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SUMMARY: This paper presents an automated system for actual productivity assessment of earthmoving 

operations in near real-time. Several research attempts had been made to calculate productivity, but a number 

limitations had been found in literature such as, assuming the hauling unit is loaded to its full capacity and the 

need for manual user entry of efficiency factors (For example: bucket fill factor). The proposed system addresses 

some of the limitations found in previous research. The system consists of hardware and software developments. 

The hardware consists of three main units: (1) Truck mounted unit, (2) Loader mounted unit and (3) Fixed unit 

at the construction site. The software development consists of three main algorithms: (1) Data processing 

algorithm, (2) Productivity calculation algorithm and (3) Operating conditions analysis. Using sensor-aided 

GPS, site data is collected, organized and saved in the system’s database, which is housed on a central server. 

Equipment location is tracked using the GPS, while the hauling unit load weight is measured using strain 

gauges mounted on its suspension and wired to a micro-controller. The loading and dumping activities are 

monitored by a number of sensors mounted on both the loader and trucks. The site weather condition is recorded 

and correlated with measured productivity in each recorded interval for later use in future estimates. A 

simulated case study is presented to demonstrate the usage and capabilities of the system. The case study 

demonstrated how the proposed system can assist project managers in measuring actual projects. 
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1. INTRODUCTION 

Earthmoving operations involve moving of massive quantities of soil or unformed rock. Earthmoving work 

package usually occupy around 20% of total amount of construction project cost (Kang et al 2009). Therefore, 

estimating onsite earthmoving productivity is always a main concern for project managers (Zhang et al., 2009). 

However, the key challenge in accurate productivity estimation is the collection and evaluation of a large amount 

of onsite data. Traditional manual methods for productivity estimation are not only expensive and subject to 

human error but also are delivered with a time lag. Field supervisory personnel on construction site spend 

between 30-50% of their time recording and analyzing field data (McCullouch 1997) and 2% of the work on 

construction sites is devoted to manual tracking and recording of progress data (Cheok et al. 2000). In addition, 

since most data items are not captured digitally, data transfer from a site to a field office requires additional time. 

When the required data is not captured accurately or completely, extra communication is needed between the site 

office and field personnel (Thorpe and Mead 2001). 

The construction industry lags behind other industries in adopting innovative new technologies (Kulatunga et al. 

2006). Reichstein et al, (2005) conducted a study using data from ‘UK innovation survey’ found out that less 

number of firms in construction sector are engaged in product and/or process innovation than other sectors. The 

need to accelerate the rate of technological adoption in the construction industry has been well documented in 

the literature (Mitropoulos and Tatum, 2000). The rapid advances in sensing technologies motivated researchers 

to study the feasibility of using such technologies to automate and integrate individual technologies for 

automated productivity estimation in the construction industry. With the development of site data acquisition 

technologies, a large amount of data can be collected on construction sites in semi-automatic and semi-

continuous bases. However, processing and reducing data to meaningful conclusions and fusing the data from 

different sources remain as obstacles for achieving a practical automated progress tracking solution on 

construction sites. Soibelman et al. (2008) noted the problem of the increasing volume of the collected data on 

construction sites.  

This paper presents an automated method for productivity assessment of earthmoving operations using sensor-

aided GPS that not only facilitates data collection on site, but also evaluates the project performance in near real-

time. The developed method includes hardware and software developments. The hardware development 

encompasses a microcontroller, set of sensors and GPS. Bluetooth wireless communication is utilized for data 

streaming and proximity detection. A localized data management scheme is implemented to maximize the 

collected data utilization. The software development includes three algorithms: (1) Data processing algorithm, 

(2) Productivity calculation algorithm and (3) Operating conditions analysis. The developed method was tested 

on eight experiments, with a total execution time of 124 hours. The results of these experiments indicated that 

the presented method provide better results than “traditional” GPS methods. 

2. LITERATURE REVIEW 

In earthmoving operations, measuring actual performance and forecasting project time and cost during its 

execution are crucial for successful project delivery. Problems associated with measuring actual performance 

have been widely recognized and are well documented (Bassioni et al. 2004). Effective performance 

measurement relies on accurate and timely data collection from construction sites. Measuring actual performance 

enables comparison with the as-planned progress. This comparison enables the determination of project status 

and assists in identification of selecting appropriate corrective actions. Traditionally, site data collection has been 

commonly based on manual methods, in which the collected data are recorded on paper by human observers. 

