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SUMMARY: Building operators are confronted with large volumes of continuous data from multiple 
environmental sensors which require interpretation.  The ABSTRACTOR system under development summarises 
historical data for interpretation and building performance assessment.  The ABSTRACTOR algorithm converts 
time series data into a set of linear trends which achieves data compression and facilitates the identification of 
significant events on concurrent data streams.  It uses a temporal expert system based on associational 
reasoning and applies three consecutive processes: filtering, which is used to remove noise; interval 
identification to generate temporal intervals from the filtered data - intervals which are characterised by a 
common direction of change (i.e increasing, decreasing or steady); and interpretation which performs 
summarisation and assists building performance assessments.  Using the temporal intervals, interpretation 
involves differentiating between events which are environmentally insignificant and events which are 
environmentally significant.  Inherent in this process are rules to represent these events.  These rules support 
temporal reasoning and encapsulate knowledge to differentiate between events.   
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1. INTRODUCTION  
Energy efficiency in buildings is moving up the political and business agendas (DTI, 2003), (CIBSE 2004)).  
Since only about 1% of the UK’s building stock is renewed each year significant steps in reducing the UK’s 
consumption of energy in buildings and hence CO2 emissions depend upon improving the performance of 
existing buildings.   The first step in addressing this is for building owners’ to commission an energy audit.  A 
detailed audit would include measuring the electrical and fossil fuel supplies for individual services (space 
heating, hot water, lighting, fan and pump power for ventilation and air conditioning etc) on an half hourly basis 
for at least one year in order to discover the seasonal variations between summer and winter.  Further 
measurements of air temperature and humidity, space heating/cooling fluids and domestic hot water 
temperatures, may also be made to assist in the diagnosis of areas where energy is being used excessively or 
wastefully.  (Field et al., 1997) found some of the main causes of poor energy performance of buildings are that 
the building services are not operating as they have been scheduled to operate or the building is occupied 
differently from the management’s intentions. 

Measuring and collecting large, volumes of time series data on the environmental performance is becoming 
increasingly affordable with falling prices of sensing and computing technology and the increasing availability 
of Building Energy Management Systems (BEMS).  To make use of this potential of more extensive routine data 
collection it is necessary to apply statistical analysis and data mining techniques to extract relevant information 
useful to the building services operator. 
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Whilst energy audits can be conducted without extensive monitoring of a building (Field et al 1997), this is not 
the case when the building performance is being investigated as part of a research project.  For research on even 
a domestic scale building there may be many measurements (30 would not be untypical) made and logged over 
extended periods of time.  On a commercial building the number of variables recorded could easily be 100 or 
more especially if the research were to extend beyond energy use to broader environmental issues such as indoor 
air quality, lighting, electromagnetic radiation and human interaction with the building and the services controls. 

Currently most analysis is done simply by visual inspection of time series graphs of the variables on the 
computer screen of the BEMS operator or energy consultant.  More often than not data is not analysed 
(ASHRAE, 2003) and the opportunity is lost to turn data into information and knowledge.  If suitable techniques 
could be developed for the analysis of large time series sets of building environment data and the results 
routinely incorporated into a BEMS then this may lead to improvements in the operating efficiency of buildings.  

Building operators are confronted with large amounts of historical continuous data and they could benefit from 
assistance in its interpretation. When considering a given time in the past, data is available relating to times both 
before and after that time.  Providing high level summaries of what has happened to a building in, say, the past 
24 hours or 7 days, could be of significant importance in assisting building operators to decide which 
interventions are appropriate.  It is an important feature of the summarisation of past events that the future 
(relative to that event) can be used to confirm the presence or absence of that event.  Environmentally 
insignificant events must be removed as they would otherwise lead to inaccurate interpretations. 

This paper presents a system called ABSTRACTOR which uses a novel agglomerative clustering algorithm for 
deriving temporal intervals which have the properties increasing, decreasing or steady from dense data sets.  The 
objective is to develop a tool that will automatically determine changes in the variables that affect the energy 
efficiency of a building. The results of applying ABSTRACTOR to time series thermal data from a building are 
presented and critically appraised. 

The structure of this paper is as follows: section 2 reviews literature on environmental modelling, section 3 
outlines the ABSTRACTOR algorithm, describes each of the ABSTRACTOR processes and the results of 
testing each stage; section 4 shows the results of ABSTRACTOR and final conclusions are in section 5.  This 
paper presents time series data collected from a low energy house that has unfired internal clay brick walls as the 
internal skin of the external walls and the interior walls.  This work was funded under the UK’s Department of 
Trade and Industry Partners in Innovation Competition.   

2. LITERATURE REVIEW 
Time series analysis techniques have a long history of application in meteorology and climatology ((Stringer, 
1972), (Brooks and Carruthers, 1953)). They are used to develop design data and usual involve the production of 
daily, monthly or annual means of climatic variables such as air temperature solar irradiation (Page, 1986) or test 
reference years which will provide hourly data for a “typical” year for a given location (CIBSE, 2002)  They are 
also used in studies of niche applications of building technologies.  A system is needed for identifying, in 
environmental data, events relevant to the investigator.  To simplify computation the events could be defined by 
rules.  The events could be, for example, faults in the operation of the building environmental control system. 

