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SUMMARY: The current design of infrastructure facilities is mainly driven by the application of guidelines, 
codes and international standards. The complex interpretation and geometric representation of those rules 
impedes the dynamic search for alternative solutions. Parallel to this, in recent years there has been an 
increasing tendency toward the adoption of 3D modeling solutions. Of particular benefit in the design of 
infrastructure facilities is the use of parametric modeling systems since they allow the definition of flexible 
models that can easily be adapted to satisfy changes in the boundary conditions. By defining dependencies and 
constraints, engineers are able to capture the underlying engineering knowledge in the parametric model. 
However, the design knowledge that can be defined by those instruments is limited to a reduced number of 
constraints and simple algebraic relations among parameters that are clearly insufficient to describe the 
complexity of engineering rules. To close this technological gap, this paper presents a novel knowledge-based 
engineering (KBE) approach that captures the design knowledge engineers apply in the interpretation and 
generation of infrastructure models based on rules specific for infrastructure facilities. To achieve this, distinct 
knowledge units named logic models capture the generation knowledge needed to convert the abstract 
information engineers must deal with into a corresponding parametric geometry model. In addition, this paper 
presents a methodology to integrate logic models with parametric design systems. To this end, logic models are 
introduced as a new set of domain-specific features responsible for the generation and management of the 
geometry, connecting the results with other part of the model by advanced procedural geometry dependencies. 
Finally, the proposed methodology is verified in a real case study for a suburban railway tunnel that is in the 
planning stage in the city of Munich, Germany. The paper concludes with a detailed discussion of the proposed 
approach and an outlook on future developments. 
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1.   INTRODUCTION 
The globalization of world economies has driven an increasing population migration from rural areas to large 
and megacities. Close spatial proximity promotes collaboration between producers, reduces transportation costs 
and increases opportunities in labour markets (Henderson, 2000). As a consequence of urban agglomeration, 
authorities have been forced to seek new efficient public transportation solutions that reduce air pollution and 
respond to increasing environmental awareness among the population. 

Parallel to this, technological advances in the construction of tunnels using Tunnel Boring Machines (TBM) has 
increased the number of tunnels in urban areas, allowing them to go deeper, become longer, and grow in 
diameter, and making subway transportation one of the most successful solutions (Guglielmetti et al., 2008). The 
design of a new subway infrastructure facility is, however, a challenging task where not only technical aspects 
such as soil conditions or tunnel diameters vary from project to project, but also the teams of engineers who 
work together (Dave and Koskela, 2009). 

Despite these demanding requirements, the frequent exchange of information among specialized teams during 
the design phase is still mainly based on drawings. This technology is not capable of representing the 
relationships between the information elements they display (Liu et al., 2013). Thus, designers and engineers 
must be aware of changes in the project and manually update the geometric model, in a time-consuming and 
error-prone process. 

In response to the limitations of drawing systems, one can observe a constantly increasing in the usage of 
parametric computer-aided design (CAD) systems in the last few years in the Architecture, Engineering and 
Construction (AEC) industry. Despite the model consistency and design acceleration that parametric CAD 
systems offer (CAMBASHI, 2009), the design process is still dominated by routine work. Engineers and experts 
invest 10% of their time on administrative duties, 70% on routine tasks and only 20% on effective work. This 
dilates the design process and impedes the creative searching of innovative solutions based on the what-if 
analysis (Cooper et al. 1999; Gardan and Gardan, 2003). 

Much of the knowledge that engineers apply in the design of subway infrastructure facilities is based on 
engineering rules. Understanding and implementing their abstract knowledge in a parametric CAD system is not 
a simple or straightforward task. One example of such rules is found in the design of the alignment of an 
infrastructure facility. Instead of working with the 3D spatial-curve of the alignment, engineers prefer to work 
with two 2D curve representations, the horizontal and the vertical alignments, which enable the handling of the 
complexity and the various constraints involved in alignment design in a direct manner. 

