
ITcon Vol. 11 (2006), Calderon et al, pg. 325

CLP A TECHNOLOGY FOR THE INTERACTIVE RESOLUTION OF
SPATIAL CONFIGURATION TASKS IN A VIRTUAL ENVIRONMENT

SUBMITTED: July 2005
REVISED: November 2005
PUBLISHED: May 2006 at http://itcon.org/2006/24/
EDITOR: J. M. Kamara

Carlos Calderón
School of Architecture, Planning and Landscape, University of Newcastle, UK
email: carlos.calderon@newcastle.ac.uk

Marc Cavazza
School of Computing, University of Teesside, UK
email: m.o.cavazza@tees.ac.uk

Daniel Diaz
University of Paris, France
email: Daniel.diaz@univ-paris1.fr

SUMMARY: In this paper, we present a new framework for the use of Virtual Reality (VR) in engineering design
for configuration applications that, while preserving the natural interaction of traditional VR Systems, support the
expression of design knowledge in the Virtual Environment (VE) and the visualisation of the user’s interactions
with the configuration. Traditional VR systems support the visual exploration of a design solution but do not assist
the user in exploring alternative solutions based on domain knowledge. Extending previous work in the area of
Intelligent Virtual Environments (IVEs), we propose an intelligent configuration system based on constraint logic
programming (CLP), integrated in a real-time 3D graphic environment. This type of integration facilitates the
expression of design knowledge in the VE and enables the user to interactively solve and/or refine a spatial
configuration problem. Consequently and in order to demonstrate the viability of our approach, we have
implemented an intelligent configuration system in which the user can visually explore configurations, but his
interaction with objects of the configuration problem triggers new cycles of constraint propagation from the
modified configuration to produce a new compatible solution.

KEYWORDS: virtual environments, artificial intelligence, constraint logic programming, spatial configuration
tasks.

1. INTRODUCTION
Spatial configuration problems are visual by nature and they are based on an implicit mapping between the
“abstract problem space” (which is searched for solution configurations) and the physical environment in which
these configurations are deployed. It is, however, difficult to make this implicit mapping transparent to the user.
VR techniques have the potential to solve this problem but, in the current use of VR for engineering design, the
knowledge is mainly expressed on the geometrical layout, textures, colours, etc. As a result of this, VR assistance
in the use of the underlying design knowledge is restricted. To put it differently, it is currently not feasible to attach
much design knowledge to the VE; consequently, users cannot use the “natural” interaction mechanisms of VR to
interact with it and visualise the “dynamic” consequences of their interactions with the configuration.

In this paper, we present IVEs as a new approach for the use of Virtual Reality in spatial configuration problems in
building design. This approach preserves the nature of VR in terms of interactive and active exploration but
supports the expression of design knowledge in the VE and, therefore, by taking advantage of the interactive nature
of VR, the user can interact with the semantics attached to the VE (e.g. design knowledge). In the context of
configuration applications this translates into the user being able to navigate and physically interact with 3D
objects, but this interaction triggers the automatic reconfiguration of the configuration problem (based on the
design knowledge expressed in the VE) and thus, allowing the dynamic exploration of design solutions.

We claim that this can be achieved by integrating Constraint Logic Programming (CLP) techniques into Virtual

ITcon Vol. 11 (2006), Calderon et al, pg. 326

Environments, extending previous work in IVEs (Axling et al, 1996) (Aylett and Cavazza, 2001). Consequently
and in order to demonstrate the viability of our approach, we have implemented an intelligent configuration system
in which solutions can be interactively refined by the user through direct manipulation of objects in the virtual
environment. The intelligent configuration system utilises basic interaction mechanisms to illustrate how the
proposed technique and methodology used for expression and formalisation of design knowledge enhanced a VE
so that the underlying design knowledge embedded in the VE can be used to interactively produce design
solutions.

In the following sections, after reviewing the background related work, we present a conceptual framework to
illustrate the applicability of the work in the building design domain. We then, using an intelligent configuration
system as an example, discuss the formalisation of design knowledge in CLP, its expression in the VE and the
interactive exploration of solutions. We conclude by discussing how our results address the difficult technical
challenges of reactive planning and drawing some conclusions.

2. BACKGROUND
Spatial configuration problems constitute an important class of applications for Virtual Reality techniques in
building design. For instance, one of the most successful applications of VR has been in the area of interior design
and architecture where spatial configuration problems are paramount. However, in “traditional” VR the
knowledge is mainly expressed on the geometrical layout, textures, colours, etc. As a result of this, VR assistance
in the use of the underlying design knowledge to interactively produce design solutions is restricted. Consequently,
there is a need to develop techniques and methodologies which integrate the generation of solutions into the visual
exploration and interaction capabilities of the virtual environments, thus making the generation of solutions
interactive per se. This type of integration is based on an implicit mapping between the “abstract problem space”,
which is searched for solutions configurations, and the physical/visual environment in which these configurations
are deployed. Consequently, this new generation of VR systems based on IVEs aims at being fully interactive.

This full interactivity can be seen from two different standpoints: (i) as an extension of the current interactivity
offered by VR systems, in which, seen from the user’s perspective, the environment automatically reconfigures
itself as a consequence of his/her interactions and therefore, the system generates an alternative solution(s) as a
result of the user’s interaction; (ii) as a visual interface to interactive problem solving mechanisms. Therefore, a
fully interactive environment provides a transparent interface and natural interaction mechanisms to the “abstract
problem space” in which the solution to the spatial configuration problem can be found.

The technical challenges, for the implementation of a fully interactive virtual environment, lie in keeping the
user-centred aspects of virtual reality: exploration and interaction in a 3D real-time computer generated
environment. In other words, the challenge consists in making the search for solutions interactive whilst
maintaining the nature of VR so that the VE can be used as an interface to explore the configuration and its
“abstract problem space” in which a solution, if it exists, can be found.