A number of different techniques for detecting and isolating faults in HVAC plant have been developed in IEA 
Annex 25. The techniques make use of simple, on-line models of correct operation to detect faults. Diagnosis is 
based either on on-line models of different faults or on expert rules and not purely on detection of trends as 
described in this paper. These techniques were developed using detailed computer simulation and have been 
tested using experimental data from laboratory HVAC plants (Liddament, 1999).  IEA Annex 34 tests the fault 
detection and diagnosis (FDD) techniques in realistic on-line situations (Dexter and Pakanen, 2001).  More 
recently (Braun and Li., 2003), carried out a detailed review of the literature on FDD as applied to HVAC 
systems in order to improve their economic viability.  FDD is expensive to apply practically because of 
requirements for model training and large computational demand.  They have only been tested in the laboratory 
and not developed to take account of factors that occur in the field.  Nor could they handle multiple simultaneous 
faults.  We need a system that does not require extensive computer models of the system but does require rules to 
identify faults from the trend intervals.   

The only application of trend recognition techniques to improve engineering processes is in the chemical 
industry (Rengaswamy and Venkatasubramanian, 1995).  Their aim was to develop real-time decision support 
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systems for plant operators which extract qualitative features of process trends from real time sensor data and 
perform cause and effect reasoning to make assessments about the process behaviour.  Such analysis was then 
used to draw conclusions about the possible course the process might take in the near future, the reasons for 
doing so and any appropriate control actions that might be needed.  Chemical processes are highly dynamic this 
is in contrast to most building processes with exception of solar gains in cloudy country like UK which can have 
a large dynamic range even in winter. 

Rengaswamy and Venkatasubramanian developed a Trend Description Language (TDL).  TDL is based around a 
set of nine generic trend curves (called primitives) which were used to capture the essential features of real-time 
process data.  This technique meant real-time data could be compressed into a data structure which carries the 
following information 1) primitive associated with the episode, 2) interval length, 3) initial and final values and 
4) pointer to the next profile structure.  This has similarities to ABSTRACTOR except that ABSTRACTOR uses 
only three primitives (linearly increasing, decreasing and steady).  This is adequate for many building 
environment variables with periods of order 24 hours but may not so good for representing switching 
phenomena.  

Neural networks, because they are good at pattern recognition, were used for identifying the appropriate 
primitives to represent the real data.  A disadvantage of neural networks is that they have to be trained using 
input training data which covers the rage of events one wishes the device to detect. 

(Liao and Dexter, 2003) proposed an Inferential Control Scheme (ICS) for use in multi-zone buildings where 
there is no measurement of the internal air temperature in the different zones of the building.  The room 
temperature estimator is a simplified model of the building and the heating system.  The model includes solar 
heat gains through glazing and walls as well as heat losses through these elements and ventilation heat losses.  
The estimator was commissioned using short-term monitoring data. The relevant parameters were initially 
calculated on the basis of known design conditions.  Then a general depth-priority searching mechanism was 
applied to search for an optimal combination of these parameters values that minimised the root mean square of 
the estimation errors.  Liao and Dexter concluded that the estimator could accurately estimate the long term (13-
20 days) average room temperature of the building due to changes in both climatic conditions and the mode of 
operation of the heating system.  However, it is the present authors’ view that a heating control system should be 
self adaptive in which case changes in average room temperature would need to be estimated accurately over the 
short-term i.e 24 hours. 

(Shen and Chouchoulas, 2000) acknowledged that most attempts to build successful intelligent monitoring and 
diagnostic systems tend to stumble at the knowledge acquisition bottleneck.  They integrated rough set attribute 
reduction (RSAR) with a powerful Rule Induction Algorithm (RIA) known as NP_hard.  The dimensionality-
reducing rule-induction framework was applied to a set of historical data from a water treatment plant.  The data 
comprised 521 days with one series of 38 measurements per day.   

A desirable goal of rule induction algorithms is to be able to generate operational and diagnostic rules from plant 
data when experts are not available to undertake a detailed analysis of historical data.  For real time monitoring 
and diagnostic systems, experts can be used only in the analysis of historical data to generate rules that are then 
implemented in real-time.  However, these systems would not be adaptive in real time.  

(Yu, et al, 2003) proposed a FDD system based model of the building and heating system which compared 
calculated indoor air temperature and radiator valve position with the measured values.  Indoor air temperature is 
the parameter used to detect faults which are classified into two types: Type I (increase in room temperature), 
Type II (decrease in room temperature). 

To diagnose the cause of the fault in the relatively simple situation of a room with a window and radiator, a 
parameter P is defined that allows for the compensation effect of the radiator and the influence of the outside air 
temperature. An open window in winter will cause indoor air temperature to drop, this will generate a signal to 
the thermostatic valve to drive it open.  If the thermostatic valve is faulty (sticking) this will cause the difference 
between the required position of the valve and the actual position of the valve to increase. The thresholds at 
which the parameter P and the indoor air temperature residual are set for detecting faults has been set on the 
basis of a qualitative analysis of their respective time series over a period of 250 hours  (10 days). We need a 
system to detect faults qualitatively using trends rather than quantitatively using thresholds which could 
represent noise. 

