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SUMMARY:  Implementation of active control has much potential to contribute to the creation and construction 
of innovative structures and other building systems such as those needed for climate control. This paper 
summarizes recent research at EPFL that is evaluating biomimetic civil structures through active geometry 
control. Intelligent control methodologies that implement stochastic search with case-based reasoning, self-
diagnosis, multi-objective shape control, self-repair and reinforcement learning are proposed and validated 
experimentally on a five-module active tensegrity structure. It is concluded that i) previous control cases 
improve control performance; ii) self-diagnosis extends active structural control of tensegrity structures to 
situations where there may be partially defined loading events and damage; iii) multi-objective search is 
attractive for computing robust commands that control geometry of an active tensegrity structure and iv) the 
active control system can be used to apply control commands that increase stiffness and decrease stresses within 
an active tensegrity structure that is damaged. The integration of intelligent control methodologies such as those 
described in this paper to an active tensegrity structure creates a biomimetic example that could be applied to a 
range of other building systems. 
 
KEYWORDS: Biomimetics, control, learning, self-diagnostics, damage tolerance 
 
REFERENCE: Smith I (2009) Control enhancements of a biomimetic structure, Journal of Information 
Technology in Construction (ITcon), Vol. 14, Special Issue Next Generation Construction IT: Technology 
Foresight, Future Studies, Roadmapping, and Scenario Planning, pg. 229-237, http://www.itcon.org/2009/17 
 
COPYRIGHT: © 2009 The authors. This is an open access article distributed under the terms of the Creative 
Commons Attribution 3.0 unported (http://creativecommons.org/licenses/by/3.0/), which 
permits unrestricted use, distribution, and reproduction in any medium, provided the 
original work is properly cited. 
 
 
1. INTRODUCTION 

Biomimetic structures are structures that demonstrate increased functionality through mimicking qualities that 
are normally present only in biological organisms. Examples of such qualities are self-repair and adaptation 
mechanisms that improve with time. In spite of many qualitative concept papers, little scientific progress has 
been made on biomimetic structures. Other types of biomimetic building systems are not further ahead. 
Currently, factors such as advances in computing, wireless technology as well as new sensor and actuator 
technologies are creating favourable conditions for implementing active control systems in the built 
environment. Such control systems could provide many innovative solutions, particularly for applications such 
as temporary and reusable structures as well as providing an example of the possibilities of biomimetic control 
for other building systems.  

While bio-inspired systems have already been studied for decades in domains such as mathematics, informatics, 
electronics and robotics (Von Neumann, 1966, Denning, 1976, Floreano and Mondada, 1998, Teuscher et al, 
2003) few examples of adaptive civil-engineering structures have been found in the literature. Pawlowski and 
Holnicki-Szulc (2004)  introduced a structure that adapts to extreme loads. It detected impacts through a set of 
sensors and optimally distributed forces in the structure using structural fuses. Sobek et al. (2006) defined 
adaptive structures as load carrying systems which are able to react to variable external influences. Noak et al. 
(2006) demonstrated experimentally that integrating actuators in a trussed beam system allows for a significant 
increase in span and an increased load bearing capacity. However, these are studies where the control command 
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and the structural response are directly linked and not coupled with other control loops. They are carried out 
mainly on small models and through numerical simulation. Moreover, no experimental demonstration of self 
diagnosis and self repair of a full-scale civil engineering structure could be found in the literature. In building 
physics, some work has studied adaptive control for aspects such as shading, for example, (Guillemin and Morel, 
2002). 

Since tensegrities can be equipped with active control systems, they have the potential to adapt to their 
environments. Tensegrities are spatial, reticulated and lightweight structures that are composed of struts and 
tendons. Stability is provided by the self-stress state between tensioned and compressed elements (Motro, 1984). 
A recent definition has been proposed by Motro (2003): A tensegrity system is a system in a stable self-
equilibrated state comprising a discontinuous set of compressed components within a continuum of tensioned 
components.  

