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SUMMARY: Parametric estimating has been widely used in conceptual estimating to tackle quality and 

efficiency related issues. Despite the merits obtained, human involvement is always missing from the decision 

process and organizational learning is difficult to realize because knowledge of experienced estimators is not 

well preserved. This paper proposes a paradigm and a corresponding information system that combine the 

intelligence of humans and computational power of computers, streamline the information flow in the mixture of 

human-computer-network, and solicit and preserve knowledge of estimators in proposal development. The 

Human Computation paradigm created by Von Ahn has been tailored to tackle the construction conceptual 

estimating problems. A Cloud computing infrastructure that supports the proposed paradigm is also proposed. 

In order to demonstrate the applicability and validity of the proposed paradigm and information system, a case 

study of the proposal development of a power plant project is introduced. The findings confirm that the proposed 

paradigm and information system can be used to advance knowledge transfer and organizational learning in 

construction problems where necessary information is not always available. Although designed for conceptual 

estimating problems, the proposed paradigm and information system can be applied in other construction 

engineering and management problems fraught with deep uncertainties.  
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1 INTRODUCTION 

Conceptual estimating in proposal development is nontrivial (Globerson & Zwikael 2002). Estimators need to 

develop estimates under significant time pressure and with only limited information (Alder 2006). It always 

ends up with inaccurate estimates and unqualified budget which further increase the financial risk in 

construction execution phase (Carr 1989). Parametric methods has been widely applied in conceptual estimating 

to enable faster and more accurate proposal development since 1936 (Kwak & Watson 2005). Commonly used 

methods or algorithms include regression analysis (Kouskoulas & Koehn 1974) and Artificial Neural Network 

(ANN) (Adeli 2001). In addition, Case Based Reasoning (CBR) has been introduced as an alternative in 

conceptual estimating, where decisions are made based on the experience from similar historical projects (Kim, 

An & Kang 2004). The feasibility and validity of these methods have been well proven by many case studies 

(Kim, An & Kang 2004).  

However, a closer examination finds certain problems with conceptual estimating, which can hardly be solved 

by current parametric estimating methods or CBR. First, human opinions are missing from the implementation 

of most parametric estimating or CBR frameworks. Most parametric estimating approaches are built on 

historical data (Walton & Stevens 1997), and require advanced statistical or modeling knowledge in order to 

enable better handling of the models and proper interpretation of the results (Kwak & Watson 2005). The 

knowledge set of most engineers and estimators are divergent from this purpose and thus most parametric 

estimating methods remain a black box for the daily users. In practice, estimators have to accept the results 

instead of actually controlling the estimating procedure. This partially explains why many estimators hesitate to 

use the latest statistical approaches (Rush & Roy 2000). Second, given the deep uncertainties of construction 

projects, such as unforeseen site conditions or financial difficulties (CII 2007; Du, El-Gafy & Ghanem 2012; Du, 

Liu & Karasulu 2014), historical data can hardly cover the entire uncertain space. Fig.1 illustrates a situation 

where known information only represents a small portion of the entire space. When project decision makers are 

facing new conditions, such as a brand new project, parametric estimating fails to yield a satisfactory result (Du 

& Bormann 2014). It is severer when the statistical model is oversensitive to small changes, such as one can see 

in multicollinearity (Farrar & Glauber 1967). Third, different algorithms or approaches are disconnected. Any 

algorithm or method has its unique advantage in discovering the pattern of data, and therefore multiple methods 

should somehow be integrated to generate a more solid conclusion where a confidence band is given. Even 

though new frameworks are emerging, the authors didn’t find any one of them attempts to connect different 

models in order to reach such a solid conclusion. Most studies focus on estimating and comparing the 

performance of different approaches and make recommendations for a particular method (Kim, An & Kang 

2004). The last problem with current conceptual estimating is that organizational learning is hard to be realized. 

Knowledge and experience of estimators are mostly piecemeal and anecdotal; there is not existing paradigm that 

preserves the knowledge as a part of organizational learning.  

In order to address the limitations of the present conceptual estimating methods and systems as discussed above, 

this study aims to answer the following question:  

Can we develop an innovative paradigm that streamlines information flow between estimators and statistical 

models, and preserves knowledge of experienced estimators to realize sustainable organizational learning?  

The objectives of this study include: 1) to examine the applicability of Human Computation in construction 

problems: Human Computation was proposed at first as a computer technique in which certain steps of a 

computational process is outsourced to humans (Ahn 2005). The main idea is to utilize unique abilities of 

humans and computer agents to achieve symbiotic human-computer interaction (Ahn 2005). Such interaction 

becomes extreme important in problems which neither human nor computer can solve alone (Ahn 2005). This 

study examined each element of the general paradigm of Human Computation, and identified the corresponding 

realizations; 2) to tailor the general Human Computation paradigm into construction problems, and to develop a 

corresponding information system that supports Human Computation in construction problems. Inspired by the 

principals of Human Computation, this paper proposed a paradigm that combines the intelligence of human 

beings and computational power of computers, and streamlines the information flow in the mixture of human-

network and computer-network in proposal development. A Cloud computing based infrastructure was also 

proposed to support the knowledge flow; and 3) to demonstrate the applicability of the proposed paradigm with 

a case study. In order to test the feasibility of the proposed system, the selected case study should be associated 

with certain level of complexity and uncertainty. Therefore, this study conducted a case study about the 

conceptual estimating of a mage-project (a power plant project). The remainder of this paper introduces the 

theoretical background, the methodology, the paradigm and system, and finally the case study. . 
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FIG. 1: Deep Uncertainty in Conceptual Estimating 

2 THEORETICAL BACKGROUND 

2.1 Parametric Cost estimating 

Parametric cost estimating can be dated back to 1936, when Wright provided equations to predict the cost of 

airplanes over long production runs, a theory later be called the “learning curve” (Wright 1936). This method 

was then extended to other industries by Rand company in 1950’s and RCA company in 1970’s (ISPA 2008). 

Early in 1994, a joint Government/Industry Committee was established to search ways to increase the use of 

parametric cost estimating techniques (NASA 1995). This initiative finally resulted in several industry wide 

parametric cost estimating handbooks (ISPA 2008; NASA 1995). Per the definition of project management 

body of knowledge (PMBOK), parametric cost estimating is defined as a method that uses “statistical 

relationship between historical data and other variables to calculate an estimate for activity parameters, such 

as scope, cost, budget, and duration.” (ANSI. & PMI. 2008). It builds on Cost Estimating Relationships (CERs) 

between the project characteristics and construction project cost, and applies algorithms to determine an 

approximation of the total construction project cost (ISPA 2008). As a result, the main interest of current 

parametric estimating research is on searching for better algorithms that can facilitate more accurate discovery 

of CERs (Kim, An & Kang 2004; Shtub & Versano 1999; Smith & Mason 1997).  

Since 1970’s, regression method, or normally referred to as multiple regression analysis (MRA), has been 

introduced to parametric estimating (Kouskoulas & Koehn 1974). It has been used in residential projects 

(Khosrowshahi & Kaka 1996), early pre-tender estimating (NASA 1995), schedule analysis (Martin Skitmore & 

Thomas Ng 2003). It is also integrated with expert systems (Bowen & Edwards 1985), and refined by other 

statistical algorithms to increase the applicability and reliability (Trost & Oberlender 2003). Currently MRA 

have become a widely used method for estimating cost because it has the advantage of a well-defined 

mathematical basis as well as measures of goodness of fit to a given historical data set (Kim, An & Kang 2004). 