ITcon Vol. 13 (2008), Salatian and Taylor  pg. 195 

 



   

A novel agglomerative algorithm, ABSTRACTOR, is proposed for identifying intervals using clustering and 
temporal reasoning. The algorithm abstracts time series data to reveal key features and events in the data.  This 
will facilitate the identification and understanding of changes in energy use in a building.  

3. THE ABSTRACTOR ALGORITHM 
The ABSTRACTOR algorithm, which summarises or abstracts historical data, can be viewed as the application 
of a sequence of three processes (Fig 1). Data is initially filtered to get rid of environmentally insignificant 
events and noise; the resulting data stream is then segmented by a second process into temporal intervals over 
which the predicates steady, increasing or decreasing hold; these intervals and knowledge of environmentally 
significant events are interpreted by a third process.  

 

Filter Data 
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Filtered 
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Trends 
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Graphical 
Summary/ 
Analysis  
Summary 

 

FIG 1: Processes of ABSTRACTOR 

3.1 Filter data 
Initially data needs to be filtered to get rid of noise e.g., non-significant events in environmental monitoring data 
e.g., air temperature spikes which occur during a cold spell when someone opens a window for a short period. If 
this happens infrequently then such events are insignificant and should be treated as noise and removed. 

The following filters: median filter, average filter, low-pass filter and high-pass filter were investigated.  All of 
these techniques involve a moving window.  For historical data, the window can be centered on the point xn i.e if 
the window is of size 2k+1 the window contains the points xn-k to xn+k.  In what follows only centered windows 
will be considered. 

3.1.1 Filter Types 

Median Filter 

The median filter algorithm simply takes the unweighted median of all values within the window, i.e the value 
which has as many values which are greater as are less than it is taken to be the median. 

yn = median(xn-k,..., xn,..., xn+k) 

 

Average Filter 

An average filter simply takes the mean of all the values within the window. 

yn = average(xn-k,..., xn,..., xn+k) 

 

Low-Pass Filter (non-recursive) 

Low-pass finite and symmetric digital filter takes the form (Hamming, 1989) 

 

∑
−=

−=
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The sampling frequency, fs , of the data set was 96 samples/day.  The highest frequency that can be defined by 
the sampling frequency is the aliasing, fa , or Nyquist frequency which is half the sampling  frequency i.e 48 
cycles/day.  Therefore the frequency range of interest for this application of building monitoring data is 0 to 48 
cycles/day. 

The low pass filter was designed to let through frequencies f* < 0.2 where the dimensionless frequency f* is 
defined in terms of the sampling frequency  
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FIG 2: Original Data 

  

 

 

 

 

 

FIG 3: Application of the median filter 

 

 

 

 

 

 

 

FIG 4: Application of the average filter 
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FIG 5: Application of the low-pass filter 

 

 

 

 

 

 

FIG 6: Application of the high-pass filter 

High-Pass Filter (non-recursive) 

The high pass digital filter was designed to let through frequencies in the range 0.2 < f* < 0.5.  The high pass 
filter coefficients, c’k ,  can be derived from the low pas filter coefficients, ck  : 

c’k=- ck  for k≠0 

c’k=   1- ck  for k= 0 
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3.1.2 Filter Results 

The results of applying the filters to historical data are now presented.  In order to analyse the results an 
interesting case was chosen which contains many trends and events. The data set is an external air temperature 
trace.  The frequency of the data was one value every 15 minutes.  The data was collected over a 2 week period 
and it contains 1155 data points.  The original data set is shown in Fig 2. Figs 3 through to 6 are the graphical 
results of applying the various filters with k = 10, which are each looked at in turn. 

Fig 3 shows the result of applying a median filter. It can be seen that spikes lasting of size k or less are removed.  
In Fig 4 it can be seen that the average filter smoothes the data to a greater extent than the median filter.  Fig 5 
shows the result of applying a low-pass filter. It can be seen that the low-frequency variations are allowed to 
“pass through” the filter. In a low-pass filter, the low frequency (long-period) waves are barely affected by the 
smoothing.  The output from the low pass filter is still quite noisy compared with the either the average or 
median filter.  In contrast Fig 6 shows that the high pass filter eliminated the low-frequency variations and the 
high-frequency variations are unaffected.  

From the results it is concluded that the average filter with k=10 is the best filter to use as it removes all the very 
short duration spikes from the outdoor temperature data whilst revealing the short duration trends hidden in the 
raw data.  This is because a median filter removes transient features lasting shorter than half the width of the 
window hence events lasting more than half the width of the window will not be removed, a low-pass filter 
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attenuates noise (noise may have some low-frequency components) and a high-pass filter eliminates low 
frequency variations and trends leaving only the higher frequency components. 