In short, in the design of an infrastructure facility, engineers invest up to 80% of their time in administrative and 
routine tasks. Much of this time is spent in the interpretation of engineering rules and their representation in a 
parametric 3D model. 

To close this technological gap, this paper presents a novel knowledge-based engineering (KBE) methodology 
based on discrete knowledge units, that we called logic models, and their integration within parametric CAD 
systems. In particular, the presented approach addresses the automation of infrastructure’s design by capturing 
engineering rules into a set of logic models that later are used to assist the engineer in the creation of the required 
parametric geometry. The time invested in repetitive work is reduced, allowing engineers and experts to 
concentrate on the conceptual design. 

Additionally, this paper presents a new methodology for interconnecting the generation capabilities of several 
logic models. This integration defines advanced procedural dependencies that enable parametric systems to 
consistently update the geometry when a modification is performed. 

The remainder of this paper is organized as follows: Section 2 discusses the state of the art regarding parametric 
CAD systems and generative KBE systems. Section 3 covers two points: Firstly, it presents a novel generative 
KBE approach that enables the encapsulation of the modeling process based on engineering best practice rules, 
and secondly, it discusses its integration into parametric CAD systems as a new set of construction operations. 
Section 4 provides a proof-of-concept of the described approach built on a real-world case study. Finally, 
Section 5 concludes the paper with a discussion of the contributions and limitations of the presented approach 
and proposes future developments. 
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2.   BACKGROUND/RELATED WORK 

2.1.   Parametric modeling 
The concepts underlying parametric CAD systems were developed in the mid 1980s (Roller 1991, Shah and 
Mäntylä 1995) and first implemented in a commercial product by Pro/ENGINEER in 1988 (PTC, 2014). 
Nowadays parametric CAD systems are the state-of-the-art in mechanical and aeronautical industries. Although 
the AEC industry is still mainly based on drawings, parametric systems have been successfully applied to model 
linear infrastructure facilities such as bridges and roadways (Obergriesser et al., 2011; Ji et al., 2013). 

One of the reasons for this success is the flexibility of parametric models to adapt themselves to changing 
boundary conditions. On the one hand, parametric CAD systems maintain the construction steps needed to re-
build the model instead of keeping only the final outcome geometry. On the other hand, parametric models 
define dependencies between these construction steps – also known as procedural or construction operations – 
that allow the user to modify a single operation while the system updates the complete geometry in a consistent 
manner. 

Parametric sketches and construction history 

Parametric models – also known as procedural or construction history models – implement a twofold approach 
based on parametric sketches and construction operations. In particular, 2D parametric sketches are flexibly 
defined by applying parametric dimensions and geometric constraints. Later on, based on these sketches, 3D 
volumes are created and modified through the consecutive application of construction operations such as 
extrusion, rotation or Boolean intersections of solids (Shah and Mäntylä, 1995; Monedero, 2000; Betting and 
Shah, 2001). 

Parametric sketches are defined by three different types of objects: geometry elements (e.g. points, lines and 
circles), geometric constraints and dimensional constraints. From the two types of constraints, geometric 
constraints apply geometrical relations between pairs of geometry elements that specify their relative position 
(Sitharam et al., 2006). Figure 1 depicts some of the geometric constraints typically available in major 
parametric CAD systems. 

 
Figure 1: Geometric constraints typically provided by parametric CAD systems 

Dimensional constraints, on the other hand, are used to restrict the size or the position of geometric elements. 
Furthermore, each dimension comprises a parameter that can be defined as a static value or as an algebraic 
equation where other parameters can be interrelated. Combined, these two types of constraints (geometric and 
dimensional) enable the generation of complex 2D designs that capture the design intent and provide a high 
degree of flexibility (Regli, et al., 2000; Chandrasegaran et al., 2013). Figure 2 and Figure 3 show two sketches 
where typical geometric and dimensional constraints have been applied. 