2.1 Technical challenges
IVEs’ rationale is the integration of symbolic reasoning techniques into a virtual environment to support intelligent
behaviour. This integrated approach faces a number of technical problems. On the one hand, an appropriate
knowledge representation scheme or framework is needed to express the design knowledge. That is, a knowledge
representation scheme (i.e. rule-based, constraint satisfaction, etc) and a formalism (i.e. constraint logic
programming) where the application domain knowledge can be easily expressed and represented in the system
independently of the problem-solving mechanisms used (i.e. breadth first search). However, for the development
of an IVE which supports the resolution of spatial configuration problems there is a further and critical requirement
for the knowledge representation and the formalism used to encode that knowledge: they must maintain the
principles of VR the user-centred perspective. In other words, it is commonly found in configuration problems that
the location of different objects is related to each other as well as the topological conditions in the environment.
This can prove quite difficult to implement using “traditional” methods especially when the number of objects is
large and the topological restrictions are numerous due to the NP-hard (computationally intractable) nature of
configuration problems. Therefore, a key aspect for the selection of the knowledge and representation formalism is
that the implemented solving mechanisms must be compatible with the sampling rate, not so much of the
visualisation (or frame rate), but in terms of the user interaction with the virtual world objects.

ITcon Vol. 11 (2006), Calderon et al, pg. 327

In order to maintain the user-centred aspects of a VR system, the performance prerequisites are twofold: (i) visual
display, the requirement on the display frame rate of the environment required to provide the effects of immersion
and presence; and (ii) the interactivity, the requirement on the latency time from when the user provides an input to
when the system provides a response (visual or otherwise) required for the user to have useful control over objects
in the environment (Bryson et at, 1995) Since it is not possible to predict all user actions and to store all
corresponding frames in memory, the world has to be created and deleted in real-time. Additionally, human factors
studies indicate that eye motion degrades “dramatically” under 12 frames/sec. Therefore, according to Burdea and
Coiffet (Burdea and Coiffet, 1994), a smooth simulation requires at least 24 or better 30 frames/sec to be displayed.
Consequently, the virtual world has a lifecycle (or visual display constraint) of only 33 msec.

The concept of interactivity is at the heart of Virtual Reality paradigm. In this instance, the interactivity is seen
from the Human-in-the-loop perspective in which the user’s interaction is integrated in the system and occurs
without distortion or with an acceptable latency. Latency, therefore, is a critical factor for interactivity in VR
systems. The total simulation latency (the time between user’s action and VR system’s feedback) is the sum of the
effects of sensor latency, transmission delays (to and from the VR engine) plus the time it takes to re-compute and
display a new frame. As a result of their experimental results, Burdea and Coiffet (Burdea and Coiffet, 1994) have
stated that if the total latency is over 150 msec, then the simulation quality degrades significantly and may even
result in user dizziness and sickness, especially in immersive systems. Table 1 summarizes the technical
challenges to maintain the user-centred aspects of a VR system.

TABLE 1: VR technical requirements
Far Value
Frame rate per second >= 30 fps
Total latency =<150 mscs

2.2 Approaches to Virtual Design
In the field of virtual design, previous work has described the inclusion of a knowledge level for design
applications (Nomura et al, 1992). In these systems, a Decision Support Systems was added to the virtual
environment to validate the design configurations. However, this type of system validates configurations, more as
a diagnostic system, rather than enabling the user the visualisation of his interactions with the configuration by, i.e.,
reconfiguring the configuration. In addition, standard decision support systems, such as rule-based systems, lack
flexibility in their inference mechanisms, which prevents their use in a fully interactive system.

Fernando et al. (Fernando et al, 1999), (Fa et al, 1993) have emphasised the importance of constraints in virtual
design. However, they have been essentially dealing with graph-based techniques which do not support the
interactive generation of alternative design solutions. In other words, graph-based techniques help to interactively
find a solution by restricting the solution space but they are limited in terms of the generation of design alternatives
once a solution has been found.

The use of constraint programming for the expression of construction knowledge was pioneered by the SEED
(Software Environment for Support the Early Phases in Building Design) project at CMU (Fleming et al, 1994).
The SEED project introduced the conceptual basis for the representation of constraints to automatically generate
layouts and argued that constraint programming provides a uniform mechanism to handle the domain related
knowledge, because spatial configurations could be naturally expressed as constraints. Moreover, constraints have
proven to be a useful format to express engineering design knowledge (Lottaz et al, 1999). For instance, much
engineering knowledge is stated in terms of constraints: regulations, codes of practice, behaviour models, cost
restrictions, and planning strategies all employ explicit declaration of constraints which are easily translated into
the “formal” constraints expression of constraint programming. Hence, constraint-based systems have the
potential to be one of the most understandable and easiest to maintain of all reasoning systems.

Furthermore, previous research in the area of Intelligent Virtual Environments has proposed the use of constraint
logic programming as a supporting mechanism for intelligent object behaviour, its rationale being the seamless
integration of symbolic reasoning techniques with the visual and interaction components: Axling et al. (Axling et
al, 1996) and Codognet (Codognet, 1999). Both Axling and Codognet have put emphasis on the behaviour of
individual objects in the virtual world. However, CLP naturally provides solutions for the combined behaviours for
sets of objects, which is the property we use to implement behaviours for the virtual environment as a whole.