3.2 Interval Identification 
This process can be divided into the sub-processes temporal interpolation and temporal inference ( Fig 7).  
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FIG 7: The sub-processes of the process Interval Identification 

In what follows the constructed temporal intervals; the ith temporal interval, Ii, are  described as  

Ii (x, tbegin, tend, trendi , αi, βi , μi,, θi, σi) 

where   
• x is the variable under investigation (e.g., heat flux or air temperatures) 

• tbegin and tend are the start and end times of the interval 

• trendi is the interval trend i.e increasing, decreasing or steady. Note the increasing and decreasing 
trends can be classified as slow, moderate or fast depending on the value of μi (see below) 

 
• αi and βi are the minimum and maximum values of x over the interval 

• μi is the absolute value of the gradient of x over the interval  

• θi  is the mean of x over the interval 

• σi is the standard deviation of x over the interval 

All of the numerical properties of the interval are calculated simply from the values of the data points which it 
encompasses. The issues in question are (i) how to determine the extent of the individual intervals and (ii) how 
to determine the trend. 

3.2.1 Temporal Interpolation 

This is the process of generating an interval between two adjacent data points.  By ‘adjacent’ it is meant that 
there are no missing data points between them.  Note that in all our raw data, 0 (zero) may stand for a true zero 
data point or may stand for missing data; there is no way of knowing which.  The value of x at tbegin is referred to 
as xbegin and the value of x at tend as xend. 

The trend steady (trendi = steady) is derived if  xend = xbegin  ± δx. The value of δx will depend on the resolution of 
the instrument supplying the data and on the number of significant figures appropriate for the application.  In our 
case the level of quantisation is taken be zero (i.e. strict equality is applied).  If the interval is not classified as 
steady, then it will be increasing if xend > xbegin and decreasing if xend < xbegin

The values of αi, βi , θi, and σi  are calculated as follows:  

• αi = min(xend, xbegin) 

• βi  = max(xend, xbegin) 

∑= x
ni
1θ  
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For steady intervals μi is set to zero.  For increasing or decreasing intervals it is defined as (| xend - xbegin |)/( tend - 
tbegin) 

Temporal interpolation involves a single pass over the data set. Given n data points, it generates exactly n-1 
simple temporal intervals. 

3.2.2 Temporal Inferencing  

Temporal inferencing involves looking for trends in the data which are steady, increasing or decreasing and on 
the data's rate of change.  An interval is steady if the difference between any two points in the interval is below a 
threshold, δx. This threshold will determine a maximum and minimum value for the interval.  The value of the 
parameter threshold, diff, depends on the variability of the data.  The greater the data’s variability, the larger the 
threshold.  

A deviation greater than the allowable range for a steady may be considered to be either an increasing or 
decreasing trend. A deviation above the maximum value for a steady is considered as an increasing trend. 
Likewise a deviation below the minimum value for a steady is considered as a decreasing trend.  The different 
rates of change, namely whether an increasing or decreasing trend is slow, moderate or rapid are investigated.  
These trends are defined by different gradient ranges and are parameter dependent.  

Temporal Inferencing is the process of attempting to apply rules to merge two or three neighbouring intervals 
into super-intervals, so that a common trend can be derived.  This is the process of agglomeration.  We use rules 
to merge over two intervals to derive increasing and decreasing trends which have similar gradients (such rules 
are based on a rate of change) and to derive steady intervals where the values are within a set range (such rules 
are based on a range). The rules for merging must take account of the fact that a super-interval which is 
described, for example, as increasing, may actually be made up of some smaller sub-intervals in which the 
variable is described as steady or even decreasing.  Such rules are based on duration and rate of change. For 
example, given three intervals which are increasing, steady and increasing respectively one can infer a possible 
increasing super-interval if the duration of the steady interval is shorter than the duration of the increasing 
intervals. Likewise a steady interval may be made up of many increasing, decreasing and steady intervals. Here 
one needs upper and lower thresholds and an appropriate metric is provided by the minimum and maximum 
values of the steady interval. 

To derive super-intervals, the following four parameters for each variable are defined:  

• dur - a duration; value depends on whether interested in long or short term trends 

• diff - a range; used in the definition of steady intervals 

• g1 - a gradient (see below) 

• g2 - a gradient, greater than g1 (see below) 

If a gradient is less than g1 (μi <= g1) this is taken as representing a slow rate of change.  If it is between g1 and g2 
(g1< μi <= g2) this is taken as representing a moderate rate of change.  If it is greater than  g2 (g2 > μi) this is 
taken as representing a fast rate of change. 

As intervals are merged into super-intervals, a new data structure is created representing the new interval, 
derived from the representations of its sub-intervals.  Temporal inferencing is done in two ways: over two 
adjacent intervals and over three neighbouring intervals. 