The easy-going feature and reliable results make it a popular tool in practice (ISPA 2008). Since 1990’s, as the 

development of Artificial Intelligence and increasing availability of relevant software packages, Artificial 

Neural Network (ANN) started to gain its popularity in parametric estimating (Adeli & Wu 1998; Ayed 1998; 

Kim, Seo & Kang 2005). As a non-parametric approach, ANN doesn’t require predefined formulas, but allows 

the data to speak for itself (Kim, Seo & Kang 2005). Because of the advantages of ANN, it is found that ANN 

fits well to investigating complex nonlinear relationships (Hsu, Gupta & Sorooshian 1995). Recent efforts focus 

on improving the performance of ANN by integrating other artificial intelligence algorithms such as Genetic 

Algorithm (Kim, Seo & Kang 2005). 

Both MRA and ANN are considered as discovery methods of CERs since they aim to estimate the relationships 

between project parameters and construction cost, parametrically or non-parametrically (ISPA 2008). In 

recognition of the importance of historical successful experience, Case Based Reasoning (CBR) is proposed as 

an alternative to enhance the conceptual estimating (Perera & Watson 1998). It builds on a proposition that new 

problems can be solved by adopting solutions that were proven to be successful (Ashley 2006). A typical CBR 

system follows the following steps (Kim, An & Kang 2004): (1) Retrieving one or more stored cases similar to 
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the new case according to the percentage similarity; (2) Adapting the solutions of  the retrieved cases according 

to the differences between the stored cases and the new case, and adopting the adapted solutions to the new case; 

and (3) Retaining the new solution as a part of the stored cases throughout the test. Because CBR is very similar 

to how an expert solve a problem, it has been applied for a variety of construction related issues including cost 

estimating (Kim, An & Kang 2004). In fact, Kim and colleagues (2004) found that CBR has a better 

performance than MRA and ANN with a respect to long term use. The similarity between CBR and industrial 

practices has been confirmed by the authors:  it is found estimators in a daily basis follow the same procedure to 

conduct conceptual estimating – by comparing and revising the estimates on the basis of similar historical jobs. 

As a result, CBR sometimes be considered as an expert system (Kim, An & Kang 2004). 

The above brief review of the evolution of parametric estimating indicates a fact where emerging statistical 

algorithms are becoming increasingly relied. Even though CBR emphasizes the importance of experience, 

similarity function calculation is still based on a set of algorithms, such as gradient descent method (Kim, An & 

Kang 2004).  

2.2 Human Dimension in Cost estimating 

With the rapid development of parametric estimating, Altayeb (1997) raised a reflective question at a time when 

computer models have become increasingly popular among estimators: What is more important, human factors 

or computer factors? Altayeb observed that certain abilities of human beings can hardly be substituted by 

computers, such as expertise and intuition to make enlightened decisions among a group of alternatives. On the 

other hand, he also noticed the importance of computers for their speed and accuracy of processing, organizing, 

and exchanging information. In conclusion, additional efficiency from computers can be gained only if human 

beings are able to control the entire process (Altayeb 1997). Similar arguments never end. Increasing evidence 

indicate the significance of experience of human beings in the success of cost estimating and competitive 

bidding, which is defined as knowledge and skills gained from the observation of and practical acquaintance 

with facts and events (Fu, Drew & Lo 2003; Lowe & Skitmore 1994). It seems in most cases estimates are 

fundamentally a result of estimators’ cognitive psychology including risk attitude, experience background, stress, 

familiarity with projects, requirements of customers, knowledge gained from experience, and professional skills 

(Fellows & Liu 2000; Leung, Ng & Skitmore 2005; Lowe & Skitmore 1994; Mak & Raftery 1992). As a result, 

some scholars urge a reconsideration of the role of human dimensions in cost estimating – people’s choice 

(Fellows & Liu 2000; HARTONO 2010).  

The argument between human roles and computer roles in cost estimating comes from the understanding of the 

nature of estimating practice. Estimating has long been treated as a reflection of scientific positivism, where the 

requirement of “objectivity” tends to exclude the involvement of the knowledge of the observer (Polanyi 1962). 

As discussed above, one natural result of positivist trend in cost estimating is the increasing use of statistical 

models, which are believed as objective projections of the history to the future. Whereas, as commented by 

Polanyi (1961), there are indeed “two kinds of knowledge which combine into the understanding of a 

comprehensive entity: our reliance on our awareness of the particulars is the personal; our knowledge of the 

entity, the objective element of knowing”. This perspective highlights the priori knowledge and the empirical 

components of “objectivity”. Tauber (1997) also commented, as science has evolved, the notion of what 

constitutes “objectivity” has also changed since the standards of the boundary between “objectivity” and 

“subjectivity” is evolving. If personal knowledge (e.g., intuitions and insights) is excluded from decision 

making, “questions arise as to how investigations are instigated, how they are carried out and how conclusions 

are formulated.” (Fellows & Liu 2000).  Any decisions in cost estimating are directed by cognitive motivation 

of estimators (e.g., interest, goal directed actions) and aim to answer the basic human initiated investigative 

questions (Fellows & Liu 2000). Especially when construction systems are regarded as social-technical systems 

where human and organizational factors exert strong influences on the decision makings (Du 2012; Du & El-

Gafy 2010; Du & El-Gafy 2011, 2012; Du & El-Gafy 2014; Du & Wang 2011), human experience and 

knowledge constitute an important dimensions in construction management practices including cost estimating. 

Unfortunately, human dimension remains a missing link in current parametric estimating.  

This paper urges a rethink to the role of human beings in parametric cost estimating, particularly at a time when 

artificial intelligence is highly valued and relied on. The real challenge is to enable a seamless synchronization 

of human intelligence and computer computational capacity. In addition, such synchronization should be able to 

encourage the solicitation and application of human intelligence, and ultimately allows a sustainable 

organizational learning. Recently emerged human computation paradigm provides a possible solution. 
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2.3 Human Computation 

A widely accepted definition of Human Computation is given by Ahn (2005); it is “a paradigm for utilizing 

human processing power to solve problems that computers cannot yet solve.” It reverses the traditional 

computation process where human formalizes problem and computer offers solution – in Human Computation 

paradigm, computer is used to solicit human opinions, and then integrate and interpret the opinions (Ahn 2005). 

The original intention of Human Computation is to deal with certain problems which are challenging for 

computers but trivial for human beings, such as image recognition (Ahn 2005). Recent representative works 

include visual recognition (Ahn 2005), character recognition (Von Ahn et al. 2003), language understanding 

(Bernstein et al. 2010), and human communication (Chen et al. 1999) etc. For example, in the reCAPTCHA 

project (Von Ahn et al. 2008), system makes use of the human cycles to help digitize books which optical 

character recognition (OCR) software is unable to read: the reCAPTCHA system presents images of words 

scanned from old books or street pictures for humans to decipher, as part of normal website validation 

procedures (i.e., the validation words; see Fig.2). Then the results are returned to the reCAPTCHA service, 

which are integrated to the digitization projects. 