In complex structures, geometric control is necessarily indirect and coupled. Fest et al. (2004) demonstrated 
experimentally the feasibility of tensegrity active shape control. The most challenging part of the study was the 
computation of control commands (sequence of contractions and elongations of active struts) that modify the 
self-stress state in order to recover the top surface slope of the structure when subjected to a load. Since the 
behaviour of the structure that was used for experimental testing is geometrically nonlinear and highly coupled, 
there is no closed-form solution for active strut adjustments given a required top surface slope (Fest et al, 2003). 
This fact precludes the use of analytical treatment such as suggested for example in (Williamson et al, 2003). A 
single objective stochastic search algorithm (Raphael and Smith, 2003) was selected as the best method to 
accommodate the exponentially complex generate-test process that is needed to compute control commands 
(Domer et al, 2003). (Domer and Smith, 2005) studied the capacity of this structure and its control system to 
learn with the experience of previous calculations in order to decrease the average time necessary to compute a 
control command.  

No other example of full-scale experimental testing of coupled control of a civil engineering structure has been 
found in the literature. This paper summarizes an example of experimental testing and numerical simulations of 
an adaptive civil engineering structure using a set of intelligent control methodologies: self diagnosis and self 
repair (Adam and Smith, 2007a), multi-objective geometric control (Adam and Smith, 2007b) and reinforcement 
learning (Adam and Smith, 2008). These methodologies are integrated into a full-scale active tensegrity structure 
to support coupled control in partially defined environments. Finally, the applicability of these results to other 
building systems is discussed. 

2. TEST STRUCTURE 

In order for a test environment to demonstrate biomimetic qualities, a system that has many closely coupled 
elements is required.  Controlled parameters should have the potential to influence many parts of the system. 
Measurement points are placed in areas where the measured quantity can be influenced by several controlled 
parameters. Objectives are formulated in terms of measured values, the behaviour of the system and the state of 
the control mechanism. Finally the relationships between the controlled parameters and the measured quantities 
are non-linear. While these requirements appear to be restrictive, they describe most full-scale systems that stand 
to benefit from active control. 

The structure that is used for experimental testing is the same as in (Fest et al, 2003). It is composed of 5 
modules and rests on three supports (Figure 1). It covers a surface area of 15m2, has a height of 1.20m and 
withstands a distributed dead load of 300N/m2. It is composed of 30 struts and 120 tendons. Struts are fiber 
reinforced polymer tubes of 60mm diameter and 703mm2 cross section. Tendons are stainless steel cables of 6 
mm in diameter. The central node and star topology is a particularity of each module. This topology was 
proposed to limit buckling lengths, thereby allowing for more slender compression elements than traditional 
“simplex” tensegrity modules (Fest et al, 2003).  
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FIG. 1: Five modules, 15 m2 ground projection, 10 active struts, 3 displacement sensors  

The structure is equipped with an active control system: ten active struts and three displacement sensors. Pairs of 
active struts are placed in-line within each module. They allow for strut length adjustment. Displacement sensors 
measure vertical displacements at three top surface nodes: 37, 43 and 48 (Figure 2). Shape control has involved 
satisfying a serviceability objective: maintaining the slope of the top surface of the structure when the structure 
was subjected to loading. Top surface slope S is calculated from the vertical coordinates of the top surface three 
nodes, z37, z43 and z48 that are equipped with displacement sensors (Figure 2). 

 
FIG. 2: View from the top of the active tensegrity structure 

3. SELF DIAGNOSIS 

Loads are single vertical static loads. Load magnitude and location is unknown. Self diagnosis involves 
magnitude evaluation and location and is carried out using system identification methodology (Smith and Saitta, 
2008). Similarly to the inverse problem of control command computation presented in (Fest et al, 2003), there is 
no closed-form solution for self diagnosis due to geometric non-linearity. In spite of this, system identification in 
this study requires no additional measurements.  