Based on similar characteristics an agglomerative clustering approach is used to merge the simple intervals 
generated from the temporal interpolation process into larger intervals then repeatedly merge these larger 
intervals into even larger intervals until no more similarities can be found.  This merging algorithm is achieved 
using the temporal inference rules.  Firstly, rules to merge two adjacent intervals to derive only increasing and 
decreasing trends are applied.  This will provide the basis for finding potentially larger increasing and decreasing 
trends.  The term 'apply' means trying to combine the first two intervals; if this succeeds then trying to combine 
this new interval with the next and so on.  If two adjacent intervals cannot be merged then the interval which was 
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to be combined is taken and used as a starting point.  The rules are then applied to merge two adjacent intervals 
to derive only steady intervals.  Merging two adjacent intervals can generate too many intervals.  The inferences 
are then repeatedly applied to merge three neighbouring intervals followed by the inferences to merge two 
adjacent intervals until no more intervals can be merged. 

3.2.2.1 Temporal inferencing over two adjacent intervals 

For temporally inferencing over two adjacent intervals it is desirable to represent a super-interval as an assertion 
in the following form: 

ΔH2( Ii (x, t1, t2, trendi , αi, βi , μi,, θi, σi), Ij(x, t2, t3, trendj , αj, βj , μj, θj, σj)) 

⇒ Iij (x, t1, t3, trendij , αij, βij , μij,, θij, σij) 

Thus given intervals Ii (from t1 to t2) and Ij (from t2 to t3) which meet at t2, a super-interval Iij (from t1 to t3) can be 
derived by merging the intervals Ii and Ij based on the temporal inferencing function ΔH2

.   

By symmetry, decreasing followed by decreasing is similar to increasing followed by increasing. The criterion 
for combining any two intervals into a steady interval is independent of the trends of the two contributing 
intervals.  Therefore only two distinct cases need be considered. 

Whenever a super-interval is generated, the values of αij, βij , θij, and σij  are calculated as follows:  
• αij = min(αi, αj) 

• βij  = max(βi, βj) 

• θij is derived from the average of all the values over the 2 adjacent intervals 
• σij is derived from the sums of squares carried with representations of the individual intervals. 

If a gradient is less than g1 (μi <= g1) this is taken as representing a slow rate of change. If it is between g2 and g2 
(g1< μi <= g2) this is taken as representing a moderate rate of change. If it is greater than g2 (g2 > μi) this is taken 
as representing a fast rate of change. 

The value of μij depends on trendij. If trendij is steady then μij = 0. If trendij is increasing or decreasing then μij = 
(βij - αij)/(t3 - t1) 

increasing/increasing ⇒ increasing 

For successive increasing intervals, a super-interval increasing is inferred if the gradients of both intervals are 
within the same limit range. Formally this is written as: 

(μi <= g1 AND μj <= g1) 

OR (g1< μi <= g2 AND g1< μj <= g2) 

OR (g2 < μi AND g2 < μj) 

If this condition is not satisfied, no inference can be performed. 

any/any ⇒ steady 

A super-interval is classified as steady if the difference between the maximum and minimum values over the 
adjacent intervals is less than the pre-defined constant diff. 

βij  - αij <= diff 

3.2.2.2 Temporal inferencing over three neighbouring intervals  

Inferring over two adjacent intervals alone can result in too many intervals.  Inferring over three neighbouring 
intervals in particular cases allows us to create even larger intervals which are either increasing or decreasing.  
For three neighbouring intervals it is desirable to represent a super-interval as an assertion in the following form: 

ΔH3( Ii (x, t1, t2, trendi , αi, βi , μi,, θi, σi), Ij(x, t2, t3, trendj , αj, βj , μj, θj, σj), 

 Ik(x, t3, t4, trendk , αk, βk , μk, θk, σk)) 

⇒ Iijk (x, t1, t4, trendijk , αijk, βijk , μijk,, θijk, σijk) 
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Thus given intervals Ii (from t1 to t2), Ij (from t2 to t3) and Ik (from t3 to t4) a super-interval Iijk beginning at time t1 
and ending at time t4  can be created by merging the intervals Ii, Ij and Ik using the temporal inferencing function 
ΔH3.  

Though the inferencing is very similar to ΔH2 it will be seen that the size of the middle interval is critical in 
deciding whether to generate a super-interval.  Again the aim is to create super-intervals which truly reflect rates 
of change and capture trends. 

Considerations of symmetry allow us to consider the following three groups of possibilities for trends of three 
adjacent intervals: 

• increasing/increasing/increasing 
• (decreasing/decreasing/decreasing) 

• increasing/steady/increasing 
• (decreasing/steady/decreasing) 

• increasing/decreasing/increasing 
• (decreasing/increasing/decreasing) 

Where there are multiple possibilities, only the first will be considered, the remainder following from symmetry. 

Whenever a super-interval is generated, the values of αijk, βijk, θijk, and σijk are calculated as follows:  
• αijk = min(αi, αj, αk) 

• βijk  = max(βi, βj, βk) 

• θijk is derived from the average of all the values over the 3 neighbouring intervals 
• σijk is derived from the sums of squares carried with representations of the individual intervals. 