ITcon Vol. 11 (2006), Calderon et al, pg. 328

3. CONCEPTUAL FRAMEWORK
The objective of this section is to provide a framework and understanding of the fundamental relationships
between concepts and therefore, to illustrate the applicability of the work in the building design domain. This
section argues that, in order to implement a fully interactive VR system, the problem knowledge representation
scheme, the programming framework, the representation formalism and the underlying problem-solving
mechanisms cannot be viewed independently.

Constraint Satisfaction (CS), an Artificial Intelligence (AI) paradigm, is proposed as a knowledge representation
for spatial configuration tasks. Constraint programming (CP) is put forward as a conceptual programming
framework because it takes advantage of the properties which constraints naturally enjoy. These are vital to
support the concept of a fully interactive virtual environment. Constraint Logic Programming (CLP) is selected as
the most appropriate formalism to express constraint satisfaction problems. The selection of GNU-Prolog, a
Constraint Logic Language over Finite Domains (CLP(FD)), as the implementation language is explained on the
basis of its built-in predicates, its problem-solving mechanisms and its use of Finite Domains variables as a
semantic structure.

3.1 Knowledge acquisition: building design requirements
Knowledge acquisition refers to the collection of analysis of information from one or more sources leading to
acquire and encapsulate knowledge (Jackson, 1999).

There are many theoretical models that could be used to describe the conceptual basis for the representation of
building design requirements (Kamara, 1999) (Fleming et al, 1994) (Rivard, 1997). In this investigation, the
framework adopted follows Lawson’s model (Lawson, 1997) to explain the generation of design requirements
(sources of knowledge) and the SEED (Software Environment for Support the Early Phases in Building Design)
model (Fleming et al, 1994) to characterise the design requirements (acquire and encapsulate knowledge).

The SEED characterisation proposes two intertwined levels for the formulation of design requirements: design unit
and functional unit level in which a design requirement is a combination of: prescriptive and performance
requirements. Moreover, a design unit is seen as a part of the spatial or physical structure of a building with an
identifiable spatial boundary where as a functional unit represents a collection of requirements (size, placement,
etc) for a design unit. A more detailed description of the two levels of the SEED characterisation and how they
relate to each other can be found in (Fleming et al, 1994). The automation in the capture and transformation of
design requirements into an appropriate formulation is also well described and defined in the SEED project
(Fleming et al, 1994) where various examples can be found in: the transformation of functional level constraints
into design level constraints; how the requirements can be incorporated into the generation process that creates
design units; how design units interact with functional units. This paper builds on the work carried out in the SEED
project.

In this investigation, the framework adopted with regards to encapsulation of the design requirements (knowledge)
is that those are represented at a functional unit level on movable and non-movable objects which are part of the
spatial configuration problem (Fig. 1 illustrates the characterisation framework). According to the SEED model, a
functional unit “represents a collection of requirements for a design unit. The requirements consist of constraints
and criteria on shape, size, placement, material make-up, etc of this design unit, which may also impose
requirements on other design units." (Fleming et al, 1994). Furthermore, functional unit constraints are divided
into three categories: topological, local and global constraints. The description, formalisation in CLP(FD) and
implementation in the constraint solver of each category is explained in detail in the example section.

Finally, it must be noted that restrictive non-geometric attributes like the lighting levels of a room were not
implemented in the SEED project. However, CLP(FD) introduces richer semantic data structures that allow
semantic objects, e.g. arithmetic and non-arithmetic expressions, to be directly expressed and manipulated in the
so called computational domain, in this case, a Finite Domain (FD). Hence, within each category a further
subdivision has been introduced, geometrical (e.g. minimum and/or maximum distance to paths, walls, etc) and
engineering (e.g. luminosity, temperature, etc, essentially non-geometrical). This distinction between geometrical
and engineering can also be found in the work carried out by Fernando et al. (Fernando et al, 1999), (Fa et al, 1993)
and the example section illustrates its application.

ITcon Vol. 11 (2006), Calderon et al, pg. 329

FIG. 1: Characterisation of building design requirements

3.2 Constraint satisfaction as representation for spatial configuration problems
Representing a specific problem is not a trivial task, especially since how it is modelled/represented can
dramatically affect how well the underlying algorithms of the problem-solving mechanisms perform and therefore,
it can affect the integration of the latter into the visual space represented by the virtual environment (Hentenryck
and Saraswat, 1996).

Constraint problems are generally formalized using a classic AI constraint paradigm: Constraint Satisfaction
Problem (CSP) (Russell and Norvig, 1995). This knowledge representation scheme consists of a set of problem
variables, each associated with a domain of values, and a set of constraints. Each of the constraints is expressed as
a relation, usually defined on some subset of variables, denoting the consistent value assignments that satisfy the
constraint. For example, the allocation of a set of objects can be viewed as a CSP in which the problem variables
are the spatial coordinates of the objects; the representation of the search space (e.g a grid) determines the domain
of values; and the constraints state that, for instance, the objects of the same kind must be a specific distance away

ITcon Vol. 11 (2006), Calderon et al, pg. 330

from each other (see Fig. 2). Thus, a CSP problem is a combinatorial problem (the resolution of a configuration
problem is also a combinatorial problem) which can be solved by search. There are two reasons for choosing to
represent and solve a problem as a CSP. First, the representation as a CSP is often much closer to our original
problem: the variables of the CSP directly correspond to problem entities, and the constraints can be easily
expressed. This makes the formulation simpler and the solution easier to understand. Second, CSP algorithms are
very fast which is important to maintain the user-centred aspects of VR.

FIG. 2: Constraint satisfaction problem (CSP) is a knowledge representation scheme which consist of a set of
problem variables, each associated with a domain of values, and a set of constraints.