 
FIG. 2: The application of reCAPTCHA; retrieved from Gmail: http://mail.google.com (Aug. 2014) 

Scholars found roots of human computation in several existing theories including crowed sourcing (Howe 2008), 

social computing (Parameswaran & Whinston 2007), and collective intelligence (Malone, Laubacher & 

Dellarocas 2009). The commonality between these technologies and human computation is concentrating on 

soliciting human knowledge and facilitate human collaboration with the aid of computers (Quinn, A.J. & 

Bederson, B.B. 2011). Whereas Quinn and Bederson (2011) describes six properties which distinguish human 

computation from other similar ideas, which are motivation, human skill, quality control, aggregation, process 

order, and task-request cardinality. According to the nature of the problem, human computation may have 

different process order and task-request cardinality, but a typical procedure of human computation can be 

outlined on the basis of properties proposed by Quinn and Bederson: at first, tasks are requested by the users 

who benefit from the computation. Then these tasks are formalized and assigned to the workers who will 

contribute opinions. Depending on the applications, a variety of human skills, specific knowledge or abilities 

held by the workers are leveraged. A variety of incentives might be provided to motivate people to participate. 

The opinions provided by workers are then aggregated to combine the efforts for solving the global problem. 

Statistical processing of data and iterative improvement are performed to validate the solution and remove any 

sabotage or misunderstanding. Quinn and Bederson (2011) also notice an opportunity of better training 

computers during the human computation process. For example, in order to train a pattern recognition machine 

such as a classifier, it requires a large quantity of example patterns along with annotations (answers from 

humans). In most cases, obtaining enough amounts of annotations is extreme labor-intensive and time 

consuming. Human participants provide significant quantity of annotations which can be used as inputs for 

machine learning. Based on the previous discussion, a paradigm of a human computation system can be outlines 

as Fig. 3. 

Human computation has now been applied in a variety of areas, including proofing reading the characters that 

can hardly be processed by OCR (DP 2015), Galaxy Zoo (a tool that utilizes numerous online players to classify 

a large number of Galaxies) (Lintott et al. 2008), Stardust@home (a NASA project that encourages volunteers 

to search images for tiny interstellar dust impacts) (NASA 2015), and BONIC (a distributed computing project 

at Berkeley that utilizes idle computing resources of volunteers) (Anderson 2004). These applications have 

shown that Human Computation is able to produce “many novel ideas aimed at organizing web users to do great 

things” (Quinn, Alexander J & Bederson, Benjamin B 2011). However, human computation has not yet been 

widely applied in the construction engineering and management areas. A wide range literature search has been 

conducted by using the keywords of “construction” or “engineering” plus terms relevant to the use of Human 

Computation such as “human computation”, “crowdsourcing”, “human-based computation”, “human-assisted 

computation”, “ubiquitous human computing”, “distributed thinking”. To the best knowledge of the authors, 
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there is no single publication addressing the application of Human Computation in the construction engineering 

and management areas. In most conceptual estimating, the implicit knowledge and experience of estimators are 

of the center interest which computers are incapable of (Altayeb 1997). Literature confirms the difficulties and 

importance of soliciting and conserving knowledge of experienced estimators to enable a sustainable 

organizational learning (Fu, Drew & Lo 2003). Human computation provides a possibility that combines human 

intelligence and artificial intelligence, and enables the information flow between human network and computer 

network. Enhanced by data mining techniques (such as machine learning), human computation is promising in 

conceptual estimating. 
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FIG. 3: Paradigm of human computation 

3 METHODOLOGY 

This study follows a three-step approach:  

 Step1: To examine the applicability of the Human Computation paradigm in the area of construction 

conceptual estimating. The Human Computation paradigm created by Von Ahn has been applied in a 

variety of areas other than construction. Therefore, it is critical to examine if the important components 

of human computation can fit into the construction problems. Specifically, can the five elements 

proposed by Von Ahn (motivation, human skill, quality control, aggregation, process order, and task-

request cardinality) be used to address construction problems, such as conceptual estimating, 

completely and effectively? The accomplishment of step 1 will help identify the components of a 

tailored Human Computation paradigm in the construction context. 

 Step 2: To tailor the general paradigm of Human Computation into construction problems. On the 

basis of step 1, each component of tailored paradigm will be examined fully, including the definition, 

subsystems, methods, and processes. The work process of applying the tailored paradigm will also be 

developed to integrate the five components. In addition, a Cloud computing based information system 

will also be proposed to automate the work process. The accomplishment of step 2 will make the 

system ready for applications. 

 Step 3: To demonstrate the applicability and validity of the proposed paradigm and system with a case 

study. Given that complex projects tend to have more issues with deep uncertainties and possibility 

larger knowledge gap (e.g., the knowledge gap between engineers and estimators in a very complex 

power plant project), preferably the selected case study should represent certain level of complexity. As 

a result, this study will examine the conceptual estimating of a power plant project, and how the 

application of the proposed paradigm and system help streamline the estimating process, make better 

use of knowledge and enable organizational learning. 

The remainder of this paper will introduce the findings.    
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4 THE PARADIGM: INTERACTIVE PARAMETRIC ESTIMATING 

4.1 Architecture 

Building on human computation theory, this paper proposes a paradigm for conceptual estimating and relevant 

organizational learning. The proposed paradigm, interactive parametric estimating (iPE), highlights the 

collaborative effort of human and computer network in conceptual estimating phase, and supports the 

solicitation and preservation of knowledge.  There are five key modules as shown in Fig.4: Human Skills, Cost 

estimating Relationships (CER), Validation, Optimization, and Learning.   
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FIG.4: Architecture of proposed paradigm 

Each module supports an important functionality to realize the paradigm.  

Human Skills, specifically the experience and knowledge held by experienced estimators about construction 

projects, estimating and relevant factors, play a central role in the proposed paradigm. One of the core purposes 

of the paradigm is to develop a standard process that facilitates the application of human skills and takes full 

advantage of human skills in conceptual estimating. Experienced estimators are assigned the right to adjust 

and/or override the decisions. The other functionalities are applied to solicit, formalize, enhance and preserve 

the experience and knowledge of experienced estimators.  

CER, explored by parametric and/or non-parametric models, is used to discover the patterns of historical data, 

which serves as the preliminary analysis for decision making. Building on the Grounded Theory (Glaser & 

Strauss 1968), a variety of statistical models are established to provide multiple sources of opinions which 

constitute the foundation of preliminary decisions. Information visualization is also utilized to facilitate the 

decision making. For example, Multidimensional Scaling (MDS) might be utilized to enhance decision makers’ 

understanding on the similarities between projects (Du & El-Gafy 2011).  

Validation provides third party sources of information to allow the decision makers to adjust the preliminary 

decisions. Unlike the statistical models of CER, techniques utilized by validation are focused on different 

perspectives to describe the pattern of historical data. For example, a CER model might focus on revealing the 

quantitative relationship between project characteristics and craft quantities. In contrast, a validation model 

attempts to capture the quantitative relationships between crafts (RBC) such as the reasonable ratio of concrete 

reinforcing to concrete. In another case, a validation model could also provide opinions based on the similarity 

between a project and historical projects, which utilizes methodology of Case Based Reasoning (CBR). It 

identifies similar projects in the history, and make connections to the present project. It can be used to facilitate 
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the comparison thinking by linking new projects to archived projects. A method developed by the authors, 

called “Similarity Measure And Ranking Tool (SMART)” has been used to realize CBR. Limited by the scope 

of this paper more details about SMART cannot be provided in the present manuscript, but readers can refer to a 

paper we published in 2014 for more information (Du & Bormann 2014). 