Manual methods are recognized to be costly and not necessarily accurate (Hildreth et al. 2005). 

Earthmoving operations have received considerable attention from researchers and industry professional. Wide 

ranges of methods and technologies were used in tracking and control of these operations. For example, Global 

Positioning System (GPS) and radio frequency identification (RFID) technologies had been utilized for progress 

tracking (Hildreth et al. 2005; Navon and Shpatnisky 2005; Montaser and Moselhi 2012). Hildreth et al. (2005) 

proposed a method for data processing of earthmoving information using GPS technology located on-board 

vehicles to determine start and stop times of activities such as loading, hauling, dumping, and returning. Navon 

and Shpatnitsky (2005) used GPS technology to measure earthmoving performance automatically by identifying 

the locations of equipment at regular time intervals and converting the information into a project performance 
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index. However, there are a number of shortcomings associated with standalone GPS. The acquired data is 

limited to time and location which sometimes makes it difficult to distinguish between productive and non-

value-added movements. Also, these spatiotemporal records cannot help in the review process to find the events 

that caused abnormal cycles. Montaser and Moselhi (2012) utilized RFID to estimate the loading, hauling, and 

dumping times of the dump trucks. Fixed readers installed at entrance gates of loading and dumping sites record 

the entrance and exit of RFID tags attached to dump trucks. The time differences are considered as loading, 

traveling, and dumping cycle times. However, implementation of this system is cumbersome in linear projects 

such as road and highway construction. Further, it cannot confirm whether the truck is actually fully loaded. 

Computer vision–based methods offer an alternative approach to monitoring and tracking of construction 

activities. In this respect, several researches used video processing including object tracking (Brilakis et al. 2011; 

Park et al. 2011) and object recognition (Azar Rezazadeh and McCabe 2011; Chi and Caldas 2011; Jog et al. 

2011; Azar Rezazadeh and McCabe 2012). However, their proposed algorithms for object recognition, tracking, 

and segmentation can fail under certain conditions, particularly in the visually noisy images of a typical 

construction site. Kim et al (2011) developed a wireless real-time vision based productivity measurement 

system. In that he conducted two field experiments on asphalt paving project and a bridge reconstruction project. 

While the results of these experiments generated identical productivity measurements to those calculated using 

the stopwatch method, his method is limited to the use of one camera, which is not adequate to represent site 

conditions in a wide range of projects. As well, his method is not fully automated; requiring continuous human 

involvement to analyze the data. That human involvement not only results in delays but also is prone to errors 

due to human biases. Azar et al (2013) introduced a vision-based framework, which can recognize and estimate 

dirt loading cycles. The results showed that their system could recognize and measure 98.2% of the loading 

cycles with 95% accuracy in durations; however, their system is not only vulnerable to occluded equipment 

images but also is incapable of handling more than one operating excavator. 

Despite the few commercially available solutions for tracking and control of earth moving equipment, most of 

them are semi-automated and require manual user input. For example, the "Haul Truck Assignment and 

Tracking System" developed by Topcon (2014), can track load/dump time and locations, but the operator must 

push a button when loading and dumping is performed on site. This system alone is not able to track real-times 

volumes being moved on site, another system such as SiteLink3D must be integrated to receive automated 

volume reports. The need of multiple systems to automate the process has a high cost impact on the contractor. 

While progress tracking of road construction operations has been investigated using different emerging 

technologies (e.g., GPS, Radio Frequency Identification (RFID), Ultra Wideband (UWB), image based systems 

and video), GPS remains the most common current practice for semi automated on-site data acquisition on road 

construction projects. Perkinson et al (2010) conducted a survey to establish the state-of-practice of GPS data 

collection and utilization by heavy construction contractor companies in the United States. Survey responses 

collected from 155 companies showed that a majority of the contractors surveyed actively used GPS on their 

jobsites. However, these companies were not taking full advantage of the technology as approximately half of 

them did not record the data generated by GPS and a majority of the contractors that collected GPS data did not 

use it to its full extent or in a meaningful way. The survey identified the primary reasons why contractors were 

not collecting and using GPS data as (i) the lack of a suitable Information and Communication Technology (ICT) 

infrastructure, (ii) the lack of a clear understanding of the benefits, and (iii) the contractors' lack of knowledge of 

how to successfully collect and use GPS data for project management applications.  