3.3 Constraint programming as a framework
Constraint programming provides a powerful conceptual and practical framework to programming, modelling and
problem solving. This framework has proven to be successful in many relevant application areas such as
scheduling, resource allocation, configuration and design and as stated by Hentenryck himself (Hentenryck and
Saraswat, 1996): “constraint programming has the potential for interesting related domain applications in 3D
graphics and virtual reality”. The basic idea is that many interactions amongst objects (e.g., attachments, minimal
distances, noncollision, etc) or general integrity rules (such as energy conservation laws) can be considered as
constraints and implemented as such. Basically, constraints can be used to enforce hidden relations between
objects and thus make sure that the simulated virtual world does not depart much from the real one.

The essence of constraint systems based on a constraint programming framework is that these systems take
advantage of the properties which constraints naturally enjoy and which are vital to support total interactive VR
systems. Firstly, constraints restrict the possible values that variables can take and thus, representing partial
information about the variables of interest. For instance, an object's spatial variables can be locally constrained.
That is, the allocation (spatial variables) of an ATM (Automatic Teller Machine) object can be restricted by the
distance to, for instance, a wall and/or to an area, e.g the queuing area (see Fig. 3). Therefore, when the user
visually interacts in the virtual environment with the object ATM, the spatial variables are partially constrained to
a specific distance to the wall. Consequently, this property helps to match the design requirement (e.g ATM must
be close to a wall) to visual space represented by the virtual environment and to the underlying problem-solving
mechanisms (e.g constraint propagation) implemented in the constraint system.

ITcon Vol. 11 (2006), Calderon et al, pg. 331

FIG. 3: An object's spatial variables can be locally constrained. For instance, the allocation (spatial variables) of
an ATM (Automatic Teller Machine) object can be restricted by the distance to, e.g. a wall and/or to an area, e.g.
the queuing area.

Secondly, constraints are additive/incremental: in other words, given a constraint c1, let us say, X+Y > Z, another
constraint c2, can be added, say, Y <Z. The order of imposition of constraints does not matter; all that matters at the
end is that the conjunction of constraints is in effect. For example, constraint programming supports the addition
by the user of new constraints on the configuration of objects. The user could select the objects in the virtual
environment and state, for instance, the distance amongst them. Consequently, this additional constraint will be
added, on-the-fly, to the original configuration problem. Thirdly, constraints are none-directional: typically a
constraint on, for example, the three Euclidian variables (X,Y,Z) of an object can be used to infer a constraint on X
given constraints on Y and Z, or a constraint on Y given constraints on X and Z, and so on. Finally, constraints are
declarative and, particularly well suited for spatial relationships between objects. This means that a relationship is
expressed, for example, an ATM machine/object must be an specific distance away from the queuing area in a
bank hall (see Fig. 3), without specifying a computational procedure to enforce that relationship.

As previously remarked, all these properties support the basis for the implementation of fully interactive systems
because they support the implementation of transparent and interactive mechanisms between the design
requirements (knowledge), the visual space and the implemented problem-solving mechanisms. Table 2
summarises the constraints properties.

TABLE 2: constraint properties

Constraint properties

Constraints represent partial information about the variables of interest

Constraints are additive/incremental

Constraints are declarative are well suited to express spatial relationships amongst objects

3.4 Constraint Logic Programming over Finite Domains
Constraint Logic Programming (CLP), as it is known from Artificial Intelligence, is the most appropriate
formalism to interactively handle a constraint satisfaction problem in a virtual environment. The argumentation is
threefold: CLP is a declarative formalism; it supports interactivity and, finally, specific programming
environments have been developed.

CLP systems support a declarative programming style: the user specifies the problem as a goal and the system
searches for solutions. That is, the user states what has to be satisfied but not how. The whole problem is about
spatial configuration tasks related to building design. These are formally equivalent in its non-interactive form to
the "n-queens" problem, a classical AI problem, as it consists in searching a space to minimise the number of
conflicts. It is of course a well-described problem (Russell and Norvig, 1995) (Korf, 1996), on which very different
methods can be applied, including branch-and-bound search, constraint programming and heuristic repair. The
choice between approaches was made based not so much on their algorithmic properties as on their expressivity,
defined as their knowledge representation capabilities. To illustrate the problem of expressivity, simpler examples
such as the "allocation of vending machines" in a bank were solved by both methods: a user had to allocate a

ITcon Vol. 11 (2006), Calderon et al, pg. 332

configuration of four vending machines in a bank hall according to the constraints imposed in the configuration
(Calderon and Cavazza, 2001). As previously stated, this example is formally equivalent, in this case, to
the``4-queens" problem. Within search, an instance of the conflict criterion is Y1-Y=/=(X1-X), Y1-Y=/=(X-X1)
which, states that two vending machines cannot be in the same diagonal (using a rectangular grid as a search space).
Within CLP, the constraint had a more natural declarative definition, for example, (X-Xm)+(Y-Ym)<Dmax, which
states that a vending machine must be a Dmax away from a non-movable object (Xm, Ym) On trivial examples like
this one, search and constraint solving are equivalent. However, as the application gets more realistic and complex,
expressivity of the constraint formalism, that is the ease of expressing a variety of operations in a simple,
declarative and powerful way, is increasingly more important.

CLP(FD) systems use the constraints actively, pruning the search tree in an "a priori" way rather than using
constraints as passive tests leading to a "generate and test" or "standard backtracking" behaviour. These new
inference mechanisms in the finite domain part of a CLP(FD) system were pioneered by CHIP (Dincbas et al,
1988). The key aspect is the tight integration between a deterministic process, constraint evaluation, and a
nondeterministic process, search. It is the active view of constraints which is exploited in CLP implementations to
overcome the well-known performance problems of "generate and test" (Fruhwirth et al, 1992). CLP(FD) systems
exhibit a data-driven computation and can be characterised as "constraint and generate". These solving
mechanisms provide a strong basis for its integration in an interactive VR system.