Optimization is applied to provide a global insight into the entire estimating process. Discipline based 

estimating practice tends to lead to local optimized solutions. It is very difficult for craft-based estimators to 

cooperate together to reach a global optimum. This is either unrealistic in most cases or out of capacity even 

when it is targeted. For example, using longer pipes in power plant projects might increase related material cost; 

but it saves direct labor work hours in the installation phase because the installation of longer pipes is often 

more efficient. Minimizing total install cost (TIC) therefore involves the simultaneous consideration of both 

factors (material cost and installation labor cost), which is hard to achieve using discipline based estimating 

(Steffey & Anantatmula 2011). In optimization module, Sensitivity Analysis method (Du & Bormann 2014) is 

employed to discover the distribution of ultimate TIC with an overall consideration of the material price 

escalation (Knight & Fayek 2000), risk mitigation (Molenaar 2005; Pyra & Trask 2002), probability distribution 

of productivity (Schexnayder, Knutson & Fente 2005) and etc. Consequently, decision makers are able to adjust 

the quantities of particular crafts and choose certain risk mitigations to increase the efficiency.  

Learning aims to preservepreserve the knowledge gained in the process of decision making, discussion, and 

other activities in the conceptual estimating phase. Instead of solely focusing on the actual data of history, the 

proposed paradigm values the importance of estimators’ opinions. It builds on an assumption that certain 

characteristics of a project are very difficult to capture, which in contrast could be easily captured by implicit 

knowledge or experience.  In many cases, especially when the situations are relatively new, the judgments made 

by the estimators differ from the predictions made by the statistical models. The proposed paradigm assigned 

bigger weights to the human-made judgments to tackle deep uncertainties. It requires a method to preserve 

human-made judgments. Through designed procedure (such as Game With a Purpose) and machine learning 

techniques (such as ANN), it is expected the implicit knowledge and experience can be structuralized and 

preserved for organizational learning purpose. It has been found that ANN has a variety of advantages to learn 

from data, and therefore, it is used in the learning component of the proposed paradigm. In the case study, it was 

realized by JMP. In order to realize learning, the judgments made by the estimators are used as the “training 

dataset” of ANN models. The target of ANN modeling is to adjust the structure by data training. In a training 

iteration (or an epoch), values of input variables are weighted and summed up for an artificial neuron. Then an 

activation function is applied to convert the summation of weighted input to output activation. 

4.2 Analysis Flow 

In a common parametric estimating practice (Fig. 5 (a)), statistical models are built based on the historical data. 

Then different statistical approaches are compared according to their goodness of fit, such as R square or mean 

absolute error to actual construction cost data (Kim, An & Kang 2004).  

Traditional Parametric Estimating Interactive Parametric Estimating 

 
 

 

 

Task

Estimators Computers

1

2

Historical 

Projects

1 Train

Formalize

3

Render

Assign

Knowledge

3 Store

 

Task

Computers Estimators

1

2

Historical 

Projects
1

Train
Preliminary 

info

3

1st round opinion

Assign

Training 

Data

7

Final opinionTrain

8

4

Validation 

info

9

Better prediction

GWP

Projects

5

2nd round opinion

Optimization findings

6

KnowledgeKnowledge

 

(a) (b) 

FIG.5: The flowcharts of traditional and interactive parametric cost estimating 
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The “best” model is finally selected and applied to the new projects to conduct parametric estimating. This 

process builds on a weak assumption that the future will stay consistent as the history, and thus the historical 

relations between project parameters and construction cost can be used to future conditions without refinement. 

Even though the conclusions obtained from this process can be used to support the decision makings of 

estimators, estimators are not actually involved in. Soft knowledge is not well solicited and used to deal with 

unique conditions of new projects which probably have not been captured by historical data and relevant 

statistical models. 

iPE, in contrast, combines the advantages of statistical models and soft knowledge of estimators to enable a 

seamless information flow in the entire estimating process. Fig.5 (b) describes the analysis flow of iPE: 

(1)  A variety of statistical models are built based on historical data and GWPs, i.e., hypothetical projects 

for soliciting opinions only; 

(2) Opinions from all the statistical models are presented to the estimators in a single graphical 

demonstration so the differences can be perceived by the estimators; 

(3) Based on the preliminary opinions provided by statistical models, estimators make the first round 

judgments; 

(4) The first round judgments of estimators are compared with third source information, such as the 

reasonable ratio between crafts, or similar historical projects facilitated by CBR; 

(5) Estimators revise their judgments based on the information obtained in step 4; 

(6) The second round judgments from different disciplines are fed into the optimization module, where 

Sensitivity Analysis simulation is conducted to investigate the optimal estimates for each craft; 

(7) Estimators make their final judgments (3
rd

 round) based on the findings of optimization analysis; as a 

result, the characteristics of new projects, reasonable relations to historical projects, and global 

optimization are all considered in the decision making; 

(8) The final decisions of estimators are then used as training data to improve the performance of statistical 

models (such as ANN models); 

(9) Improved statistical models not only reflect the fact of the history, but also reflect the perceptions and 

opinions of estimators towards the future, and therefore more reliable estimating can be made based on 

new models. 

In this way three iterations of information exchange are realized between computers and humans, and implicit 

knowledge and experience of experienced estimators are solicited to revise the final decisions and train the 

models for future use.  

4.3 Information System 

The proposed paradigm can be realized with an information system as shown in Fig. 6. Multiple users, i.e., 

estimators, can access a central database server and all available tools (e.g., predictive models) via thin clients 

(e.g., personal computers). The central server processes the requests and operations of estimators and performs 

the major computational tasks including statistical modeling and learning. It is also able to return the results to 

estimators through a Cloud-based infrastructure. This information system ensures a master database and 

streamlined information flow.  

To be noted the configuration illustrated in Fig. 6 represents a private cloud environment, i.e., a cloud 

infrastructure that can be provisioned for open use only by company employees (Subashini & Kavitha 2011). 

It applies the client - server model of centralized computing (Nieh, Yang & Novik 2000). There are three major 

components in this design: 

 Client: A thin client that relies heavily on network resources for computation and storage. The user 

interface of the information system is realized in MS Excel or web browser, as both are user-friendly 

for most of the construction practitioners. Taking web browser based user interface as an example. It 

can easily be implemented with the Hypertext Transfer Protocol (HTTP) via port 80. Request made by 

the users can be sent to the central server, which designated addresses of clients via IP. The analysis 

results are sent back to the clients and shown in the user interface through the same HTTP port.  

 Internet: The computer network that uses the standard Internet protocol suite (TCP/IP) to serve as the 

communication channel. A web server that supports not only HTTP, but also server-side scripting 

using Active Server Pages (ASP), PHP, or other scripting languages; 

 Central server: A Hadoop server (HDFS) that assumes the mass storage and simulation related 

computation. Specifically, we formulate the simulation tasks as MapReduce jobs and execute them in 

Hadoop, which is an open source implementation of the MapReduce framework (Dean & Ghemawat 
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2008). Unlike typical parallel computing models such as MPI, and General-Purpose GPU Computing, 

the MapReduce framework removes many obstacles to porting existing single-threaded codes onto 

parallel architectures. It hides the complexity of parallelization, data distribution, fault-tolerance, and 

load balancing from the developer. More importantly, the MapReduce framework is also well 

integrated with existing commercial cloud computing infrastructure. For instance, Amazon Elastic 

MapReduce (Amazon EMR) is a web service that makes it easy to quickly and cost-effectively process 

vast amounts of data. Amazon EMR uses Hadoop to distribute the data and processing across a 

resizable cluster of Amazon EC2 instances. The present information system utilizes the on-demand 

scalability and pay-per-usage model of Cloud Computing infrastructure for accelerating the analysis 

tasks. The Apache Hadoop project is an open-source implementation of MapReduce. It includes the 

Hadoop distributed file system (HDFS), designed for storing data files on a distributed network of 

computers, and Hadoop MapReduce, the parallel computation engine. Although Hadoop is written in 

Java, developers can write jobs in any other programming language using a utility called Hadoop 

Streaming. Hadoop Streaming implements Map and Reduce functions as interfaces to external user-

specified applications. External Map and Reduce applications communicate with Hadoop Streaming 

through standard Unix streams. They read input key-value pairs via standard input and write back their 

output via standard output. 
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FIG. 6: Configuration of the proposed information system 

The first step in implementing this information system is to set up the application, i.e., configuring the client for 

executing the necessary application files. Although the main computation is done on the remote HDFS server, 

some application files need to be set up in the client to allow local operations, such as determining the crafts of 

interest. One solution is through web browser application. Users access the HCBL server through the URL of 

SaaS (Software as a Service), which sends the necessary files for realizing local user interface, such as JSP (Java 

Script Application), to the users’ terminals. Port 80 is used to send requests to the HCBL server as a pure 

endpoint for the HTTP. It is compatible with MS Internet Explorers and therefore easier for the client side. 