3. RESEARCH OBJECTIVES AND MOTIVATION 

The above review identified the limitations and gaps in related research work. The literature revealed the need 

for enhanced on-site data acquisition and automated on-site productivity assessment, particularly customized 

tools that address this need. The latest advances in remote sensing technologies and the need for effective data 

management schemes were main motives behind this research.  

The main objective of this research is to develop a method for near-real time productivity assessment of 

earthmoving operations and to support current practice in tracking and control of construction projects. The 

developed method encompasses innovations in hardware design and automated data processing algorithms. The 

hardware incorporates latest advances in sensing technologies. The software algorithms are designed to eliminate 

manual user intervention and provide fully automated near- real time productivity estimates and onsite progress 
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reports. The developed method utilizes effective data management scheme that not only enhances data collection 

and processing but also maximizes the useful utilization of collected data.  

4. DATA COLLECTION SCHEMES 

Information communication technologies (ICT) can broadly be defined as technologies dedicated to information 

storage, processing and transmission. Also, it involves a combination of hardware, software and networks to 

transform raw data into useful information for speedy retrieval (Farag, 2009). Effective data collation, 

information transfer and information retrieval have been cited as important areas for improvement in 

construction (Bowden, 2005). By enhancing information flow between different site processes and teams, it 

becomes easier to monitor, control and assess project progress and hence integrate on-site processes effectively 

(Moniem, 2000). It is beneficial for contractors, subcontractors, owners and their construction management 

teams to monitor onsite productivity. However, with the deployment of advanced site data acquisition 

technologies, a large amount of data is collected. Effective processing of such huge volume of data remains a 

challenge; particularly for near-real time automated productivity assessment on construction sites. Ward et al. 

(2004) noted the need for customized and tailored data management schemes for different construction 

processes. He suggests that efforts should be made towards providing a standard set of interfaces which can 

enhance data collection and information extraction. 

In automated site data acquisition methods such as those cited in the literature review above, data collection 

schemes commonly use sensors or readers to relay raw data to a mobile computing. Such raw data has little 

value in itself. Hence this data is processed to extract meaningful information. The data collection scheme 

adopted in these methods suffers from high volume of data traffic towards the sink node, which creates 

bottleneck and, hence results in long processing time (see Figure 1). 

 

Figure 1: Data Collection Schemes 

The proposed scheme supports localized cooperation of sensor nodes to perform complicated tasks and in-

network data processing to transform raw data into high level useful and actionable information. Towards this 

direction, data aggregation and processing have to be done in a way that renders it valuable to large-scale real-

life applications that receive near- real time data. Sensory data has to be collected, aggregated and interpreted at 

the sensor node level. This decreases post-processing time and user intervention required for analyzing processed 

data for project tracking and control. The proposed sensor network is built using a gateway node and one or 

more sensor nodes. The gateway node has sufficient computing power and no energy or memory restrictions. 

That acts as interface to the system. The sensor nodes are resource constrained devices, running on batteries and 

perform actual data acquisition. The sensor nodes are organized into a tree that routes data directly towards the 

gateway node as shown in Figure 1. Such tree configuration facilitates in-network aggregation and reduces the 

amount of data routing. 
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5. PROPOSED METHOD 

The developed method consists of four modules; 4-D model generation module, activity recognition module, site 

operations module and project control module (see Figure 2). The 4-D model is generated by integrating the 3-D 

terrain model and the project schedule. The generated 4-D model defines equipment work zones in relation to 

scheduled activities. The defined work zone coordinates serve as boundaries for equipment tracking as described 

later on. A list of pending activities is generated based on their completed predecessors. Planned quantities for 

each pending activity are calculated from the 4-D model using trapezoidal rule based on longitudinal and cross-

section profiles of road sections. Activities under execution are recognized by the activity recognition module 

which utilizes sensed equipment locations and cross match it with work zone boundaries of pending activities. 

Also crew formation is identified using RF proximity detection and cross checking of allocated resources. Once 

an activity is identified as being under execution, its actual progress (start, finish, duration and quantities) is 

estimated by the site operations module. Actual productivity is estimated based on measured time using the 

developed hardware, actual excavation quantities measured by strain gauges mounted on hauling trucks and 

actual materials delivered to the site. Data from accelerometers mounted on equipment and weather station on 

site is analyzed to flag any interruptions in work performed on site; which can be utilized for improved 

forecasting of project status. The project control module estimates actual progress based on actual productivity 

measured on site. Project total cost and duration at completion are forecasted based on actual progress, taking 

into account onsite operating conditions. 