 
Figure 2: Example of geometric constraints applied to a 2D sketch 
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Figure 3: Example of dimensional constraints applied to a 2D sketch 

Construction operations provided by parametric CAD systems can be classified in three groups: 

•   Creation or sketch-based operations need at least one sketch to create a volume. Typical operations 
are: extrusion, rotation and sweep operations. In Figure 4 a tunnel section is created by means of a 
parametric sketch and an extrusion operation. 

•   Modification or non-sketch-based operations are applied directly to a volume and do not need a 
sketch to be performed. Typical operations are: fillet, chamfer and Boolean operators. 

•   Auxiliary geometry operations create additional reference geometry needed to complete the 
construction task. Typical auxiliary elements are: work-planes, work-axes and work-points. An example 
is depicted in Figure 5 where a work-plane is defined perpendicular to a 3D spline at a given point. 
Later on, this work-plane can be defined as the reference surface for a parametric sketch. 

 
Figure 4: (left) parametric sketch of a tunnel cross section and (right) 3D extruded tunnel 

Another important aspect that distinguishes parametric sketches from construction history in procedural models 
is the approach they use to solve the geometric problem. Parametric sketches analyze and solve the geometric 
constraint problem independently of the sequence its dimensions and constraints were introduced, in a 
methodology known as a variational approach. Differently, in the construction history the construction 
operations are sequentially retrieved, in a methodology known as procedural. (Anderl and Mendgen, 1998). 

The variational approach handles the geometry and constraints defined in a parametric sketch as topological 
elements, whose size and placement must be calculated depending on the values of their parameters (Hoffmann 
and Joan-Arinyo 2005; Bettig and Hoffmann, 2011). One simple example is a triangle sketch defined by three 
lines, three dimensions and the necessary geometrical constraints. Thus, for a single set of topological elements, 
the variational approach will return different geometric solutions depending of the value defined on their 
parameters. 

Parametric CAD systems use Geometric Constraint Solvers (GCS) to accomplish this task. Every time a 
topological modification in the sketch is introduced or one of the dimensions is updated, the GCS will start the 
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solving process. If the number of constraints (geometric and dimensional) equals the degree of freedom of the 
system, the GCS will return an updated size and placement for the different topological elements. However, if 
the system is defined with too many or insufficient constraints (over- or under-constraint) the GCS will not be 
able to find a solution and a warning message will be prompted. 

On the contrary, the procedural approach employed on the construction history generates the final model by 
sequentially applying construction operations to the previously evaluated geometry. Unlike the variational 
approach, changes in the sequence of operations may end in a different outcome geometry. 

Dependency relations in procedural models 

As mentioned before, one important characteristic of procedural models is the available construction history 
defined in the modeling process. In addition, within the creation of the construction history, relations between 
operations are automatically generated by the parametric CAD system in a transparent manner to the end user. 
These relations can be understood as dependencies and allow the parametric CAD system to properly update the 
related geometry when an operation is modified or deleted. 

A simple example of such dependencies can be found in the relation between an extrusion and a parametric 
sketch. Normally, the user begins with the definition of the sketch and after defining the height parameter, the 
CAD system will create the extruded volume and the dependency between both operations. This dependency has 
a clear direction – the extrusion is dependent on the parametric sketch, represented by a directed arc from the 
sketch to the extrusion (see Figure 5). This indicates that the two operations cannot be swapped in the 
construction history, as no extrusion can be created before its outlining geometry. 

 
Figure 5: Parametric tunnel (top) modelled by seven construction operations (left) and its dependency diagram 
(right) 

As a consequence, the geometric operations and their dependencies represent a directed acyclic graph (DAG) 
where the nodes are the construction operations and the edges the dependencies between them. Although the 
dependency diagram is unique for a given set of operations generating a desired geometric result, the sequence 
of executing operations is not necessarily fixed. Thus, the swapping of two operations is possible when they are 
consecutive and there is no dependency path between them. This property of the construction history can be seen 
in the example depicted in Figure 5, where there is no strict sequence of performing operations 5 and 6, and their 
execution can therefore be swapped without altering the resulting geometry. 