Consequently, the factors which make a CLP(FD) language suitable for the implementation of an interactive
constraint solver are: the expressiveness awarded by the high level of these languages, the combination of search
and incremental constraint solving capabilities (i.e when adding a new constraint to an already solved set of
constraints, the constraint solver does not start from scratch), the short development time while exhibiting
efficiency comparable to imperative languages and the fact that CLP(FD) is fast enough to react in “real-time” to
the user’s input configuration (Hermenegildo, Online) as we will demonstrate in the application example.

4. AN INTELLIGENT CONFIGURATION SYSTEM
An intelligent configuration system is used as an application example. The data used in this configuration scenario
is derived from a simple yet realistic example which uses real-world design knowledge in terms of building interior
design for offices (a bank agency in our case). More specifically, the data used for both objects and constraints was
drawn from real specifications (European Commission, 2000) (British Educational Communications and
Technology agency, 2001).

In our intelligent configuration system, the spatial relationships between the objects in a layout configuration are
all known, formulised in CLP and implemented in GNU Prolog. Moreover, the objects involved in the
configuration have been divided into non-movable objects (e.g. ventilation ducts, sources of heat, etc) and
movable objects (e.g furniture: sofas, desks, etc). In our case, this means that whilst all objects are used when
formalising the design requirements, the user will only interact with the movable objects: the furniture.
Consequently, when the user decides to reallocate a movable object (e.g. a sofa), this, in turn, disrupts the imposed
constraints in the whole configuration and forces the system to re-allocate the remaining movable objects to
generate a solution compatible with all the design requirements. The decision to make some objects movable or not
is arbitrary (and it can be easily reversed) but it is made on the basis of the relevance for the application (in this case
interior building design). Hence, it makes sense to have a movable desk and not a ventilation duct which is part of
the mechanical and electrical (M&E) equipment.

In our case, the movable objects are: one vending machine, two desks (which represent the customer attention
area), two sofas (waiting attention area), two automatic teller machines (ATMs), three fire extinguishers and four
bins. This constitutes a subset of 14 objects: considering the size of the environment and that the overall size of the
available set of constraints for each object is eleven, the corresponding search space (abstract problem space) is
substantial and indeed impossible to search systematically, even less so in real-time.

4.1 System overview and architecture
The system is an interactive 3D environment in which the user can freely navigate and interact with the world
objects (e.g. by dragging and dropping them). That is, the system initially proposes a first solution (in the form of
a configuration of objects) which serves as a starting point for user’s exploration of possible configurations. Once
the user has explored this configuration, he can interact with it by displacing the constituent objects. The correct

ITcon Vol. 11 (2006), Calderon et al, pg. 333

allocation of an object instantly triggers new solutions (configurations) from the solver which, in turn, are
displayed in the virtual environment.

The system has been developed using the Unreal TournamentTM (UT) game engine as a development environment.
In addition to being an efficient graphics engine, it includes a development environment in which object
behaviours and interactions with objects can be programmed, even for immersive systems (Jacobson and Hwang,
2002)(Lewis and Jacobson, 2002). The UT environment also supports the overall software architecture by
allowing integration of external modules via dynamic link libraries or windows sockets. We have used TCP
sockets as a communication mechanism between the visualisation engine and the intelligent configuration system
(see Fig. 4).

FIG. 4: System Architecture: a GNU Prolog solver is integrated in the Unreal EngineTM

The intelligent configuration module is based on Constraint Logic Programming (CLP) has been developed using
CLP(FD) as a software technology. More specifically, the CLP(FD) framework provides all the tools to represent
design knowledge, mapping design constraints to “formal” constraints in CLP which express e.g. distance between
objects, compatibility between materials, etc. In addition, it enables incremental solutions to be computed in user
real-time, which ensures the interactivity of the system as a whole. We have used GNU Prolog (Diaz and Codognet,
2001) as a programming environment, which contains an efficient constraint solver over Finite Domains (FD).
This allows the implementation of many different types of constraints which can be represented over a finite
domain, i.e. an ordered list of properties. This makes it possible to represent “semantic” constraints, i.e. constraints
involving object properties such as (materials, friction coefficient, resistance to fire, etc). In the next section, we
give a more detailed insight into the implementation considering the specific techniques used.

It must be noted that, according to our results, the communication time for the overall cycle is on average less than
15ms, which is fully compatible with the user interaction (as the user is not navigating when interacting with
objects).

4.2 Formalisation of design knowledge in CLP
Following the characterisation of building requirements expressed in the conceptual framework, in this case the
design unit is the spatial configuration of the furniture suite of a bank agency. For our purpose, the encapsulation of
design requirements was adopted at functional unit level: movable and non-movable objects (see Fig. 5). The
constraints or design requirements on those objects (functional units) have been classified in three groups:
topological, local and global constraints. These constraints incorporate geometric as well as more “semantic”
attributes such as lighting and temperature. Consequently, to assess a proposed design unit (e.g the furniture layout
of a room), the designers select and input the attribute values on the functional units (objects) and their
“performance” is interactively evaluated by the user through the virtual environment.