 

 

Figure 2: Proposed Productivity Assessment Method 

5.1 Design Criteria 

The main design criteria for the proposed method are: 

a) Accuracy: The main performance measure in comparing the proposed method to traditional methods is 

the productivity measurement accuracy. The higher the accuracy, the better the system; however, there 

is often a tradeoff between accuracy and other characteristics such as cost. The accuracy is measured as 

the average error in the productivity assessment. 

b) Latency: The system latency is attributed to hardware, computing, and human intervention/efforts 

during data transfer and processing. The proposed method is designed to measure the productivity in 

near real-time, which requires fast and efficient data processing with no human intervention.  

c) Scalability: The proposed method is required to be applied to any project size without any need for 

further adjustment or development. 



 

ITcon Vol. 19 (2014), Ibrahim & Moselhi, pg. 174 

d) Robustness: The system robustness is defined by its ability to function normally even when some 

signals are not available. The proposed method is designed to have multiple data sources from different 

sensors and be able to function even if some sensor data is missing or corrupted.  

e) Cost: The proposed method must be cost effective with respect to traditional methods. 

5.2 Hardware Implementation 

The hardware is designed to satisfy the above mentioned design criteria. The proposed hardware consists of 

mobile units and fixed units. The mobile units are mounted on all equipment of road construction fleet. The fixed 

units are installed in key points on the construction jobsite. The mobile unit consists of a basic configuration and 

a number of sensors. The sensors configuration is selected according to equipment type. The basic system 

configuration consists of a microcontroller with data logging capabilities, a RF module, GPS positioning module, 

and power supply. The Block diagram of the mobile unit is shown in Figure 3. 

 

Figure 3: Mobile Unit Block Diagram 

The characteristics of the selected sensors are presented in Table 1. 

Table 1 Sensors Characteristics 

Strain gauge is a sensor whose resistance varies with 

applied force; It converts force, pressure, tension, 

weight, etc., into a change in electrical resistance 

which can then be measured as shown in Figure 4. 

Four strain gauges are mounted on hauling truck leaf 

springs. The payload is obtained by summing up 

measured loads in the four gauges.   

Figure 4: Strain Gauge Sensor 

3-Axis accelerometers are widely used for tilt sensing 

in industrial applications, such as automobile security 

alert systems. A full measurement scale of ±3 g is 

optimum for tilt sensing applications. The 

accelerometer is installed in a truck bed as shown in 

Figure 5. The tilt angle is calculated as: 

              α = arcsin (a/g)                      Eq. (1) 

Where: a is the measured acceleration and g is earth 

gravity vector. 

 

Figure 5– Accelerometer Mounted on Truck Bed 
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Barometric pressure sensor for elevation 

measurement. An altimeter does not actually measure 

altitude directly, but rather just atmospheric pressure. 

The barometric pressure sensor is attached to a loader 

bucket as shown in Figure 6. The bucket altitude is 

calculated as: 

 Altitude = 

           44330 ×(1-(p/p0 )^(1/5.255) )     Eq.(2) 

Where: p is the measured pressure and p0 is the 

pressure at sea level in (hPa). 

 

Figure 6 –Pressure Sensor Attached to Loader 

Bucket 

5.3 Hardware Configuration 

The prototype was built using five main hardware modules described above in the integrated configuration 

shown in Figure 7. The description of each module is outlined below: 

• Arduino Uno microcontroller, which is based on the ATmega328. This microcontroller has 14 digital 

input/outputs and 6 analog inputs. It is reasonably priced and development software is open-source.  

• Roving Networks (RN-41) RF module. It is a Class 1 Bluetooth Module. Its Data transfer rate is up to 

3-Mbps with a range up to 100 meters.  

• SkyTraq (Venus638FLPx) GPS module. It is a high performance, low cost, single chip GPS receiver. It 

has low power consumption, high sensitivity, and low time-to-first-fix.  

• Analog Devices (ADXL335) 3-axis accelerometer. It measures static acceleration of gravity in tilt-

sensing applications, as well as dynamic acceleration resulting from motion, shock, or vibration.  

• Adafruit Industries (DS1307) data logger. It has a real time clock (RTC) with backup battery for up to 7 

years of timekeeping. It can fit any SD/MMC storage up to 32GB. 