Additionally, parametric CAD systems can manage procedural models that define several disconnected bodies. 
A disconnected body is defined as a set of construction operations that do not have dependencies on any other 
operation of the construction history. The corresponding dependency graph becomes a disconnected subgraph. 
This behavior plays a key role in the design of infrastructure models because this methodology enables the 
division of the complete project into a set of submodels that can be treated independently (Jubierre & Borrmann, 
2013). 
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2.2.   Knowledge-based Engineering 
In the late 1980s, CAD systems became a standard tool in almost all industrial disciplines. At that time, CAD 
systems concentrated on simple geometry generation and manipulation rather than assisting the automatic 
generation of geometric models based on accumulated engineering knowledge (Regli et al. 2000, Chapman & 
Pinfold, 1999). 

To answer this technological problem, in the late 1980s big corporations such Airbus and Jaguar began to 
develop KBE methodologies (Tech-Clarity, 2012). Defined as the crossroad of fundamental technologies such as 
Artificial Intelligence (AI), computer-aided design (CAD) and object-oriented programing (OOP), KBE 
approaches capture and reuse the knowledge engineers apply in the design process, reducing the routine work 
and consequently increasing the time available to develop more creative solutions (Chapman & Pinfold 2001, 
Skarka, 2007). 

The basic architecture of KBE, as defined by La Rocca (2012), consist of three modules that analyze specific 
functional requirements such as size, cost, and performance, that process them using encapsulated knowledge 
contained in rules, codes, and design tables, and that return optimal engineering designs in the form of drawings 
or 3D models. 

 
Figure 6: Basic KBE architecture (La Rocca, 2012) 

Nowadays KBE systems have a well-established presence in mechanical and aeronautical industries. The interest 
in knowledge systems has increased so rapidly in the last two decades that it has been asserted that in the next 
decade KBE techniques will have the same importance that the CAD/CAM/CAE systems had in the 1990s 
(Howard, 1998).  

Though we are seeing a slower adoption of modern modelling technologies in the AEC sector, we expect that 
knowledge-based systems will play a very important role in the near future. Chandrasegaran et al. (2013) have 
gone as far as forecasting a knowledge revolution, where traditional CAD systems would move from a geometry-
based to a knowledge-based approach, coining the new term knowledge-aided design (KAD). 

Generative KBE methods 

Examining the different approaches for the implementation of KBE systems, Penoyer et al. (2000) categorized 
them by the solving method used and the type of user-interaction demanded. According to this classification, 
generative KBE approaches govern, without any other interaction, the creation or modification of the final 
geometry based on predefined constraints and user input information. This generative capability is of great 
importance in the design of subway infrastructures because we aim to separate the conceptual design from the 
tedious task of the geometry generation. 

The literature includes several attempts at providing generative capabilities to KBE systems. Already in the late 
1980s Adeli and Balasubramanyam (1988) described the first generative KBE system – known as design expert 
at that time – developed to calculate bridge trusses. Later, Gardan and Gardan (2003) reported an innovative 
approach, based on scripts, where the implementation and application tasks were split built on the expertise of 
the user – the meta description for the software engineer and the knowledge description for the CAD user. 
However, none of the previous examples linked KBE with parametric CAD systems. 
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One of the first approaches that linked a KBE system with a parametric CAD system was reported by Myung 
and Han (2001). Their approach presented a novel KBE methodology that was able to modify parametric 
assemblies based on the concepts of Design Unit, Functional Part and Functional Feature. While the concepts of 
design unit and functional part contained the knowledge that could manipulate assemblies and parts, the 
functional feature was the basic geometric unit proprietary to each CAD system. Although the functional 
features could be reused from one project to another, the main weakness of this approach remained the fact that 
each design unit or functional part was specific for a particular assembly or part and its knowledge could not be 
fully integrated until the model was finished. 