The value of μijk depends on trendijk. If trendijk is steady then μijk = 0. If trendijk is increasing or decreasing then 
μijk = (βijk - αijk ) /(t4- t1) 

3.2.2.2.1 increasing/increasing/increasing ⇒ increasing 

Given three neighbouring intervals which are all increasing then an increasing super-interval can be inferred if 
the duration of the middle interval is less than the duration of the other two intervals by at least a factor of dur 
and the gradients of the two outside intervals are both within the same range: 

t3 – t2 < min ((t2- t1),( t4 - t3))/dur 

AND 

((μi <= g1 AND μk <= g1)

OR (g1< μi <= g2) AND g1< μk <= g2) 

OR (g2 < μi) AND (g2 < μk)) 

3.2.2.2.2 increasing/steady/increasing ⇒ increasing 

Given three neighbouring intervals which are increasing, steady and increasing respectively, one can infer an 
increasing super-interval if the duration of the steady interval is less than the size of it's neighbouring increasing 
intervals by at least a factor  of  dur and the gradients of the increasing intervals are both within the same range.  

3.2.2.2.3 increasing/decreasing/increasing ⇒ increasing 

Given three neighbouring intervals which are increasing, decreasing and increasing  respectively, one can infer 
an increasing super-interval if the duration of the decreasing interval is less than the duration of it's neighbouring 
increasing intervals by at least a  factor of dur the gradients of the increasing intervals are both within the same 
range, the minimum value of the decreasing interval (Ij) is greater than the minimum value of the first increasing 
interval (Ii) and the maximum value of the second increasing interval (Ik) is greater than the maximum value of 
the first increasing interval:  

(t3 – t2 < min ((t2- t1),( t4 - t3))/dur) 

AND 
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((μi <= g1 AND μk <= g1) 

OR (g1< μi <= g2) AND g1< μk <= g2) 

OR (g2 < μi) AND (g2 < μk)) 

AND 

(αi < αj AND βk > βi) 

A summary of the algorithm for interval identification is shown in Fig 8. 

 
 
 
 
 
 
 
 
 
 
 
 

 9. endwhile 

8. Set still-to-do to previous = current number of intervals.  

6.  Apply the inferences in ΔH3

7. Apply the inferences in ΔH2

3. Set flag still-to-do to true.  

4. while still-to-do do 

5. Set previous to the number of intervals generated so far.  

2. Apply the inferences in ΔH2 which derive only steady trends.  

    and used as a new starting point. 

1. Apply the inferences in ΔH2 which derive only increasing or decreasing trends by trying to  

    combine the first two intervals; if this succeeds try to combine this new  interval with the  

    next and so on. If combination fails, then the interval which failed to be combined is taken  

FIG 8: Algorithm for interval identification 

3.2.3 Interval Identification Results 

The results of identifying temporal intervals in historical data are now presented.  The types of temporal intervals 
generated by the kind of values assumed for the parameters diff, dur, g1, and g2 are explored.  In order to analyse 
the effect of choosing particular values for the parameters in the temporal interfacing algorithm, an interesting 
case was chosen which contains many trends and events. The data set is an external air temperature trace. The 
frequency of the data was one value every 15 minutes. The data was collected over a 2 week period and it 
contains 1155 data points. An average filter of size k=10 was chosen as a way of determining short term trends 
(five and a quarter hours). The original data set is shown in Fig 9. Figs 10 through to 16 are the graphical results 
of the intervals generated by different settings of the parameters. 

Setting a low value for the parameter diff results in many (perhaps unnecessary) intervals being generated. 
Setting diff to 0.1 results in 202 intervals being generated (Fig 10).  This is a reduction of points to intervals of 
5.72.  All changes of interest in the data are captured.  Many intervals could be merged into larger super-
intervals.  Setting a high value for the parameter diff results in a small number of intervals being generated - 
these intervals are predominately long steady intervals.  Setting diff to 10 results in only 7 intervals being 
generated (Fig 11).  This is a reduction of points to intervals of 165.  Only major increasing and decreasing 
trends are identified whereas slow changes are incorporated as part of a steady interval. 

Setting a low value for the parameter dur results in many steady intervals being generated which would have 
otherwise been part of an increasing or decreasing trend.  Setting dur to 1 results in 328 intervals being generated 
(Fig 12). This is a reduction of points to intervals of 3.52.  Setting a high value for the parameter dur results in 
many steady intervals being merged into increasing and decreasing trends.  Setting dur to 20 results in 128 
intervals being generated (Fig 13).  Here longer than expected increasing and decreasing trends are produced. 
Such trends can be considered as long term trends.  This is a reduction of points to intervals of 9. 
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Setting low values for the parameters g1 and g2 results in all rates of changes in the data being captured.  Setting 
g1 to 0.1 and g2 to 0.5 results in 197 intervals being generated (Fig 14). This is a reduction of points to intervals 
of 5.87.  Here consideration is being given to the different rates of change in the data. Here many intervals could 
be merged into larger super-intervals.  Setting high values for the parameters g1 and g2 results in a small number 
of intervals being generated.  Setting g1 to 5 and g2 to 10 results in also 197 intervals being generated (Fig 15).  
This is a reduction of points to intervals of 5.87.  It seems that g1 and g2 has no significant effect on the number 
of intervals generated.  The best combination for this data set is to set the parameters diff  to 1, g1 to2, g2 to 3 and 
dur to 10 (Fig 16). We chose these values because external air temperature has a variability of 1oC, we wish to 
differentiate between gradients of 2 and 3 and we wish long term trends. This has reduction of points to intervals 
of 18.33.  A summary of the effects of these setting are given in table 1. 