 

 

Figure 7: Developed Productivity Assessment Prototype 

5.4 Software Implementation 

The software development consists of three main algorithms: (1) Data processing algorithm, (2) Productivity 

calculation algorithm and (3) Operating conditions analysis. 

5.4.1 Data Processing Algorithm 

The raw sensor data is collected using the designed hardware as described above. The data processing takes 

place in the sensor node and the gateway node, where higher level of information is extracted representing the 

operation modes of the equipment and the volume of excavated soil. Two sub algorithms are developed, namely, 
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Barometric Pressure 
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the haul truck activity recognition algorithm and the hauling volume calculation algorithm. A detailed 

description of each sub algorithm is presented in the following section. 

5.4.1.1 Haul Truck Activity Recognition Algorithm 

The haul truck activity recognition algorithm aims to interpret the sensor (mounted on equipment) readings into 

understandable modes of operations. In this study seven states considered: queue loading, loading, travel, queue 

dumping, dumping, return and out of service. These states were selected because they are performed regularly by 

a truck in typical earthmoving operation. These states involve repetitive motions which make these states easier 

to recognize. Table 2 lists the seven selected states and the expected sensors readings during these states. 

Table 2 Haul Truck States 

Task Location Speed Load 

Weight 

Proximity Tilt 

Angle 

Previous Task 

Load Queue Loading Area = 0  0 Trucks = 0 Return 

Load Loading Area = 0 ++ Loader = 0 Return or Queue Loading 

Travel Road > 0 > 0 Non = 0 Loading 

Dump Queue Dump Area = 0 > 0 Trucks = 0 Travel 

Dump Dump Area = 0 -- Spoter > 0 Travel or Queue Dump 

Return Road > 0  0 Non = 0 Dump 

Service Service Area = 0 Any Any = 0 Any 

 

Figure 8 plots the sensors data for a haul truck during a typical earthmoving operation. The periodic patterns for 

all the above mentioned seven states can be described in terms of the time between peaks and by the relative 

magnitudes of the sensors readings values. The location for the haul truck is identified based on the coordinate's 

boundaries of the cut, fill, hauling road and service areas. The proximity of other equipment is identified by 

continues scanning by the RF communication module to discover nearby equipment. The discovered equipment 

type is identified by cross checking their media access control (MAC) address against a pre-defined list stored on 

the microcontroller SD memory card. 

 

Figure 8: Sensor Data Patterns 
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The developed algorithm utilizes a logic-based approach, which views an activity as a knowledge model that can 

be formally specified using various logical formalisms. From this perspective, activity modeling is equivalent to 

knowledge modeling and representation. The algorithm is composed of a number of distinct states and a 

reasoning engine, which are responsible for aggregating and transforming sensor data into logical terms and 

formula. The logical representation of sensor data is passed onto the reasoning engine which performs logical 

reasoning against the pre-set states. The developed algorithm does not require pre-existing large-scale dataset, 

and activity modeling and recognition is semantically clear and elegant in computational reasoning. Its main 

drawback is its inability to represent uncertainty, but this can be elevated by integrating fuzzy logics into the 

logical approaches, which will be addressed in future research. 

5.4.1.2 Hauling Volume Calculation Algorithm 

For maximum efficiency of the hauling equipment, the trucks must be filled as close to their rated hauling 

capacity. The current practice in earthmoving operations, a truck is loaded them until its volumetric capacity is 

reached. However, overloading the truck will cause higher fuel consumption, reduced tire life, and increased 

mechanical failures. The developed method uses strain gages installed on truck's suspension leaf spring to 

estimate the payload weight and volume. This feature not only enables accurate tracking of excavated soil 

volume but also enables alarming the operator for any overloading conditions, and hence protects the contractor 

from possible extra costs for fuel, tires and mechanical failures. 

The weight at each suspension is calculated based on voltage signals of strain gages. The total payload of the 

vehicle is obtained by summing load readings in all suspensions; but resultant errors vary in a wide range. To 

reduce the error, a Kalman filter is used to account for nonlinearity in measurement. Once the payload is 

measured the volume of the payload can be estimated based on the excavated soil properties. 

Strain is the amount of deformation of a body due to an applied force. More specifically, strain (e) is defined as 

the fractional change in length. A strain gauge is a device whose electrical resistance varies in proportion to the 

amount of strain in the device which is shown in figure 4. The truck’s suspensions are denoted as Left-Front 

(LF), Left-Rear (LR), Right-Front (RF), and Right-Rear (RR), respectively. In Fig. 9, the cross mark denotes the 

center of gravity of the payload with a value represented by W. 

