedback, both simulated and real, a 

digital twin can develop capacities for autonomy and to learn from 

and reason about its environment 

Arup, 2019 

AECO 2019 A cyber-physical-social system with coupled properties Tomko and Winter, 2019 

Manufacturing 2015 
Very realistic models of the current state of the process and their 

behaviors in interaction with their environment in the real world – 

typically called the “Digital Twin”. 

Rosen et al., 2015 

Manufacturing 2017 A virtual representation of a product on the shop-floor Blum and Schuh, 2017 

Manufacturing 2017 A digital twin is a computerized model of a physical device or system 

that represents all functional features and links with the working 

elements. 

Chen, 2017 

Manufacturing 2017 A Digital twin is the digital representation of a unique asset (product, 

machine, service, product service system or another intangible 

asset), that compromises its properties, condition and behaviour 

using models, information and data 

Stark et al., 2017 

Manufacturing 2017 (as a software) A digital representation of all the states and functions 

of a physical asset 

Weber et al., 2017 

Manufacturing 2018 A comprehensive digital representation of an individual product. It 

includes the properties, conditions, and behavior of the real-life 

object through models and data 

Haag and Anderl, 2018 

Manufacturing 2018 The Digital twin of a physical object as the sum of all logically 

related data, i.e. engineering data and operational data, represented 

by a semantic data model 

Kunath and Winkler, 2018 

Manufacturing 2018 A near-real-time digital image of a physical object or process that 

helps optimize business performance 

Scaglioni and Ferretti, 2018 

Manufacturing 2018 A virtual, dynamic model in the virtual world that is fully consistent 

with its corresponding physical entity in the real world and can 

simulate its physical counterpart’s characteristics, behaviour, life, 

and performance in a timely fashion 

Zhuang et al., 2018 
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Manufacturing 2019 The digital twin model is an exact and real-time cyber copy of a 

physical manufacturing system that truly represents all of its 

functionalities 

Leng et al., 2019 

Manufacturing 2019 
DT is a multi-domain and ultra high fidelity digital model 

integrating different subjects such as mechanical, electrical, 

hydraulic, and control subjects. It connects multiple product 

activities, and is a consistent model supporting design, production, 

operation, maintenance, and recycling lifecycle stage. 

Luo et al., 2019 

Manufacturing 2019 This rich digital representation of real-world objects/subjects and 

processes, including data transmitted by sensors, is known as the 

digital twin model. 

Nikolakis et al., 2019 

Manufacturing 2019 A real mapping of all components in the product life cycle using 

physical data, virtual data and interaction data between them 

Tao et al., 2019 

Manufacturing 2019 Digital Twin is essentially a unique living model of the physical 

system with the support 

Wang et al., 2019 

Manufacturing 2021 A set of adaptive models that emulate the behavior of a physical 

system in a virtual system getting real-time data to update itself along 

its lifecycle. The digital twin replicates the physical system to predict 

failures and opportunities for changing, to prescribe real-time 

actions for optimizing and mitigating unexpected events observing 

and evaluating the operating profile system. 

Semeraro et al., 2021 

Manufacturing 2021 Fit for purpose digital representation of an observable 

manufacturing element with synchronization between the element 

and its digital representation. 

ISO 23247-1, 2021 

Metachronics 2016 Digital Twin is the collection of relevant digital artefacts that 

involves engineering and operation data, in addition to behavior 

description using various simulation models. The Digital Twin 

evolves along with the real system along the whole life cycle and 

integrates the currently available knowledge about it. 

Boschert and Rosen, 2016 

Electrical 

Engineering 

2016 Digital twins are virtual substitutes of real-world objects consisting 

of virtual representations and communication capabilities making up 

smart objects acting as intelligent nodes inside the internet of things 

and services. 

Schluse and Rossmann, 2016 

Electrical 

Engineering 

2018 Digital twin represents a dynamic digital replica of physical assets, 

processes, and systems, which comprehensively monitors their whole 

life cycle. 

He et al., 2018 

Electrical 

Engineering 

2018 A digital twin is a digital model of a real object containing lifecycle 

records and dynamic status data, which are synchronized in real-

time. The model will be used to gain knowledge that can be 

transferred to the real object 

Eisenträger et al., 2018 

Systems 

Engineering 

2017 Digital Twin is a set of virtual information constructs that fully 

describes a potential or actual physical manufactured product from 

the micro atomic level to the macro geometrical level. 

Grieves and Vickers, 2017 

Systems 

Engineering 

2018 a digital twin is a one-to-one virtual replica of a “technical asset” 

(e.g., machine, component, and part of the environment). A digital 

twin contains models of its data (geometry, structure, …), its 

functionality (data processing, behavior, …), and its communication 

interfaces. It integrates all knowledge resulting from modeling 

activities in engineering (digital model) and from working data 

Schluse et al., 2018 
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captured during real-world operation (digital shadow). Simulators 

are used to make the digital twin experimentable 

Systems 

Engineering 

2020 DT is defined as a digital copy of a physical asset, collecting real-

time data from the asset and deriving information not being 

measured directly in the hardware. 

Fotland et al., 2020 

Systems 

Engineering 

2023 A digital twin is a dynamic virtual representation of a physical system 

that continually updated using data from the real-world operational 

System 

DoD, 2023 

Aerospace 

Engineering 

2012 A Digital Twin is an integrated multiphysics, multiscale, probabilistic 

simulation of an as-built vehicle or system that uses the best 

available physical models, sensor updates, fleet history, etc., to 

mirror the life of its corresponding flying twin. 

Glaessgen and Stargel, 2012 

Aerospace 

Engineering 

2012 A Digital twin is an integrated multi-physics, multiscale, 

probabilistic simulation of an as-built vehicle or system that uses the 

best available physical models, sensor updates, fleet history, etc., to 

mirror the life of its corresponding flying twin 

Shafto et al., 2012  

Aerospace 

Engineering 

2020 A Digital Twin is defined as a set of virtual information that mimics 

the structure, context and behavior of an individual/unique physical 

asset, or a group of physical assets, is dynamically updated with data 

from its physical twin throughout its lifecycle and inform decisions 

that realize value 

Arthur et al., 2020 

Industrial 

Design 

2018 Digital twin of a real distributed product is a virtual reflection, which 

can describe the exhaustive physical and functional properties of the 

product along the whole life cycle and can deliver and receive 

product information 

Tharma et al., 2018 

Healthcare 2022 
Health digital twins are defined as virtual representations (“digital 

twin”) of patients (“physical twin”) that are generated from 

multimodal patient data, population data, and real-time updates on 

patient and environmental variables. 

Venkatesh et al., 2022 

Industry-

agnostic 

2020 A digital twin is a virtual representation of real-world entities and 

processes, synchronized at a specified frequency and fidelity. 

DTC, 2020 
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