The settings of the size of the filter window k for the filter data process and the parameters diff, dur, g1 and g2 for 
the interval identification process for historical data will depend on the variability of the data and how few or 
many intervals are desired.  

TABLE 1: Results for various temporal inferencing parameters 

diff dur g1 g2 Intervals Data 

reduction 

Comments 

Low 
e.g., 
0.1 

5 1 3 202 5.7 : 1 Too many steady intervals – see Fig 10 

High 
e.g., 10 

5 1 3 7 165 : 1 Many increasing and decreasing trends 
missed – see Fig 11 

0.5 Low 
e.g., 
0.5 

1 3 328 3.5 : 1 Too many steady intervals – see Fig 12 

0.5 High 
e.g., 20 

1 3 128 9 : 1 Misses a few rates of change – see Fig 13 

0.5 5 Low 
e.g., 
0.1 

Low 
e.g., 
0.5 

197 5.9 : 1 Captures rates of change – see Fig 14 

0.5 5 High 
e.g., 5 

High 
e.g., 10 

197 5.9 : 1 Captures many rates of change – Fig 15 
similar to Fig 14 

0.5 10 2 5 63 18 : 1 Best combination – see Fig 16 

 

 

 

 

 

 

 

FIG 9: Original data – 1155 points. 
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FIG 10: Low diff - diff =0.1, dur=5, g1 =1 g2 =3, intervals = 202 

 

 

 

 

 

 

FIG 11: High diff - diff=10, dur=5, g1 =1 g2 =3, intervals = 7 

 

 

 

 

 

 

 

FIG 12: Low dur - diff=0.5, dur =1, g1 =1, g2 =3, intervals =328 

 

 

 

 

 

 

FIG 13: High dur - diff =0.5, dur = 20,  g1 =1, g2 =3, intervals =128 

 

 

 

 

 

 

FIG 14: Low g1 - diff=0.5, dur=5, g1=0.1, g2 = 0.5, intervals = 197 
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FIG 15: High g1 - diff =0.5, dur = 5, g1=5, g2 =10, intervals = 197 

 

 

 

 

 

 

FIG 16: Best combination - diff = 1, dur = 10, g1 =1, g2 = 5, intervals = 63 

3.3 Interpretation of linear trends 
The final stage is interpretation where linear trends in several concurrent data sets compared to identify events 
that are of interest. 
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FIG 17: Splitting overlapping intervals into global segments 

Given overlapping temporal intervals it is proposed, in the spirit of (DeCoste, 1991) they are split into global 
segments. A change in the direction of change (slope) of one (or more) channels or a change in the rate of change 
of one (or more) channels contributes to a split in the temporal intervals creating a global segment. For example, 
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in Fig 17 a global segment, G12, lasting from t1 to t2 would be created in which the intervals for External Air 
temperature, Internal Air Temperature, Surface Temperature and Sheathing Temperature all have the 
abstraction steady - this global segment is created because of the change in direction of change of Sheathing 
Temperature at time t2.  A global segment can be considered as being a set of intervals - one for each channel. 
Likewise global segments would be created lasting from t2 to t3, t3 to t4, t4 to t5 and t5 to t6. 

The algorithm for interpretation involves applying the rules to the global segments.  Examples of rules for 
identifying events are shown in Fig 18 – here a fault is declared when the heat-flux does not have the same trend 
as the difference in internal and external temperature (t1-t0).  These rules make up the knowledge base called 
Environmental Events shown in Fig 1.  If rules are true over adjacent global segments then one can determine 
when the environmental event started and ended.   

 

 

 

 

 

 

 

 

 

If heat-flux increasing and ti-t0 decreasing then 
 fault detected 
end if 

If heat-flux increasing and ti-t0 steady then 
 fault detected 
end if 

If heat-flux decreasing and ti-t0 increasing then 
 fault detected 
end if 

If heat-flux decreasing and ti-t0 steady then 
 fault detected 
end if

If heat-flux steady and ti-t0 increasing then 
 fault detected 
end if

If heat-flux steady and ti-t0 decreasing then 
 fault detected 
end if

FIG 18: Example of rules to apply to global segments 

4. RESULTS OF ABSTRACTOR 
ABSTRACTOR has been tested on over 8 days (12179 minutes) worth of continuous data (Fig 19a).  The data 
was the heat-flux into a wall and the difference in internal and external temperature (ti-t0) measurements; the 
sampling frequency of the signals is one data item every 15 minutes.  No prior knowledge of events that 
occurred within this data set were known to the expert or the tester.  The application of the average filter (k=10 
filter provides a running five and a quarter hour running average) is shown in the middle graph (b) and the 
intervals generated are shown in the bottom graph (c).  