Using a similar parametric approach Skarka (2007) presented an evolved methodology based on the MOKA 
approach and implemented it in Dassault CATIA. Instead of defining design units and functional parts, Skarka 
makes use of the two MOKA models, i.e. the informal model and the formal or generative model (Brimble & 
Sellini, 2000; Verhagen et al., 2012). For the informal model, Skarka developed basic conceptual charts based on 
the ICARE forms, while the generative task was left to the CATIA utilities. Like with the limitations of Myung 
and Han’s method, the approach Skarka took needed a pre-modelled geometry to feed the generative model with 
geometry and parameters. 

None of the two previous approaches is really able to generate geometry from scratch and even though both can 
update a pre-designed or template model, the description of the knowledge was always a posteriori, namely, 
after modeling the reference model. 

In an attempt to advance the definition of the knowledge to the generation of the geometry, first van der Laan 
and van Tooren (2005) and later La Rocca (2011) developed a combined approach based on High Level 
Primitives (HLP) and Capability Modules (CM). Thus, the HLPs were defined as artefacts which contained the 
procedural knowledge specific for a single geometry and the CMs as artefacts that provide functionality to pre-
defined types of HLPs. To clarify this approach with an example, van der Laan and van Tooren implemented this 
methodology for the design and structural calculation of airplane movables related to the topology of the 
airplane. They developed a set of different movable configurations that were encapsulated in a set of HLPs and 
CMs. When done this way, the KBE system could change the movable topology just by exchanging the HLP 
applied. Although the definition of the CMs was standard and therefore possible to define a priori, the definition 
of the HLPs was strongly coupled to the output geometry and is thus of limited usage in a creative process. 

To increase the flexibility at the time that reducing the number of HLPs and CMs, Amadori et al. (2012) 
presented a derived approach based on the usage of High Level CAD templates (HLCt) that enable the 
instantiation and updating of a template model based on its boundary conditions. Even though this novel 
approach enables the modeling of a huge set of elements with a reduced amount of templates, the main 
shortcoming remains the definition of boundary conditions in a way that such templates can recognize and 
follow them. 

3.   LOGIC MODELS AND ADVANCED PROCEDURAL GEOMETRY 
DEPENDENCIES 

3.1.   Overview 
The design of infrastructure facilities is strongly governed by guidelines, codes and national standards. 
Understanding and implementing the underlying abstract knowledge in a CAD system is not a simple task. 
Moreover, experts should interpret the demands of such engineering rules, match them to their specific 
requirements, and express their decisions in an appropriate product model. In conclusion, the design task is time 
consuming and hampers the creative searching of innovative solutions based on the what-if analysis. 

One example of those engineering rules can be found in the description of the alignment of the infrastructure 
facility. As previously mentioned, the design of the alignment is a combination of 2D horizontal and vertical 
curves. For the horizontal alignment, which describes the curvature related to the XY-plane, engineers have to 
define parameters such as the minimal radius for a curve or the clothoid’s parameter for the connection curves, 
which will establish the cant and the “smoothness” of the driving in a track. Similarly, for the vertical alignment, 
engineers must decide the values of the parameters that rule the length of crest and sag curves or the slope 
between two kilometric points. Finally, the information of both curves must be combined before being 
represented in one or more 3D spatial-curves. 
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Figure 7: Alignment of an infrastructure as a combination of its horizontal and vertical alignment curves 

One essential benefit of modeling these engineering rules in a parametric CAD system is that the outcome 
geometry produced after applying the rule is enclosed in a few construction operations that can easily be 
recognized and isolated in the construction history. Furthermore, the interpretation of such engineering rules can 
be easily captured in a KBE system in a way that the user only needs to provide the input information and then 
leave the system to return a new or updated procedural geometry. 