The response of the structure to a load and damage is measured and compared to the response of the structure to 
candidate solutions for load and damage. Three indicators that reflect changes in structure response are used: top 
surface slope deviation, transversal slope deviation and influence vectors. Since maintaining the top surface 
slope is the main shape control objective, it is also used as the main indicator. Top surface slope variations are 
induced by active control perturbations. Active control perturbations are defined as a 1 mm elongation of active 
struts. 
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The transversal slope deviation indicator is used to evaluate the transversal behavior of the structure. This 
indicator is measured on the structure and then compared with the behavior of possible solutions that are 
calculated through numerical simulation. Top surface slope variations induced by each of the ten active struts are 
put together in order to create influence vectors, the third indicator. These vectors express the top surface slope 
variation per mm of active strut elongation. Since tensegrities are self-stressed and flexible structures, they 
exhibit geometric nonlinear behavior.  Damage and applied loads induce changes in response to active control 
perturbations. Effects are observed through modifications of the influence vectors measured on the structure and 
this is compared with calculations using numerical simulation. 

The load identification involves magnitude evaluation and load location. The methodology uses these three 
indicators. In this study, loading is assumed to be single static vertical point loads. They are applied one at a time 
on one of the 15 top surface nodes. The following steps lead to load identification: 

Step 1: Top surface slope deviation is the first indicator. Once the structure is loaded, magnitude evaluation 
involves numerically determining, for each of the 15 top surface nodes, which load magnitude can induce a top 
surface slope deviation that is close to the one measured on the structure. This evaluation is performed iteratively 
for each node j of the top surface. Load magnitudes are gradually increased by 50N increments until the top-
surface-slop-deviation calculation exceeds the measured value. Value pairs of load magnitudes and locations 
create a set of candidate solutions. Negative loads (upward) are not considered.  

Step 2: Transversal slope deviation is the second indicator. Trends must be the same. Candidate solutions that do 
not demonstrate changes in the same slope direction are rejected. Experiments show that 2.9mm/100m is an 
upper bound for measurement error of transversal slope deviation. In situations where the absolute value of 
transversal slope deviation is less than 2.9mm/100m, no candidate solution is rejected. This difference between 
measurements and numerical simulation is related to measurement and modeling errors. 

Step 3: The influence vector is the third indicator. It includes slope variations per mm of active strut elongations. 
The influence vector is determined from measurements. Slope variations resulting from active control 
perturbations are measured. For remaining candidate solutions, the influence vector is evaluated through 
numerical simulation of active control perturbations. The candidates that have differences between 
measurements and calculations below a certain threshold are taken to be candidate solutions. 

Step 4: For each of these solutions, load magnitudes are modified to approach more closely measured top surface 
slope deviation with 10N increments. Improved candidates create the load identification solution set. In this set, 
the distance between candidate solution responses and measurements is less or equal to the maximum error 
between measurements and numerical simulation. Load identification solutions are used as input to compute a 
control command for the shape control task. 

While several candidate solutions may be generated, the control commands that follow always satisfy the control 
objective within acceptable limits. More details are provided in (Adam and Smith, 2007a). 

A broken cable can also be detected through observing structural behaviour during small actuator movements. 
When subjected to dead load only and for the initial self-stress level, only one tenth of the cables and all struts 
are critical elements (leading to progressive collapse). Critical cables are mostly located at the edge of the 
structure where loads can not pass through other elements without causing a failure.  