ITcon Vol. 11 (2006), Calderon et al, pg. 334

FIG. 5: CLP formalisms enable the transformation of design knowledge into a set of constraints

The topological constraints are inherited from the 3D environment and are transformed into Prolog facts which
describe room’s topological characteristics. Consequently, from the user’s perspective, there is a perfect matching
between the topological characteristics of the 3D environment and the Prolog facts implemented in the solver. For
instance, sources of heat or radiators and different lighting levels are visually apparent to the user in the 3D
environment. Therefore, both characteristics have been formalised as Prolog facts as follows (also illustrated in Fig.
6): source_of_heat([X0/Y0, X1/Y1/,X2/Y2]); luminosity([lightingvalue = Area0, lightingvalue = Area1,
lightingvalue = Area2])

FIG. 6: Topological constraints (i.e. lighting levels) are inherited from the 3D environment and are transformed
into Prolog facts which describe room’s topological characteristics. Consequently, from the user’s perspective,
there is a perfect matching between the topological characteristics of the 3D environment and the Prolog facts
implemented in the solver

These facts define the coordinates of the sources of heat (a list of points X/Y in the search space) and the regions
where the lighting level is less than 300 lux (a list whose each element defines a lighting value and an associated
rectangle in the search space). In the example, there are also definitions for the location in the 3D environment of
the following elements: power points, ventilation ducts, the central fountain, queuing area, counters, walls,
luminosity and temperature levels.

Local constraints are constraints on the attributes of a single object and specify how the object relates to the
topological characteristics of the virtual environment. This means that when the user disrupts the configuration, he
is effectively interacting with the underlying design knowledge expressed through the properties/attributes of the
object. For instance, let us imagine that the user wanted to reallocate the desk object. The new object location

ITcon Vol. 11 (2006), Calderon et al, pg. 335

would be constrained by the object’s attributes (or design requirements) expressed in the corresponding Prolog
clause (also shown in Fig. 7): object(sofa [furniture(4),heat(4), duct(4), wall(26), queue_area(3), temperature
(19..24)]. This clause reads as follows: a desk should be placed at a minimum distance of 4 from any ventilation
duct, at a minimum distance of 3 from a queue area and, inside an area whose temperature is between 19 and 24
degrees Celsius. As previously remarked, the overall size of the available set of constraints for each object is
eleven. That is, there are nine local constraints available and at least two global constraints: how the object relates
to the rest of objects in the configuration and how it relates to the object of the same type (sub-configuration).
Table 3 summarises the local constraints (geometrical and engineering) available. Not all the objects have to
comply with all the constraints.

FIG. 7: Local constraints are constraints on the attributes of a single object and specify how the object relates to
the topological characteristics of the virtual environment

TABLE 3: Local constraints available to each object. Not all objects have to comply with all the constraints

Geometrical Constraints Engineering Constraints

A minimum distance away (different for each object) from

sources of heat.

ventilation-ducts

power-point

Luminosity: an object has to be in an area with luminosity levels
between for instance, 300-500 flux.

minimum and max distance (different for each object) of each
segment of a path. Each point "around" the path (or the
distance) is not a solution.

Temperature: an object has to be in an area with temperature
levels between for instance, 19-24 degrees.

A predefined offset area and the area of each furniture are not
in a feasible solution

A fixed and / or minimum and / or maximum distance to each
wall

Global constraints are particularly relevant to express design requirements which involve group of objects. Each
object has at least two global constraints imposed: one which relates that object to the rest of objects in the
configuration and another which relates the object to its own sub-configuration (except when the sub-configuration
consists of just one object). For instance, let us consider the object “desk”. This object relates to others in the
following way: the constraint distance_constraint(desk, desk, 6, 12) ensures that a minimum and a maximum
distance is kept between desks; distance_constraint(desk, sofa, 6,20) forces any desk object to be within a certain
distance (6 to 20) of any sofa; distance_constraint(desk, bin, 5,12) is similar to the one just described; and, finally,
the constraint distance_constraint_others(8,1000) sets a minimum distance between the object desk and any other
object (see Fig. 8).

At implementation level, it must be noted that there are two implementation levels for either local or global

ITcon Vol. 11 (2006), Calderon et al, pg. 336

constraints: descriptive and primitive. In the descriptive level the user of the system (e.g the designer) states the
constraint, or what it needs to be solved, without being concerned about how it is resolved. Hence, constraints can
be easily asserted or retracted from the constraint solver. On the other hand, the primitive level is concerned with
the optimization of the resolution process. That is, at a primitive level the main concerned is to find, or define, the
most appropriate finite domains predicates which assure an efficient/fast solver.

FIG. 8: Global constraints are particularly relevant to express design requirements which involve group of objects

Fig. 9 shows an example of this. In this case, the descriptive level is concerned, firstly with matching the lighting
levels defined in the solver, using the topological constraint lumninosity [LAreas], to those on the 3D environment;
and secondly with defining the acceptable levels for a particular object, in this case a desk. At a primitive level the
constraint set_imposs_rect(LRect, 0, X, Y) ensures that an object X/Y, in this case the desk, cannot belong to a
given rectangle A1/B1-A2/B2, defined by the 2 diagonal coordinates, in which the lighting levels are inferior to
imposed minimum threshold or acceptable level. Thus, this further level of description maintains, at a descriptive
level, the declarative nature of CLP as well as assuring an efficient solver.

FIG. 9: Constraints implemented at descriptive and primitive level

4.3 Interactive exploration of solutions
First running the system results in the solver producing a set of variable allocations satisfying all the design
constraints. These variables are translated in the virtual environment in terms of object types and positions, which
instantiates all furniture objects at their respective locations, thus constituting a first design solution (object

ITcon Vol. 11 (2006), Calderon et al, pg. 337

configuration). Once the initial configuration has been deployed, the user can explore this first solution by
navigating in the virtual environment and test variants of the configuration by changing objects’ positions. For
instance, let us imagine that the user wants to refine and/or further explore the configuration: e.g an ATM is too
close to the queuing area. Consequently, the user seizes the ATM object and proceeds to reallocate it while he
explores the 3D environment. Once a suitable location has been found the user will drop the object triggering the
corresponding Unreal events. In other words, when the object is dropped an unreal event is triggered which sends
the object’s location to the solver in the appropriate query format (e.g atm=1/12.). When the user drops the atm
object he is, therefore, disturbing both the local and the global constraints attached to it. As shown in Fig. 10, an
ATM object, can only be allocated away from a, e.g, source of heat (heat(Dist)) and, similarly, it needs to be away
from any other object of the configuration as specified in: (distance_constraint(Obj1, Obj2, DMin, DMax) where
Obj1 is, in this case, the ATM and Obj2 any other object. Thus, when the user decides to reallocate the object by
dragging and dropping it to a new position, this, in turn, disrupts the imposed constraints in the configuration and
forces the system to “propagate” all the constraints and to generate a solution compatible with the design
requirements (see Fig. 11). This propagation and a non-deterministic search are the basic mechanisms for
interactive exploration of solutions.