Consequently, we propose a new generative KBE methodology based on logic models integrated in parametric 
CAD systems. In particular, each logic model encapsulates a different engineering rule and is able to interpret 
the input parameters and to generate a corresponding set of procedural operations. This approach also allows 
engineers and experts to modify complete sections of an infrastructure facility by the simple modification of one 
parameter, and to visualize the resulting geometry almost instantaneously.  

 
Figure 8: Rescue shaft attached to a subway tunnel in two different locations. The generation and modification 
of such geometries can easily be managed using logic models. 

3.2.   Logic model definition 
As discussed in section 2.2, one limitation of the existing generative KBE systems is the fact that the knowledge 
is incorporated in the design process after a first geometric model is created. This limitation forces engineers to 
create large libraries of template models, which may answer specific design issues. Although this limitation is 
difficult to overcome, the design based on engineering rules give us the possibility to create KBE structures in 
advance. 

Therefore, we define the concept of logic models as a component of the basic KBE architecture described by La 
Rocca (La Rocca, 2012), where the input is the abstract knowledge, the engineer must deal with, and the output 
the set of procedural operations needed by a parametric CAD system to model the outcome geometry. Figure 9 
shows the architecture defined by our approach.  
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Figure 9: Logic Model architecture defined as a component of La Rocca’s architecture. 

To achieve this goal, we implemented the concept of logic models in a three-layer structure that allows the 
representation of the engineering knowledge and the geometry generation algorithms in an abstract way, making 
it independent of a specific CAD system. Hence, the top layer acts as an interface to the user and contains the 
logic unit. This unit encloses the knowledge the user must provide in order to fully define the selected 
engineering rule. The second layer, named logic interpreter, translates this abstract knowledge into a set of 
“neutral” (CAD system independent) procedural operations that parametric systems cannot directly employ. 
Finally, the geometry layer receives the neutral information from the logic interpreter and converts it into a set of 
proprietary procedural operations specific for one parametric system. In the following we provide a formal 
description of every layer. 

 
Figure 10: Logic model layer architecture. 

Logic Unit (LU) 

The logic unit embodies the abstract knowledge the engineer must provide to fulfil the requirements of the 
engineering rule. This unit remains independent of the CAD system and its information can be captured by a 
graphical user interface or defined by an external tool. Thus, in our approach, the information can be submitted 
in two ways: (1) based on the definition of the knowledge contained in a built model or (2) by the direct 
application of a neutral data format. One example of this duality can be found in the alignment model, where the 
content of the logic unit can be introduced directly in the designed model or read from an LandXML instance 
file. 

The definition of our logic unit is close to the formal model described in the MOKA approach and which is 
usually modelled using the MOKA Modeling Language (MML) (Stokes 2001). Although MML was originally 
derived from the UML modeling language, we decided not to use it and to stick with the UML. On the one hand, 
this decision was based on the fact that we wanted to offer the possibility of developing logic units to any 
software expert without previous experience of system engineering process. On the other, the literature describes 
besides MML other process modeling languages – e.g. Alloy or SysML – that can be used instead (Bailey et al. 
2004, He 2006). 

For some widespread engineering rules, private companies and standardization organizations already developed 
neutral data models that enable the exchange of abstract knowledge, e.g. LandXML developed by Autodesk and 
OKSTRA developed by BASt, a German organization working for the Ministry of Transport (Rebolj et al. 2008, 
Schultze and Buhmann 2008). Although the majority of such models only exchange the outcome information, 
their content can be used as structure to capture and initialize the information of the logic model. 
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Logic Interpreter (LI) 

The main task of the logic interpreter is to translate the abstract knowledge represented by the logic unit into a 
set of neutral procedural operations. In the scope of our research we developed a neutral data model that supports 
the exchange of procedural geometries between parametric CAD systems and which was successfully validated 
by enabling the exchange between the two parametric CAD systems, Autodesk Inventor and Siemens NX 
(Borrmann et al., 2014). 

Although the standard input information for the interpreter is obtained from its logical unit, interpreters can also 
handle neutral procedural operations produced by other interpreters. This property enables the linking of several 
logic models and will be explained in the next section of this paper. 