For non critical elements, trends in behaviour indicators are measured and compared with stored simulated 
values for damaged structures. A set of candidate positions for cable rupture is thus iteratively filtered to obtain 
the correct position. In a similar way to the task of load identification, the top surface slope deviation and the 
influence vector are used as indicators for damage location (Figure 6). Damage is simulated by removing one 
cable from the structure. For damage location, a candidate is defined as the structure with one cable removed. 
The following steps are carried out: 

Step 1: Top surface slope deviationis the first indicator. Local damage induces top surface slope deviation that is 
measured on the damaged structure. Since 91 elements are non critical, 91 candidate solutions are considered. 
Top surface slope deviation is numerically simulated for each candidate solution. A maximal error of 
96mm/100m has been observed for simulated values of top surface slope deviation compared with values of top 
surface slope deviation that are measured on the structure for a particular damage situation . This error is related 
to model inaccuracies. Candidate solutions are retained in situations where differences between measurements 
and calculations are less than this error. 
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Step 2: The influence vector is the second indicator. Active control perturbations are numerically simulated for 
candidate solutions to calculate slope variations. In situations where instabilities are observed due to active 
control perturbations, the damage location process stops. However, this phenomenon has not been observed 
during experimental testing. Active control perturbations are applied to the damaged structure. Candidate 
solutions have differences between measurements and numerical simulation  that are less or equal to an threshold 
that is determined through an evaluation of measurement and modeling error. 

4. MULTI-OBJECTIVE CONTROL 

Since there is no closed-form solution for control command computation for shape control of this structure and 
since there are ten control commands, the generate-and-test stochastic search process usually generates many 
tens of possible solutions. Multi-objective search is then used to select good control commands according to four 
criteria. In practical contexts, active structures need to continue their usefulness as loads change. While shape 
control in this study involves maintaining the top surface slope of the structure when subjected to a load, this 
objective should not be met in isolation. Robustness of both the structure and the active control system is also 
important. In this study, robustness of the structure is related to serviceability and safety. Robustness of the 
active control system is expressed in terms of active strut stroke. In situations of active control, robustness is 
required to accommodate multiple load and control events over service lives.  

Additional objectives are used to avoid limits of safety and serviceability. The following objectives are relevant:  

• Slope: maintain top surface slope  
• Stress: minimize stress ratio of the most stressed element 
• Stroke: maintain active strut jacks as close as possible to their midpoint 
• Stiffness: maximize structural stiffness 

The two first objectives are related to robustness of the structure. The third objective insures robustness of the 
active control system. The fourth objective is intended to ensure adequate stiffness of the structure for the next 
loading event. These four objectives are not complementary. Adam and Smith (2007a) contains details on how 
these criteria are evaluated.  

The methodology for multi-objective geometric control is based on Pareto filtering and hierarchical selection. 
The selection strategy hierarchically reduces the solution space until identification of a control command. It is 
developed in four steps and reflects the importance of the objectives. Control commands for which slope 
compensation is less than 95% are first rejected. In practical situations, slope compensation would be acceptable 
if its value was above this threshold. To keep objectivity with respect to the three remaining objectives, the 
remaining solutions are divided into thirds according to solution quality. The worst third of the solutions with 
respect to the stroke objective is rejected. The worst half of the remaining solutions with respect to the stress 
objective is then rejected. Finally, the best solution with respect to the stiffness objective is identified among 
solutions that are left. This becomes the control command that is applied to the structure. Therefore, each of the 
three objectives in the last three steps leads to rejection of the same number of solutions. 

A testing program involving 24 load cases consisting of up to two vertical downward point loads from 391 N to 
1209 N in magnitude.  Several tests involved active control over successive loading events. While single 
objective control resulted in cable rupture after only a few loading events, multi-objective control resulted in 
much greater ability to maintain structural integrity. 

The following conclusions come out of this research: 

• Control commands are, in most cases, more robust when determined by multi-objective control as compared 
with single objective (slope) control. 

• In situations where satisfying a dominant objective results in many solutions, a Pareto approach together with 
hierarchical elimination of solutions is attractive, especially when tasks require single solutions such as during 
structural control. 

• Evaluation of multiple objectives provides a more global understanding of tensegrity structure behavior than 
any single objective. 