RF
RR

LR
LF

+

L1 L2

L
4

L
3

 

Figure 9: Schematics Diagram for Truck Payload Center of Gravity and Distances 

For converting the measured strain gauges voltage to the payload, the load applied to each suspension must be 

calculated first. From Fig. 9, the following equations can be derived in accordance with force balance and torque 

balance: 

                         Eq.(3) 

Where: 

 W is the gross payload weight in Kg. 

PLF , PRF, PLR, PRR are the measured weight in Kg at the left front, right front, left rear and right rear 

truck suspensions respectively. 



 

ITcon Vol. 19 (2014), Ibrahim & Moselhi, pg. 178 

      
  

     
 

  

     
     Eq.(4) 

      
  

     
 

  

     
     Eq.(5) 

      
  

     
 

  

     
     Eq.(6) 

      
  

     
 

  

     
     Eq.(7) 

The Payload volume is calculated from the measured load weight as following: 

                                             Eq.(8) 

Where: 

 Wgross is the gross payload weight in Kg., 

 Wtruck bed is the weight of the truck bed in Kg., and 

 soil is the soil density in Kg/m
3
. 

After calculating the load volume, a Kalman filter is applied to the measurement to reduce the error in the 

measurement. The Kalman filter is modeled as following: 

 ̂                ̂        Eq.(9) 

Where: 

 ̂  is the current volume measurement, 

    is Kalman gain, and 

 ̂    is the previous volume measurement. 

5.4.2 Productivity Calculation Algorithm 

The on-site productivity is calculated from the measured cycle times and the excavated volumes collected by the 

developed hardware and software algorithms described above. The overall operation productivity is calculated 

by summing the individual truck productivity using the following equation: 

                      ∑                    
 
                 Eq.(10) 

Where: 

 Truck Productivityi is truck i productivity in m
3
/hr, and 

 n is the number of trucks. 

The truck productivity is calculated using the following equation: 

                    
            (  )              

                     
                         Eq.(11) 

Where: 

 Total cycle time is equals the summation of loading, travel, dumping, returning and service time 

 Load factor is the factor for converting soil material to a compact state 

5.4.3 Operating Condition Analysis Algorithm 

The operating condition algorithm monitors the earthmoving operation and declares a set of alarms for potential 

bottle necks in the operation as following: 

 Loss of productivity:  

The fleet production is normally controlled by the loading equipment production capacity. It is very 

crucial to keep loading equipment busy all the time. If there are not enough trucks, there will be loss in 
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production. The number of trucks required to balance the fleet at maximum capacity is calculated using 

the following equation in the planning phase: 

                             
                

                 
                       Eq.(12) 

At the project execution phase, the number of trucks required may vary because of changes in haul road 

conditions, reductions or increases in haul length, or changes in conditions at either the loading or dump 

areas. The loader and trucks queuing time is monitored at the loading area and the algorithm declare an 

alarm to the project management if deviation from the planned is identified. A higher loader queuing 

time means that there is a need to increase the number of trucks to keep the production at maximum 

capacity. A higher truck queuing time means that there is a need to decrease the number of trucks or to 

increase the number of loaders to keep the production cost at minimum. The truck travel and return time 

is monitored to alarm for possible traffic congestion and an alarm is declared if the time is greater than 

the planned in order to review possible usage of alternative routes. 

 Adverse weather conditions: 

The weather conditions are monitored using the developed method and co-related with the achieved 

productivity on site. This co-relation between the weather conditions and the productivity enables better 

productivity estimation on future jobs. The method also acquires a weather forecast from the weather 

channel website and alarm for possible adverse weather conditions, which enables project management 

to anticipate potential project delays and take suitable corrective actions. 

 Operator behavior 

Equipment operators are usually under a great deal of pressure to achieve target production rates. While 

the operator will push the equipment to the maximum to achieve the requested production, it is 

beneficial to the contractor to monitor the operator behavior for equipment abuse. Speeding is a huge 

factor in high fuel usage. Maintaining proper speeds can significantly reduce the fuel consumption. The 

developed method monitors the operator and equipment to flag and report any unwanted behavior. 

Alerts are triggered for excessive speeding, harsh breaking, excessive idling, engine start-up or shut-

down during off-hours and unauthorized travel routes. A three axial accelerometer is used for detecting 

aggressive driver behavior such as sudden acceleration and breaking as shown in Figure 10. 