The output from applying the rules in Fig 18 to the abstracted temperature difference and heat flux data (Fig 
19(c)) are compared with periods the domain expert identified as faults also defined by rules in Fig 18.  In order 
to determine the efficiency of ABSTRACTOR the following parameters need to be evaluated: sensitivity, 
specificity, predictive value, false positive rate and false negative rate (defined in Appendix 1).  These are, in 
turn, based on identifying true positives and true negatives from the data.   

A true positive (TP) occurs when ABSTRACTOR correctly identifies periods of time where there were faults.  A 
false positive (FP) occurs when ABSTRACTOR identifies periods of time where there were faults but actually 
none occurred.  A true negative (TN) occurs when ABSTRACTOR correctly identifies periods of time where 
there were no faults.  A false negative (FN) occurs when ABSTRACTOR identifies periods of time where there 
were no faults but there were actually faults.  These can be summarised in table 2. 

TABLE 2:  Four categories of fault diagnosis 

 Actual condition 

ABSTRACTOR identifies Fault No fault 

Fault TP FP 

No fault FN TN 

 

 

ITcon Vol. 13 (2008), Salatian and Taylor  pg. 207 

 



   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

(b) 

(c) 

(a) 

 

 

 

 

 

 

 

 

 

FIG 19: ABSTRACTOR applied to environmental data 

Overall, ABSTRACTOR has a sensitivity of 56%, specificity of 64%, predictive value of 43%, a false positive 
rate of 57% and a false negative rate of 24%.  These results mean that when a fault is present ABSTRACTOR is 
detecting it only 56% of the time but when there is no fault it will correctly identify this 64% of the time.  Whilst 
it would seem that ABSTRACTOR is only slightly better than tossing a coin to decide the presence or absence of 
a fault it needs to be remembered that the actual fault conditions were derived from an expert’s manual 
abstraction of the raw data which is dependent on the expert’s attitude and experience.  A direct comparison with 
the raw data is meaningless because the data is at intervals much shorter than the trends.  If ABSTRACTOR 
were to be incorporated in its present state into a control system it would generate a high number of false alarms 
(57%) but would fail to detect a fault only 24 % of the time.  These results are indicating that ABSTRACTOR is 
a more liberal system than a random system (Fawcett, 2003). 

The raw data as can be seen from Fig 19 is non-stationary (the statistical properties of the data vary with time) 
and so all the standard techniques for processing stationary random data (Bendat and Piersol, 2000) are not 
applicable.  The heat flux data is showing similarities to a pulsed or switching signal as if a source of heat is 
being switched off and on.  This important feature is lost when any of the filters considered in this study are 
used.  In particular a five and a quarter hour running average is too long to preserve sharp transitions whereas a 
shorter running average would not provide sufficient smoothing of the random noise.   
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Abstraction as a technique for analysing the large volume of data generated by building monitoring equipment 
has potential to provide insight into the data, as demonstrated by Fig 19(c).  It also reduces the number of data 
points describing the data to number of intervals plus one which represents a greater than 10:1 compression ratio 
for the data. 

5. CONCLUSIONS 
The data routinely collected by BEMS is often not fully exploited to identify poor performance and faults in 
building energy systems due to the vast amount of data collected from sensors.  Furthermore, with the trend 
away from air conditioning systems controlling building environments to within relatively tight limits, towards 
mixed mode buildings where internal conditions will fluctuate over a much wider range there is a need to 
identify and reduce concurrent time series data sets to a set of linear trends.  This would facilitate the 
understanding of the inter-relationship between trends on different data streams and help identify significant 
events. 

The algorithm ABSTRACTOR provides a means of doing this.  The algorithm was tested on time series heat 
flux and internal and external temperature data.  Evaluation of different filter types for pre-processing the data 
showed that the average filter proved the best choice for this type of data.  A number of parameters which 
control the agglomeration process need to have values set.  The optimum values for these were established by an 
iterative process thus enabling a set of 1155 data points to be summarised as 63 line segments (64 points).  This 
represents a data compression ration of 18:1. 

ABSTRACTOR’s ability to identify significant events on concurrent data sets was evaluated using the heat flux 
and temperature data.  Here ABSTRACTOR’s performance was less encouraging.  It performed moderately 
better at detecting faults than a purely random system.  A possible explanation is that the results depend on the 
way the expert manually identified the environmentally significant events.  A reasonable data compression of 
10:1 was achieved on these two concurrent data streams. 

Work is ongoing in two main areas: improving the sensitivity and specificity of the algorithm, establishing the 
range of validity of the algorithm parameters for much longer non-stationary data sets and to environmental 
variables with different statistical properties. 
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Appendix 1 
 

Sensitivity is the proportion of faults correctly identified i.e the ability to detect true positives. 
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NN
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=  

 

Specificity is the proportion of cases correctly identified as being fault free i.e the ability to detect feature-free 
data. 

 

FPTN
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Where NTN, NTP, NFN, NFP are the number of true negatives, true positives, false negatives and false positives 
respectively and are measured by the duration of relevant trends since it is a time series that is being dealt with. 

 

A positive predictive value (PPV) rate is the proportion of cases ABSTRACTOR correctly identifies as being a 
fault divided by the total of all positive results. 
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False negative rates (FNR) and false positive rates (FPR) are defined as  
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