FIG. 10: The solver uses generic constraints that can be instantiated on the VE’s objects

This example shows how the user utilises the “natural” interaction mechanisms of VR to interact with the
configuration problem and how the automatic reconfiguration of the configuration problem (see Fig. 11) enables
him to visualise the consequences of his interactions on the configuration

ITcon Vol. 11 (2006), Calderon et al, pg. 338

FIG. 11: The user refines a given configuration by reallocating an object. As a result of this, the environment
reconfigures itself

5. DISCUSSION
As it has been mentioned at the beginning of this paper, reactive planning faces a number of difficult technical
challenges. In this section we discuss how our results address those problems.

5.1 Response Time
As it has been pointed out in previous sections, to implement reactivity at real-time, that is at the next tick, one key
aspect from the user-centred perspective is that current AI techniques are often much less interactive that would be
required for a complete integration into virtual environments. We have opted for CLP over FD as software
technology because it is fast enough to react in “real-time” to user’s input configuration. In particular, GNU Prolog
is a Prolog compiler (Logic programming) with constraint solving capabilities over finite domains. That is, GNU
Prolog discretizes the infinite domain into a finite number of components and, then, applies constraint satisfaction
techniques (arc-consistency).

From a practical implementation standpoint, there are two ways of making our application as fast as possible when
using GNU Prolog as programming environment. These two different ways stem from the fact that GNU Prolog
combines the power of constraint programming with the declarativity of logic programming. In theory one of the
main advantages of declarative languages is that they encourage the programmer to consider the declarative
meaning independently of their procedural meaning. In practice this is not entirely correct and one of the ways of
improving the efficiency of the programs is by changing the order of clauses, goals and constraints. This is, of
course, a trial and error process. The other way of improving efficiency is by using different propagation
techniques to the constraints on FD. GNU Prolog offers two different propagation techniques (solving mechanisms)
to solve arithmetic constraints: full arc-consistency and partial arc-consistency. The latter leads to less propagation
than the former but are generally more efficient.

In our example application we have experimented with reordering the clauses and constraints and with different
grid size for the search space. The finest possible mesh (512 x 512) which could be implemented with GNU Prolog
v.1.2.8-1 would have a cell size of 37mm by 37 mm in real units, That is, in the real world. The following results
(see table 4) were obtained when using partial arc-consistency to solve the geometric and engineering constraints.

ITcon Vol. 11 (2006), Calderon et al, pg. 339

TABLE 4. The results show the total time that the solver has taken to calculate ALL the possible solutions

 Grid Size (number of cell in the mesh)

Constraints order changed 360 x 360 512 x 512

No 10 ms 70ms

Yes 5 ms 60ms

Our choice of CLP(FD) as software technology has been made based on a series of factors, declarative nature of
the formalism being one of them.

5.2 Formalism Knowledge Representation
In previous sections, we have also explained that in order to successfully use CLP(FD), we must first transform our
building design constraints into CSP which, in turn, are easily expressed in CLP(FD).

There are two reasons for choosing to represent and solve a problem as a CSP. First, the representation as a CSP is
often much closer to our original problem the variables of the CSP directly correspond to problem entities, and the
constraints can be easily expressed. This makes the formulation simpler and the solution easier to understand.

However, CLP over a Finite Domain (FD) as representation formalism has some limitations. FD constraints are
constraints on integer valued variables rather than real valued variables. Real interval constraints are better suited
to deal with trigonometric and non-linear arithmetic constraints. In GNU Prolog, FD expressions are not restricted
to be linear. However, non-linear arithmetic constraints, for instance R3=R1*R2-I1*I2, usually yield less
constraint propagation than linear constraints. That is, when a non linear constraint is encountered during
computation, then it is delayed until it becomes linear.

5.3 Interactive cycle
The interaction cycle is determined by the speed at which new solutions are computed. In other words, the
sampling rate of object manipulation in the virtual environment must be compatible with the result production
granularity of the problem solving algorithm. Regarding the visualisation element, Unreal provides us with
mechanisms to play with the tradeoff between the bandwidth and the amount of data we want to ship to all the
clients. This is because certain operations, like spawning actors (objects) as a result of a user’s interaction with the
system, are very “expensive” or in other words could slow down the “game play” if they are not designed
efficiently. This means, that a real-time reactive environment will depend not only on using the adequate
technology to implement the constraint solver but also on the overall system architecture, especially on how the
reality is shared between the server and the client(s). Unfortunately, at this point in time, we do not have enough
data to explain this matter further.

6. CONCLUSIONS
We have presented a novel framework for the use of virtual environments in interactive virtual design. For design
applications, this framework supports the expression of design knowledge in the VE and the exploration of new
design solutions by refining previous ones, which would appear a natural process to many users. In other words,
this framework supports the interactive exploration of the solution space of a spatial configuration problem.