Dynamic updates 
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Other ports, such as Port 20, can be used to send back application files. On the back end, the installed 

application files query the HCBL server to execute computation. On the front end, users have the ability to view 

and operate simulation. The best way to implement this kind of interactive applications is using the model-view-

controller (MVC) pattern (Krasner & Pope 1988). MVC is a classic design pattern that depends on three major 

components: models for maintaining data, views for displaying purposes, and controllers for handling user 

initiated events (Krasner & Pope 1988). 

It is also worth noting that the human computation results, i.e., updated expert opinions, will be dynamically fed 

back to the central server, where ANN models will be built to preserve the knowledge. Where it is possible, the 

newly built ANN models will be used in the next round human-computer communications to replace the models 

that solely built upon historical data. A feedback is established to strengthen the opinion generation and 

evaluation.  

5 CASE STUDY 

5.1 Overview 

A tool named iPET (interactive parametric estimating tool) was developed based on the proposed paradigm, and 

was tested in the proposal development of a power plant project. The case study was coordinated by an EPC 

(engineering, procurement and construction) contractor in the U.S (denoted as company A). The project used 

was a combined cycle power plant project budgeted for more than 2 million direct labor hours, 328 million 

dollars and planned to finish in 35 months.  

Conceptual estimating for this type of projects is complicated involving the consideration of many unique 

factors such as actual geographic conditions of the job site. However, for the selected project only limited 

information was available and the time frame for developing the proposal was very short.  A series of face-to-

face interviews with those in key roles at company A (including vice-president, department heads, coordinators 

and estimators) have identified 12 project parameters (Tab.1) for parametric estimating of 28 crafts (Tab.2). 

Finally 47 historical jobs dated from 1993 to 2010 were selected to build statistical models.  

TABLE 1: Selected project parameters 

 

No. Symbol Description Type 

1 MW The megawatt reading of the project Numeric 

2 Type The nature of the job Nominal 

3 ENG Engineering company in the project Nominal 

4 Config The mechanical equipment configuration of the project Nominal 

5 Equip Total number of mechanical equipment Numeric 

6 Layout Job site layout classification Nominal 

7 Stack Measurement of center line (feet) of outside stacks in a multiple unit configuration Numeric 

8 Vendor The vendor of steam turbine Nominal 

9 Status Refers to whether the installation of a project is at an existing facility Nominal 

10 TowerCells Total number of cooling tower cells Numeric 

11 MainRack End-to-end length in linear feet of the main pipe rack connecting the multiple units Numeric 

12 RadiusSum Linear feet measurement from a central location to the major work areas of control 

room, water treatment facility, storage tanks and cooling tower 

Numeric 

 

TABLE 2: Crafts used for testing developed tool 

No. Craft Description 

1 Concrete PFC Volume of concrete pouring, finishing and curing 

2 Embedded steel Volume of embedded steel 

3 Concrete formwork Area size of concrete formwork 

4 Concrete reinforcing Rebar 

5 Total steel Weight of major structural steel erected on site 

6 Steel grating Area size of steel grating 

7 Steel Handrail Weight of steel used for handrails 
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No. Craft Description 

8 Steel pipe racks Weight of steel pipe racks 

9 Complete piping Total length of all main pipes 

10 U/G piping Length of underground pipes 

11 Critical piping Length of critical pipes 

12 Main circulating water system Length of circulating water system 

13 Small bore pipe Length of small bore pipe 

14 Large bore pipe Length of large bore pipe 

15 Total cable Total length of main cables 

16 Cable 600V and above Length of cables for 600V and above transmission 

17 Cable below 600V Length of cables for below 600V transmission 

18 Control cable Length of cables used for controlling system 

19 Instrument cable Length of cables used for instruments such as sensors 

20 Cable tray Length of cable tray 

21 A/G conduit Length of above ground conduit 

22 U/G conduit w/civil Length of underground conduit 

23 U/G conduit concrete Concrete used for underground conduit 

24 Iso Non Seg Bus Length of isolated non-segregated phase bus (power) 

25 Lighting Count of lights 

26 Install instruments Count of installed instruments 

27 Instrumentation Tubing Length of instrument tubes 

28 Instrument Calibration Count of calibrations 

 

5.2 The Model 

The model was built following the procedure as described in Fig.5 (b): 

Preliminary statistical models: Regression and ANN models were developed for each of the 20 crafts based on 

47 historical project information. The models were made into an Excel spreadsheet tool to demonstrate results to 

estimators (Fig.7). 

 

FIG. 7: Presenting statistical models to estimators using Excel Spreadsheet 
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Integrated demonstration: estimators make the first round decision on the basis of multiple sources of 

opinions instead of a single one, facilitated by the “bubble charts”. As illustrated in Fig. 8, each bubble 

represents the forecasting result of a model. The height of the bubble shows the goodness of fit (R-square), and 

the size of the bubble represents the 90% confidence interval of the forecasting. The red dot shows the judgment 

made by the estimators. Estimators were able to handle this tool without much difficulty. Their judgments were 

tracked as the first round judgments.   

 

FIG. 8: Visualizing different model results with bubble charts 

Validation: Then a graphical demonstration of the relationships between crafts (RBC) was presented to the 

estimators for their reference. In this demonstration, the quantitative relationship between any pair of craft, for 

example, concrete and steel usage, is shown as a regression formula. Estimators were able to evaluate if their 

first round estimates present reasonable ranges. Meanwhile, a tool developed to identify most similar historical 

projects (Du & Bormann 2014) was used (Fig.9), so estimators could also compare their estimates against 

historical experience. Estimators revised their judgments by considering all third-party resources; 

 

FIG. 9: Similarity Measure And Ranking Tool (SMART) 

SELECTED 18091.95 57.0 %

0.00

0.20

0.40

0.60

0.80

1.00

1.20

0 5000 10000 15000 20000 25000 30000 35000

REGRESSION ANN MODEL3 MODEL4 INDEX

SIMILARITY MEASUREMENT AND RANKING TOOL (SMART)

MW 1200 OVERALL SIMILARITY JOB ID ID Name Rank Similarity Rank Similarity Rank Similarity Rank Similarity Rank Similarity Rank Similarity Rank Similarity Rank Similarity Rank Similarity Rank Similarity

Job_Type CC POWER 1 3952 Houson Ind   Shell DPMC 1&2 44 5.9% 18 71.5% 8 84.5% 43 13.5% 42 21.2% 10 80.7% 8 88.5% 26 61.4% 34 39.3% 44 10.7%