Similar to the definition of the logic unit, logic interpreters are defined independent of the selected parametric 
system and therefore can be also executed externally. Consequently, its development can be realized by software 
engineers in any available programing language. 

Geometry Layer (GL) 

Unlike the previously described layers, the geometry layer is embedded in the parametric system. Implementing 
this layer as a CAD module enables the geometry layer to accomplish two main tasks: firstly, to convert the 
neutral procedural operations into a set of proprietary construction operations that a specific CAD system can 
handle, and secondly, to lock the generated operations in front of manual modification by the user and thereby to 
avoid inconsistencies in the model. 

The proprietary characteristic of the construction operations force logic models to implement different geometry 
layers depending on the parametric system selected. This need does not mean that a single logic model must 
embed all possible geometry layers. Usually engineers complete their design in a single parametric system and 
therefore only one geometry layer is needed. Only if a modification is required at the time to exchange the final 
model, the receiving CAD system will require a suitable geometry layer for its logic model. 

 
Figure 11: Integration of a Logic Model with two different CAD systems. The Logic Unit and the Logic 
Interpreter are independent of the CAD system selected while the Geometry Layer must be specifically defined 
for each system. Arrows shows the information exchange fluxes between layers. This figure does not imply the 
parallel or simultaneous use on two CAD systems. 

Due to the fact that several logic models may need to convert the same type of neutral construction operations, 
e.g. parametric sketches, swept volumes, and Boolean operations, the strategy of using a common geometry 
layer can reduce the implementation effort. The common geometry layer acts as an interface between the 
different logic models and the parametric system. Having all geometry layers concentrated in a single module 
allows developers to enhance and update operation converters in a faster and consistent way. 



 

ITcon Vol. 20 (2015), Jubierre & Borrmann, pg. 431 

3.3.   Linking of logic models for more complex modeling 
As the design of an infrastructure facility evolves, the knowledge needed to model it also becomes more 
complex. To avoid repetition in the knowledge’s definition and the need of developing logic models that 
describes all possible scenarios, several logic models can be horizontally connected to achieve more complex 
modeling. 

A simple example of two logic models that can be linked to achieve more complex modeling can be found in the 
alignment and axis curves of a ring tunnel. On the one hand, the logic model of the alignment contains the 
information needed to create a spatial-curve – described by the curve mid-way between the two rails – based on 
the horizontal and vertical alignments. On the other hand, the logic model responsible for the tunnel axis – used 
to guide the Tunnel Boring Machine (TBM) – creates a second spatial-curve that is shifted from the alignment 
curve by vertical and horizontal parameters. As the tunnel axis is based on the curve described by the alignment, 
both models can be linked to avoid redundancy and reduce the logic’s complexity. Hence, a modification in the 
alignment model will update the geometry of the alignment and the axis curve – even when the tunnel axis 
model remains unchanged. 

 
Figure 12: Integration of two Logic Models within one CAD system. The two logic models are linked through the 
logic interface layer to generate a more complex knowledge. 

This behavior is achieved by horizontal connectors, which allow logic models to communicate among each 
other. Horizontal connectors implement a one-to-many communication that notifies the changes and the logic 
content from the related model to the linked models. 

Horizontal connectors 

Although the workflow in the logic model is mainly top-down, from the logic unit to the geometry layer, several 
logic models can be connected horizontally to create a more complex modeling scenario. Horizontal connections 
are defined as a one-to-many relationship and communication is only granted between connectors of the same 
type. In addition, horizontal connections provide two different types of communication between logic models: 
active and passive connections. 

The active connection enables all linked models to be informed when an update arises in the related logic model. 
To implement this communication strategy we made use of the widely known observer-pattern (Gamma et al., 
1994). This pattern defines two main elements, known as subject and observer objects. The subject object sends 
out update notifications without knowing the receivers, while the observer object subscribes to the notifications 
broadcast by a subject object. After receiving a notification, the linked model can start an update process to 
collect the changes. The passive connection enables linked logic models to access the information contained in 
the related logic model at any time. This communication mainly takes place during the model’s initialization 
process when the logic interpreter is first executed and the neutral geometry created.  