The system has a potential for extension in different directions. For instance, in terms of mechanisms of user
interaction, we envisage offering yet more interactivity to the user for more efficient object manipulation. For
instance, it is fairly simple to “constrain” some objects in the virtual environment what it would ensure that an
object will remain at the some location after the user has interacted with the configuration. As well, taking
advantage of the incremental capabilities of the solver, we could give the user the possibility of adding objects
on-the-fly and to choose the constraints for that objects from a set of predefined constraints.

In its current form, the system is still faced with a number of limitations, the most important being the absence of
an explanatory module that would provide the user for justifications for the proposed solutions. Such a module is
even more important to explain why there exist no acceptable solutions for some object positions proposed by the
user. Further work will be dedicated to providing more feedback from the configuration system.

ITcon Vol. 11 (2006), Calderon et al, pg. 340

7. REFERENCES
Axling, T., Haridi, S, and Fahlen, L. (1996). Virtual reality programming in Oz. In Proceedings of the 3rd

EUROGRAPHICS Workshop on Virtual Environments, Monte Carlo.

Aylett, R. and Cavazza, M. (2001). Intelligent Virtual Environments - A State-of-the-art Report. Eurographics.

Bryson,S., Earhshaw, R.A. and Vince, J.A. (1995). Virtual Reality Applications, chapter 1: approaches to the
successful design and implementation of VR applications, pp 3-15. Academic press, 24-28 Oval Road,
London, NW1 7DX, 1st edition.

British Educational Communications and Technology agency. (2001). Technical report on Health and Safety:
planning the safe installation of ICT in schools.

Burdea, G. and Coiffet, P. (1994). Virtual Reality Technology. ISBN: 0471086320. Wiley-Interscience, 1st
Edition.

Calderon,C., Cavazza., M. (2001). Intelligent Virtual Environments to interactively Solve Spatial Configuration
Tasks. VSMM 2001, The 7th International Conference on Virtual Systems and Multimedia, Berkeley,
California, USA, October 25 - 27, 2001. http://www.vsmm.org/vsmm2001/

Codognet, P. (1999). Animating Autonomous Agents in Shared Virtual Worlds, proceedings DMS'99, IEEE
International Conference on Distributed Multimedia Systems, Aizu, Japan, IEEE Press.

Diaz, D. and Codognet, P. (2001). Design and Implementation of the GNU Prolog System. Journal of Functional
and Logic Programming, Vol. 2001, No. 6.

Dincbas, P., Van Henteryck, M., and Simonis, H. (1988). The constraint logic programming language chip. In the
proceedings of the international conference on fifth generation computer systems FGCS-88.

European Commission – Joule Thermie Programme- (2000). Technical report: tax office extension: Enschede
(The Netherlands).

Fa, M., Fernando, T., and Dew, P.M. (1993). Interactive Constraint-based Solid Modelling using Allowable
Motion, ACM/SIGGRAPH Symposium on Solid Modelling and Applications, pp 243-252.

Fernando, T., Murray, K., Wimalaratne, P. (1999). Software Architecture for a Constraint-based Virtual
Environment, , ACM International Symposium on Virtual Reality Software and Technology, VRST 99,
London. UK.

Fleming, U., Coyne, R., Fenves, S., Garrett, J., Woodbury, R. (1994). SEED –Software Environment to Support
the Early Phases in Building Design. Proceedings of IKM94, Weimar, Germany, pp 5-10.

Fruhwirth, A., Herold, T., and Kunchenhoff, V. (1992). Constraint logic programming: an informal introduction.
Technical report, European Computer-Industry Research Centre (ECRC), ECRC GMBH,
ARABELLASTR. 17 D-8000 Munich 81, Germany.

Hentenryck. P, and Saraswat, V. (1996). Strategic directions in constraint programming. ACM computing surveys,
28(4): 701-726.

Hermenegildo, M (Online) Some challenges for constraint programming.
http://www.clip.dia.fi.upm.es/herme/con.html, last visited on 21/07/05, 2005.

Jackson, P. (1999). Introduction to Expert Systems. Addison Wesley.

Jacobson, J and Hwang, Z. (2002). Unreal Tournament for Immersive Interactive Theater. Communications of
ACM, Vol. 45, No. I, January 2002. pp 39-42.

Korf, E.R. (1996). Artificial intelligence search algorithms. Technical report, NSF Grant IRI-9119825 and a grant
from Rockwell International, University of California, Los Angeles, Ca. 90095.

Kamara, J. (1999). Client requirements processing in construction: a new approach using qfd. Journal of
Architectural Engineering, 5(1): 89-97.

Lawson, B. (1997). How designers think: the design process demystified. Architectural Press, Linacre House,
Jordan Hill, Oxford OX2 8DP, Third edition.

ITcon Vol. 11 (2006), Calderon et al, pg. 341

Lottaz, C., Clément , D., Faltings, B. and Smith, I. (1999). Constraint-Based Support for Collaboration in Design
and Construction, Journal of Computing in Civil Engineering, Vol. 13, No. 1, pp. 23-35.

Lewis, M and Jacobson, J. (2002). Games Engines in Scientific Research. Communications of ACM, Vol. 45, No.
I, pp 27-31.

Nomura, Junji, Hikaru Ohata, Kayo Imamura, Robert J. Schultz. (1992). Virtual Space Decision Support System
and Its Application to Consumer Showrooms. Matsushita whitepaper.

Rivard, H. (1997). A building design representation of conceptual design and case-based reasoning. PhD thesis,
department of civil and environmental engineering, Carnegie Mellon University, Pittsburgh, USA.

Russell, S.J. and Norvig, P. (1995). Artificial Intelligence: a modern approach. Prentice-hall, Inc., Upper Saddle
River, New-Jersey.