Engineer B&V 2 4144 Tenaska   Cleburne 36 24.1% 26 65.5% 22 74.9% 35 32.6% 30 38.2% 21 75.5% 20 78.7% 22 65.4% 28 49.7% 37 30.5%

Config_Code 2: 2 on 1 3 4288 Exxon Cogen BLX3 46 4.8% 22 68.0% 13 80.2% 44 12.8% 43 20.6% 16 78.7% 12 86.2% 29 60.3% 37 38.1% 45 9.9%

Total_number_of_equip 10 4 4400 Mid Georgia Cogen 32 27.3% 15 72.1% 10 81.9% 31 35.3% 25 41.0% 9 81.4% 15 81.0% 18 69.6% 24 53.4% 34 33.2%

Site_Layout_Code F 5 4477 Calpine P1 Project 38 23.2% 16 71.8% 9 83.2% 37 31.7% 31 37.9% 8 83.1% 3 91.7% 19 69.2% 26 51.3% 38 29.2%

Outside_stack_distance 600 6 4765 CPS Bruanig Lake 23 33.4% 28 61.2% 24 74.2% 23 48.0% 21 52.3% 23 74.1% 14 82.9% 16 72.3% 19 59.3% 23 46.0%

ST_Vendor GE 7 4796 Cobisa Person 47 0.0% 36 50.4% 37 49.5% 47 0.0% 46 6.0% 37 49.7% 38 48.5% 42 35.1% 45 19.7% 47 0.0%

Existing_Code NEW SITE 8 4812 L.S. Power   Batesville 11 58.6% 3 83.2% 7 86.6% 9 74.1% 7 76.1% 6 86.2% 17 80.4% 4 84.1% 4 79.8% 12 73.8%

CoolingTCells 20 9 4830 Calpine P2 Project 28 31.4% 41 37.9% 41 38.6% 30 36.2% 36 35.1% 42 38.0% 42 40.5% 40 35.9% 40 33.3% 28 41.4%

Main_rack 543 10 4950 Rockingham 31 29.2% 13 73.0% 21 76.8% 34 33.0% 29 38.4% 19 77.5% 21 78.6% 23 64.7% 27 50.4% 36 31.5%

RadiusSum 3875 11 4962 Calpine Magic Valley 19 44.7% 30 58.1% 31 58.7% 20 50.9% 23 51.0% 31 57.8% 30 60.4% 31 55.8% 25 52.3% 19 53.5%

12 4974 Skygen Pine Bluff 42 17.5% 31 57.9% 30 61.8% 40 23.9% 39 28.8% 30 62.6% 29 61.8% 34 52.3% 35 39.3% 40 23.2%

13 5028 Tenaska Gateway 9 59.9% 6 80.6% 3 87.8% 12 68.4% 9 71.1% 4 87.0% 5 90.1% 3 84.6% 5 76.4% 14 67.2%

14 5038 PP&L Griffith 22 35.8% 24 67.2% 14 79.3% 18 53.8% 18 58.1% 11 80.5% 9 88.2% 8 77.2% 14 65.1% 20 51.7%

15 5044 Reliant Desert Basin 21 36.0% 21 68.8% 17 78.6% 24 47.5% 22 51.9% 15 79.0% 13 85.7% 13 73.2% 18 60.4% 24 45.7%

16 5078 Tenaska Geogia 24 33.4% 37 47.3% 38 47.7% 29 36.5% 32 37.2% 38 47.5% 39 46.0% 38 43.6% 36 38.9% 29 39.6%

INSTRUCTION: 17 5082 Calpine Lost Pines 30 29.4% 44 29.6% 44 32.5% 26 38.4% 33 35.8% 44 33.0% 44 36.2% 43 31.7% 42 30.5% 25 44.6%

THIS TOOL IS USED TO MEASURE AND RANK THE 18 5090 Reliant Equistar 17 53.0% 8 76.7% 16 78.7% 13 67.7% 10 69.8% 18 77.9% 22 78.5% 10 75.9% 10 72.2% 13 68.7%

SIMILARITY BETWEEN A NEW PROJECT AND ANY 19 5210 Calpine LCR 34 26.4% 47 0.0% 47 0.0% 39 27.3% 44 18.3% 47 0.0% 47 0.0% 47 0.0% 46 3.9% 26 42.8%

HISTORICAL PROJECT IN TERMS OF CRAFT QUANTITIES. 20 5214 Constellation Rio Nogales 14 56.1% 5 80.7% 5 87.4% 17 64.5% 13 67.6% 5 86.9% 4 90.7% 7 82.7% 9 73.8% 18 63.3%

21 5238 PPG Riverside 37 24.1% 17 71.6% 20 77.0% 38 29.8% 35 35.6% 22 75.0% 25 73.6% 24 63.9% 30 48.5% 39 28.3%

TO USE IT: 22 5264 Pinnacle  West Redhawk 3 76.8% 12 74.4% 23 74.8% 4 83.7% 4 80.8% 24 73.6% 24 74.0% 11 74.6% 6 76.3% 4 89.9%

1. INPUT THE PARAMTERS OF A NEW PROJECT; 23 5274 Skygen Corpus Christi 25 33.1% 25 66.3% 11 80.4% 19 51.8% 19 56.3% 17 78.2% 7 89.4% 9 76.8% 15 63.7% 21 50.0%

2. BASED ON GLOBAL SENSITIVITY ANALYSIS, 24 5290 Calpine Acadia 4 75.9% 14 72.4% 27 72.4% 5 81.8% 5 78.4% 27 71.0% 27 71.5% 17 72.2% 8 74.1% 5 87.8%

     SIMILARITY RANKING OF HISTORICAL PROJECTS 25 5294 Reliant Osceola 40 19.4% 9 76.3% 18 78.3% 42 21.0% 41 27.6% 12 80.1% 16 80.5% 27 60.6% 31 42.9% 42 19.0%

     ARE GIVEN IN SIMILARITY TABLE (RIGHT HAND SIDE); 26 5322 Calpine Freestone 5 68.9% 34 52.0% 36 50.9% 11 70.8% 16 64.1% 36 50.2% 37 48.7% 35 50.9% 23 54.8% 8 83.0%

3. OVERALL SIMILARITY OF A PROJECT IS SHOWN 27 5330 Dynegy Bluegrass 41 19.3% 10 75.8% 19 77.9% 41 21.1% 40 27.6% 14 79.6% 18 80.2% 28 60.4% 32 42.8% 41 19.1%

     AS A BARCHART (RIGHT HAND SIDE); 28 5398 Dynegy Rolling Hills 35 26.2% 23 67.9% 26 72.4% 33 33.7% 28 38.7% 26 71.3% 26 73.4% 25 62.7% 29 49.5% 35 32.7%

4. STANDARD EUCLIDEAN DISTANCE IS NOT 29 5495 Reliant Choctaw 12 58.4% 4 81.1% 4 87.7% 16 65.8% 12 68.9% 3 88.0% 6 89.5% 6 83.4% 7 74.8% 17 64.5%

    RECOMMENDED (GRAY AREA) SINCE IT DOESN'T 30 5505 Sempra Mesquite 2 86.5% 2 95.3% 2 96.8% 2 94.8% 2 95.0% 2 93.5% 2 94.9% 2 97.2% 2 96.3% 2 95.6%

    CONSIDER NONLINEARITIES. 31 5515 NRG Brazos Valley 20 38.3% 20 69.0% 15 79.1% 21 49.7% 20 53.9% 13 79.6% 11 86.9% 12 74.5% 16 62.0% 22 47.8%