• Multiple load application events are controlled more efficiently using multi-objective control. 
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5. SELF REPAIR 

Once the position of the broken cable is established in the structure, self repair control commands are calculated 
using multi-objective control applied to the following two criteria: maximize structural stiffness and minimize 
stresses in highly stressed elements. While it was often possible to satisfy the original control goal (slope), 
reducing the negative effects of damage proved to be more challenging. 

The methodology for computing self-repairing control commands is based on Pareto filtering in order to avoid 
the use of weight factors. Sets of Pareto optimal solutions are built according to the stiffness and the stress 
objectives. Moreover, since this multi-objective search supports control command computing, one single 
solution has to be automatically selected. While the slope objective is now of tertiary importance, among sets of 
Pareto optimal solutions for stress and stiffness, solutions that exhibit the highest slope compensation are taken 
to be the solution for the self-repairing control command.  

Through experimental testing Adam and Smith (2007a) demonstrated that it is possible to control using 
objectives such as stiffness and stress by modifying the self-stress state of an active tensegrity structure that has 
had a cable removed. Therefore, self repair has the potential to be supported by active control systems for active 
structures. When the damage location solution is exact, self repair is attractive for active structures in situations 
of partially defined damage. When damage location is not exact, self repair might lead to stress increase. 
Additional information, for example stress measurements, would be useful to improve damage location. 

While it was observed for the first time that stiffness can be increased and stresses reduced through active 
control commands on a damaged structure, repair was only partial and clearly only possible when alternative 
load paths existed. This aspect of the research is thus a qualified success to date; more work is needed to identify 
more precisely the conditions where self repair is effective. 

6. LEARNING 

Reinforcement learning is used to improve control performance. Although the learning algorithm employs case-
based reasoning, which is often classified as a weak form of supervised learning, it has evolved into 
reinforcement learning since it learns from errors in order to support incremental improvements of control 
commands. The learning algorithm is divided into memorization, retrieval, adaptation and replacement 
processes. 

After successful self diagnosis and multi-objective shape control, a case is memorized. A case is composed of 
the following components: case attributes, control command, slope compensation, see (Adam and Smith, 2008) 
for more details. Case attributes are the response of the structure in terms of top surface slope deviation and other 
response indicators. The control command is composed of ten active strut elongations and contractions. The last 
component is the slope compensation that is measured on the structure when the control command was applied. 
This measurement data allows the structure to learn from the relative success of previous commands as well as 
through reuse of previous control command calculations. 

Cases are retrieved according to similarity measures that are determined through comparisons with case 
attributes and measurements on the structure. Once a case is retrieved, its control command is adapted for shape 
control of the structure subjected to current load. The adaptation function is based on an assumption of locally 
linearity (Adam and Smith, 2008). In situations where the control command that is adapted from a retrieved case 
leads to slope compensation improvement, the current case replaces the retrieved case. In this way, the structure 
reacts better and more quickly to applied control commands as it gains experience. Case base maintenance is 
also assured in this way. 

The learning methodology has been verified over 80 loading and control events. The following observations and 
remarks are relevant:  

• The methodologies for retrieval and adaptation generally allow for control quality and control rapidity 
improvement over retrieved cases. 

• Since current cases replace retrieved cases when control quality improves, better cases are gradually 
stored and naturally classified in the case base. However, case attributes of replaced cases are also 
replaced. This leads to a loss of information. 

• The reinforcement learning algorithm can be seen as an iterative method over retrieved cases that 
successfully accommodates nonlinear behavior. 
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• Geometrically nonlinear behavior of tensegrity structures can momentarily slow down the learning 
process. 

• Control performance may decrease momentarily. Since control is performed over random loading 
events, cases may momentarily not be retrieved. 

• The derivative of the evolution of the number of cases in the case base decreases as retrieved cases are 
replaces by new cases over 80 loading and control events. 

• It is expected that after about 150 random loading events, cases are retrieved for each control event. 
 