 

Figure 10: Truck Operator Behavior Monitoring Field Test 

6. CASE STUDY 

A simulated case study was conducted to test the functionality of the developed method and to demonstrate its 

applicability to earthmoving project. The developed prototype was mounted on scaled 1:50 equipment to test the 

operation in outdoor environments. 

In order to validate the designed method, 8 experiments were conducted on a model jobsite and remotely 

controlled equipment models as shown in Figure 11. Equipment positions were captured by GPS, loader boom 

angle was sensed by 3-axis Accelerometer, and strain-gauge sensors tracked the weight of material transported 
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by dump trucks. In these experiments, a simple case of earthmoving operation is considered. The operation 

involves excavation of 2.72 cubic meters of dry sandy soil. The equipment fleet consists of one wheeled loader 

and two hauling trucks. Table 3 represents the activity duration based on actual equipment performance and site 

layout. Table 4 represents equipment hourly rate. 

 

 

Figure 11: Site Layout for Earthmoving Operation Case Study 

Table 3: Activity Duration 

Activity 
Approximated duration (S) 

Mean Standard deviation 

Load 5 1.5 

Haul 24 7 

Dump 2 0.6 

Return 19 5 

Table 4: Equipment Hourly Rate 

Equipment Type Hourly Rate 

Truck Highway 2 axles $55.37 

Loader CAT 430E $65.31 

As presented in Figure 12, a discrete event simulation model is developed to calculate planned productivity, 

project duration and cost. The model takes into account soil quantity, calculated activates duration and 

equipment characteristics. 

Four separate measurable quantities (namely, total project duration, total project cost, average productivity, and 

equipment utilization) were selected to assess the results generated by the simulation model (Table 5). 

Table 5 Simulation Output 

Measurement Value 

Total Project Duration 10.83 hrs 

Total Project Cost $1906.68 

Average Crew Productivity 0.272 m3/hr 

Loader Utilization 19.99% 

Truck Utilization 99.38% 
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Figure 12: Discrete Event Simulation Model of the Case Study  

7. ANALYSIS OF RESULTS 

The site data was gathered using the developed hardware and conventional GPS tags in order to compare the 

performance of both technologies. The data included longitude, altitude, time, direction, travelled distance, load 

weight, truck-bed tilt angle, velocity, and equipment proximity. The progress was calculated using these two 

technologies and compared to the actual progress which was calculated manually as shown in Figure 13. A video 

camera was used to record the actual construction progress in order to measure the actual project duration. The 

project was completed in 13 hrs with a total cost of $2288.65. The actual total volume of soil in cut locations was 

2.947 cubic meters. 

 

Figure 13: Project Progress Tracking Using Different Technologies 

The comparison results (illustrated in Figure 14) show that conventional GPS estimated the productivity of the 

fleet with a mean absolute error of 6.05%. This deviation is attributed to the assumption that the hauling trucks 

are loaded to their maximum capacity, while the captured video showed that this assumption is not valid due to 

rocks and boulders in the excavated soil. The developed method measured the productivity with considerably 

less errors at 2.20%. The lower error is attributed to the utilization of real time volume and durations data. These 
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results show that the SA-GPS outperformed the conventional GPS in measuring the earthmoving fleet 

productivity which was also resulted in more accurate forecasting of project cost and duration at completion. 

 

Figure 14: Fleet Hourly Productivity Estimate Comparison 

8. CONCLUSION 

The present study demonstrated the useful application of the developed SA-GPS method for productivity 

assessment of earthmoving operations. It presented a practical and easy to use framework for monitoring and 

tracking of earthmoving operations in near real-time, which facilitates early detection of discrepancies between 

actual and planned performances and supports project managers in taking timely corrective actions. The 

developed method was used to measure the productivity of earthmoving operations of a scaled project. The 

developed method was tested on eight experiments, with a total execution time of 124 hours.. The results of 

these experiments indicated that the developed method measured the productivity with 2.20% mean absolute 

error. The low estimation error can be attributed to the utilization of actual near real-time data captured by the 

developed hardware. It is expected that the accuracy of the developed hardware demonstrated in this paper can 

be achieved on large scale earthmoving projects. This is attributed to the fact that the developed method does not 

require any scalable developments on the hardware technology used nor it requires any additional computational 

developments beyond the software developed. 
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