32 5525 Tenaska Kiamichi 1 100.0% 1 100.0% 1 100.0% 1 100.0% 1 100.0% 1 100.0% 1 100.0% 1 100.0% 1 100.0% 1 100.0%

33 5535 Tenaska Central Alabama 10 58.8% 19 69.5% 25 74.0% 15 66.4% 14 67.3% 25 73.0% 23 76.3% 14 72.5% 12 68.7% 15 67.1%

34 5545 Calpine Deer Park 18 45.4% 45 19.2% 45 19.0% 22 48.9% 27 38.9% 45 17.4% 45 20.0% 45 19.0% 43 24.5% 16 66.6%

35 5898 FPL Martin 6 66.7% 32 56.1% 32 57.6% 7 74.6% 11 69.0% 32 56.2% 31 59.0% 30 58.3% 17 61.0% 7 84.2%

36 5904 FPL Manatee 15 55.4% 35 51.7% 34 52.4% 14 67.4% 17 63.1% 35 50.7% 35 50.5% 33 52.6% 22 55.4% 11 76.9%

37 5941 Exxon Mobil Beaumont 26 33.1% 7 79.7% 6 87.2% 25 39.1% 24 44.8% 7 83.6% 10 88.2% 15 72.4% 21 57.2% 32 37.5%

38 7261 FPL Turkey Point 13 57.5% 33 53.4% 33 54.4% 10 71.4% 15 65.6% 33 52.0% 33 54.8% 32 55.1% 20 57.8% 9 81.6%

39 7935 NRG Cedar Bayou 4 33 27.0% 38 45.4% 35 51.4% 27 37.7% 26 39.7% 34 51.0% 34 54.8% 36 49.3% 33 42.1% 30 39.2%

40 7954 Topaz Barney Davis 29 29.7% 43 35.9% 43 37.9% 32 34.4% 37 33.8% 43 37.9% 41 40.9% 41 35.5% 41 32.2% 31 39.1%

41 7960 Topaz Nueces Bay 27 32.6% 42 36.7% 42 38.5% 28 36.8% 34 35.8% 41 38.6% 40 41.6% 39 36.4% 39 33.6% 27 41.6%

42 7982 Topaz Laredo 45 5.8% 46 14.3% 46 11.3% 46 1.0% 47 0.0% 46 11.5% 46 13.2% 46 4.2% 47 0.0% 46 8.1%

43 7700 FPL West County 1 8 61.4% 11 75.4% 12 80.2% 3 87.7% 3 85.9% 20 76.7% 19 79.2% 5 83.4% 3 82.9% 3 91.2%

44 7700 FPL West County 2 16 53.5% 27 61.8% 28 68.2% 8 74.4% 8 72.4% 28 63.9% 32 57.5% 20 69.0% 13 68.7% 10 78.4%

45 8177 FPL West County 3 7 62.0% 29 61.0% 29 66.1% 6 79.6% 6 76.2% 29 63.0% 28 62.7% 21 68.2% 11 69.4% 6 86.5%

46 8220 FMPA Cane Island 39 21.0% 40 39.3% 39 46.2% 36 31.9% 38 33.8% 39 46.7% 36 50.5% 37 44.0% 38 36.1% 33 33.2%

47 8480 JEA Greenland Energy Cntr 43 11.1% 39 41.1% 40 39.1% 45 10.5% 45 13.6% 40 39.4% 43 40.4% 44 29.7% 44 20.7% 43 13.0%

PARAMETER OF NEW JOB

Version 2.0
SIMILARITY TABLE

Std. Euclidean Dist Complete Piping Total Cable Total Steel Concrete PFC Concrete Formwork Instrument Steel Grating Cable 600V- Small Bore

INPUT IN THIS COLUMN
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Optimization: Then a Sensitivity Analysis was conducted with a consideration on three controllable factors: 

cost escalation, risk mitigation options, and distribution of productivity. What if scenario analysis was also 

performed to evaluate different scenarios, for example, a different design of HRSG (heat recovery steam 

generator) or different physical location of control rooms. Tornado charts were utilized to explore the optimal 

decisions; 

Final decision discussion: a meeting was held where estimators from different disciplines discussed the 

opinions obtained so far from different sources, and worked to reach a final widely agreed decision which 

considers both historical data and uniqueness of the new project; 

Learning: the final decision is fed into a series of ANN models for training. In that, the ANN models are 

capable of capturing the knowledge and experience of estimators. 

5.3 The Results 

The result shows that estimators continued improving their estimates based on the updated decision making 

process. Take “complete piping” for example, two statistical models were used to give the preliminary 

information, which was 138,716 LF (model 1) and 130,942 LF (model 2). Based on the preliminary information, 

estimators gave the 1
st
 round judgment as 125,000 LF. Most estimators believed that statistical models were too 

conservative. But after validation by RBC and CBR, estimators slightly adjusted the estimate to 135,000 LF, as 

this project required more steel than what were expected, and piping has a strong correlation with steel usage. 

Furthermore, the optimization session revealed certain risk factors that were ignored, especially that the air 

cooling tower would be used in this project which was a relatively new technology to the company. In addition, 

sensitivity analysis revealed that piping was highly dependent on the distance between main racks, which in this 

project was difficult to reduce. After optimization session, estimators increased the estimate to 138,000 LF. As 

shown in Fig.10, estimators gradually adjusted their judgments to better capture the unique feature of the new 

project. The final estimate was then used to rebuild ANN models. It is expected that these new models 

outperform those solely based on historical data in evaluating new projects.  

 

FIG. 10: Complete piping estimating example 

Fig.11 illustrates the complete opinion evolution of 28 crafts. The black line (100% line) represents the 

predicted quantities by averaging model results. It is used as a base line in Fig.11. The first, second and third 

opinions given by the estimators are shown as “1
st
”, “2

nd
” and “3

rd
” lines. As Fig.11 shows, in general, the 

estimators tended to give estimates lower than the model predictions in the first round, and increase the values 

after validation and optimization (second and third round). It is very similar to what has been reported by Mak 

and Raftery (1992), who found that estimators have systematic biases in estimating, especially shown as risk-

seeking. The proposed paradigm improved the decision-making to certain extent by encouraging a more 

conservative estimating. And the opinion change reflects the impacts of dynamically updated information in the 

decision-making process of estimators. ANN models were built for each of the 28 crafts to learn the latest 

opinions of estimators (i.e., using the opinions of the estimators as the “training dataset” of the ANN models) 

that was able to preserve the valuable risk attitude shifts.  
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FIG. 11: Evolution of opinions 

6 DISCUSSION 

From the case study the readers might notice the difference between the final decision and the preliminary 

results of statistical models based on historical data. However, this doesn’t mean that the final estimating results 

cannot reflect historical cases; on the contrary, final estimating results capture both historical pattern and 

estimators’ perception to future conditions that are unique to this new project. Most estimators agreed that final 

numbers were more reasonable given many implicit and unknown contingencies. The most significant feature of 

the proposed paradigm is that it allows a seamless flow of information between human beings and computer 

models, while highlighting the role of estimators. There are three iterations of information exchange happening 

between estimators and computer; while in each one of them estimators have the right the revise and override 

the decisions gained from last round. Perceptions to future “unknown” conditions are highly valued, which 

makes better sense and allows greater flexibility. In addition, most estimators expressed concerns on relying on 

a single source of opinion, such as results of linear regression analysis. The proposed paradigm, on the other 

hand, combines the advantages of a variety of statistical algorithms which allow a consideration of probability 

and confidence intervals. Results of multiple statistical models, including both parametric and non-parametric 

models, are demonstrated in a single chart, so estimators can easily adjust their numbers with an overall 

consideration. Before final decisions, opinions from different disciplines/crafts were linked together and 

optimized using Sensitivity Analysis based simulation. This offers a unique perspective to the estimators to 

envision and refine their work as a whole. Finally on the basis of the final decision, the computer was able to 

remember the opinions of estimators, and evaluated and documented the implicit knowledge of the estimators, 

such as the proper risk attitude towards a particular situation. In that, knowledge is solicited and sustainable 

organizational learning is realized.  