It is concluded that the learning algorithm allows for two types of learning: decreased time for control command 
computation and increased control command quality as cases are retrieved and adapted. Although case-based 
reasoning is normally classified as supervised learning, the proposed learning methodology proposed in this 
work contributes to reinforcement learning. Interaction between learning algorithms and sensor devices is 
attractive for improving control tasks. 

7. APPLICABILITY TO OTHER BUILDING SYSTEMS 

Although the control strategies described in this paper have been conceived and tested within the field of 
structural engineering, there are opportunities to adapt these results to other building systems. For the best 
exploitation of the strategies described in this paper, the following is a list of system characteristics that are 
appropriate: 

• There is no closed-form solution for control commands given desirable behaviour as input. Since the 
tensegrity structure behaves in a geometrically non-linear manner, simple strategies such as 
superposition of weighted components of an inverted influence matrix are not successful. Similarly, 
there is usually no closed-form solution, for example, for determining climate-control commands in a 
building to achieve low energy use for a given outside environment and required use of space. 

• There are relatively fast ways to estimate behaviour given control commands. In structural engineering 
this is performed by traditional structural analysis methods.  Similarly, recent building physics research 
has resulted in efficient simulation packages using modern computer hardware. 

• Sensors are available to measure relevant behaviour characteristics. The relationships between sensor 
measurements and control commands are indirect and coupled. A single control command will 
influence measurement results at many sensor locations. This is the case for most building systems. 

• Actuators are present that modify system behaviour. 

• System elements can fail and this requires cycles of self diagnosis and adaptation to revised system 
characteristics in order to satisfy control criteria. Building systems need to be robust and biomimetics 
can help achieve robustness in efficient ways. 

• Multiple control criteria are important for operation. Current strategies assume that one criterion is 
dominant and that many control command sets are capable of optimizing performance. Other criteria 
then filter command sets to identify the command set that provides robustness in terms of objectives 
such as subsequent performance. 

The beneficiaries of biomimetic control systems include designers, owners and occupants. Designers are given 
greater freedom to explore innovative solutions that may not satisfy traditional conservative operating 
restrictions. Owners receive cost-effective building systems that minimize intervention after element failure and 
reduce costs of failures. Users benefit from increased building functionality and more generally, higher quality of 
life. It is expected that rudimentary systems will be available in the next three years. Full implementation of 
computational control using advanced informatics to include optimization methods, model-based system 
identification, data mining and machine learning is likely to require five to fifteen years depending on future 
research support.  
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8. CONCLUSIONS 

The most important conclusions of the work to date are: 

• Geometric non-linearity and closely coupled behavior mean that there is no closed-form solution for 
control commands given criteria such as required geometry. Stochastic search techniques are useful for 
avoiding the difficulties related to exponentially complex brut-force search. 

• Previous control cases improve control performance. Over time, the structural system learns. 

• Self diagnosis extends active structural control of tensegrity structures to situations where there may be 
partially defined loading events and damage.  

• Multi-objective search is attractive for computing commands that control shape of an active tensegrity 
structure while maintaining robustness of both the structure and the active control system. These 
commands are particularly useful for controlling structures over scenarios of multiple loading events. 
This advantage is expected to be fully transferable to other building systems. 

• Self repair of a damaged active tensegrity structure is possible. The active control system can be used to 
apply control commands that increase stiffness and decrease stresses within an active tensegrity 
structure that is damaged.  

• Reinforcement learning is attractive for improving the control of an active tensegrity structure using 
previous loading events. Improvements involve lower command computation times and better control 
quality. Such interactions between learning algorithms and active control systems are attractive for 
control tasks and potentially many building systems could benefit. 

The integration of intelligent control methodologies such as self diagnosis, multi-objective shape control, self 
repair and reinforcement learning to an active tensegrity structure creates an example of an adaptive civil 
structure that can be applied to a range of other practical situations in the future. More specifically, other control 
systems, such as those for indoor climate, energy use, water systems and occupant movements could be 
improved through biomimetic enhancements such as the ones described in this paper. All of these applications 
are potential areas for future work. 
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