The proposed paradigm is not focused on improving the “accuracy” or “efficiency” of the conceptual estimating 

and as a result, traditional measures can hardly be used to evaluate if the implementation is a success. In contrast, 

the proposed paradigm aims to provide a better method to solicit human experience and to preserve knowledge, 

especially when situations are relatively new. It builds on the hypothesis that parametric modeling (i.e., 

statistical models used in many conceptual estimating) cannot work well in the face of deep uncertainties due to 

the lack of historical data. As a result, the success measure of the proposed paradigm is 1) Is it able to solicit 

human opinions in a seamless way? and 2) Can the solicited knowledge be preserved for organizational 

learning? To test the first criterion we provided Fig. 11 to show the opinion evolution of estimators on 28 

estimated crafts. It shows that estimators in the three rounds of opinion expression gave results much different 

from the model predictions (black line). The largest difference was more than 20%. It is not our intention to 

evaluate which is more accurate – as in a brand new situation the only way to validate is to compare against the 

final actual cost. But Fig.11 clearly shows that the proposed method is able to solicit unique human opinions 

which differ from those of the parametric models. To test to second criterion, we evaluated the effectiveness of 

ANN in learning human opinions. Most of ANN models gave R-square (which is a good indicator to show the 

predictability of a model) bigger than 0.9. It suggests that ANN models are able to preserve knowledge. Given 

the above evaluation criteria, users should be able to evaluate the proposed paradigm. 

There are several limitations of current proposed paradigm. A potential limitation is results of different 

statistical algorithms in preliminary analysis are not differentiated. Even though the goodness of fit indexes (e.g., 

R-square) are shown in the analysis process, estimators tended to ignore the difference of explanatory abilities 



 

ITcon Vol. 20 (2015), Du & El-Gafy, pg. 290 

between models but focused on the selection of the “middle” value. To overcome this issue different statistical 

algorithm should be prioritized according to their explanatory ability to historical data prior to rendering the 

results to estimators. The other weakness is the solicitation and preservation of estimators’ knowledge is 

occurred only when final decisions are made. Discussions or opinions happened during the analysis process are 

not well recorded. Standard ways to document and formalize estimators’ thinking flow during the conceptual 

estimating should be developed in the future. The third limitation, which is fundamental to the understanding of 

knowledge evolution, is the influences of posteriori knowledge on the perceptions of estimators to new projects. 

Estimating is basically a priori process which is mainly built on historical knowledge. Perception is obtained by 

considering the history and decisions are made within the existing empirical system. Posteriori knowledge (e.g., 

performance factors, a ratio of the actual construction costs versus budget) is used to update the empirical 

system, often shown as database updating. However, ignored by most, Posteriori knowledge is also an important 

feedback that can significant affect the perceptions of estimators (Fig. 9). For example, estimators always tend 

to adjust their risk attitudes towards the future projects based on lessons learned from previous projects, such as 

recent “unsuccessful bids”, or increasing performance factors. Such adjustment of perception will in turn impact 

the performance of future bidding and estimating. This negative feedback remains happening until some sort of 

equilibrium is reached which probably is a signal for new dynamics. Neither traditional parametric estimating 

methodology nor the proposed paradigm considers such negative feedback loop between human perception and 

posteriori knowledge. Future work will pay special attention on calculating the influences of actual performance 

of new projects on human perception besides on database. 

7 CONCLUSION 

Making a fast and reliable conceptual estimating is extremely important for proposal development but it is 

nontrivial most of time due to the insufficient information and limited time window. Parametric cost estimating 

is a widely applied means to enhance conceptual estimating since it captures the patterns of historical projects 

and there is a big chance that these patterns remain suitable for future conditions. However, it is also noted that 

each project is unique in nature and future conditions of certain projects are sometimes unexpected. As a result 

experience and knowledge of estimators become important for conceptual estimating. Traditional parametric 

methodology, however, tends to isolate the involvement of estimators. Estimators can hardly input their 

opinions in the analysis process until results of statistical models are given. In addition, due to a different 

knowledge set, most emerging statistical models remain a “black box” for estimators and thus become 

impractical.  

The authors found the key for a successful conceptual estimating to be combining human intelligence and 

artificial intelligence. To achieve this target it requires a significant change on current parametric estimating 

methodology which relies too much on CERs based on historical data. Inspired by the principals of human 

computation, this paper proposes an innovative paradigm named iPE (interactive parametric estimating). iPE 

facilities three iterations of information exchange between computers and estimators, and allows estimators to 

take charge of the entire estimating process. Assisted with a variety of parametric and non-parametric models, 

multiple opinions are considered and rendered to estimators, who can future revise the decisions based on 

experience, historical rules and global optimization strategies. On the end of the conceptual estimating, the 

opinions and implicit experience and knowledge of estimators are preserved using machine learning techniques, 

such as ANN as described in section 4.1. The ultimate goal is if we outline enough opinions for projects with 

different situations, the computer will know itself the proper estimates for new projects in the future. The 

interactive estimating tool (iPET) proves the applicability of the proposed paradigm. Better organizational 

learning is expected by a collaborative effort between human network and computer network. 

This study differs from previous studies on conceptual estimating in three ways: First, for the first time it 

highlights the importance of the involving human knowledge in the conceptual estimating, in addition to the use 

of historical data. Previous studies have overemphasized the importance of data and correspondingly, the use of 

parametric models (Kwak & Watson 2005; Walton & Stevens 1997). These studies underestimated the deep 

uncertainties in most construction related problems which can hardly be addressed by historical data or 

statistical models. The present study urges a critical thinking about the traditional conceptual estimating 

methods and calls for more efforts to improve the active participation of human beings in the conceptual 

estimating. Second, for the first time it introduces the application of Human Computation in the conceptual 

estimating. A wide range literature search has been conducted by using the keywords of “construction” or 

“engineering” plus terms relevant to the use of Human Computation such as “human computation”, 

“crowdsourcing”, “human-based computation”, “human-assisted computation”, “ubiquitous human computing”, 

“distributed thinking”. To the best knowledge of the authors, there is no single publication addressing the 

application of Human Computation in the construction engineering and management areas. Given the increased 

complexity of modern construction projects, and the deep uncertainties construction decision-makers are facing, 
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Human Computation provides a possible solution to a wide range of construction problems. Last, this study 

proposed a paradigm, framework and system that can be used to enhance knowledge transfer and organizational 

learning in construction organizations with conceptual estimating as an example. It has been identified by many 

literatures, such as (Chinowsky, Molenaar & Realph 2007), that the construction industry has an aging 

workforce, and the loss of corporate knowledge can be significantly greater since knowledge is not necessarily 

codified into standard practices. Previous conceptual estimating studies have been focused on the improving the 

accuracy of prediction models, but overlooked the necessity of preserving knowledge in the process of 

estimating. The proposed paradigm and system are expected to enable better organizational learning.  
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