Although horizontal connectors are defined in an abstract way, the information they exchange is exclusively 
defined for a specific logic model. In particular, the related model offers to any linked logic model access to its 
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logic unit and logic interpreter independently of its purpose. Subsequently, it is a task of the linked model to 
establish structures that can handle the information provided.  

To illustrate this behavior we have closer look on the connection between the alignment and the tunnel axis. In 
the creation stage, the logic model takes chance of the passive connection to request the content of the logic unit 
and the abstract construction operations created by the alignment logic unit. During the modeling workflow, each 
time the alignment is updated, the tunnel axis model receives a notification of this change and consequently 
starts an active connection to request only the modified information. 

 
Figure 13: Example of a simple logic model diagram. The source-connector (black) of the alignment model is 
communicating its changes with the sink-connector (grey) placed in the tunnel axis model. ‘T’ is the connectors’ 
name that distinguishes them from other connector types.  

To represent the connections among logic models we make use of a logic model diagram where the nodes are the 
logic models and the edges the horizontal connections between models. To differentiate horizontal connections 
we place two differently colored connectors at the extremes of the edges depending on whether they are source 
or sink connectors. This nomenclature follows the concepts of subject and observer objects. Finally, every 
connector is represented by one letter that identifies the information it exchanges. 

Due to the fact that each logic model pre-defines its own connections as soon as a new logic model is 
instantiated in the modeling process, the system will grant its communication. If the expected related model does 
not exist, the system will not allow the logic model to be initialized and an error will be generated. 

3.4.   Integration of logic models into parametric CAD systems 
The literature and practical experience shows that CAD users prefer to work with feature-systems than with the 
direct manipulation of surface geometries (Regli et al., 2000; Bidarra, 1999). In parametric CAD systems, the 
non-sketch-based procedural operations described in section 2.1 usually follow this feature approach, where 
users only introduce the semantic information of the geometry they want to create or modify while the CAD 
system manipulates the geometry and establishes the necessary dependencies. Figure 14 shows an example of a 
graphical user interface for the hole feature in Autodesk Inventor. In this feature interface, the user can define 
not only the placement and size of the hole, but also semantic information such as type of hole or angle of the 
drill point. 

 
Figure 14: Hole-feature interface in Autodesk Inventor 
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Following this feature methodology model, we propose to integrate our logic model approach as a new set of 
domain-specific features in parametric CAD systems. This integration has two main tasks: (1) the generation of 
procedural geometry, and (2) the definition of advanced procedural geometry dependencies between construction 
operations that guarantees model consistency. 

Geometry generation and consistency preservation through advanced procedural geometry dependencies 

The successfully adoption of a KBE methodology is conditional on its integration in the engineer’s workflow. 
This integration must additionally guarantee the consistency of the model enabling the coexistence of traditional 
and KBE geometry generation approaches. 

In our approach each logic model is treated as a new parametric feature responsible for the interface with the 
user and for the geometry generation. In particular, our feature interface is a visual representation of the logic 
unit where the user introduces the abstract knowledge of the engineering rule. Next, as the user confirms the 
information, the logic interpreter will generate the set of neutral construction operations that will be provided to 
the geometry layer. Finally, in the geometry layer the neutral construction operations are translated and 
introduced at the bottom of the construction history in the parametric system. As the logic model’s input is based 
either on abstract information or the result of other logic models, the dependency diagram of the existing model 
is not altered and its consistency guaranteed. In addition, as the construction steps generated by the logic model 
are native operations of the CAD system, every further modeling step based on those operations will be 
consistently updated by the dependencies of the parametric CAD system. 

However, this behavior is not achieved when two or more logic models are linked. As can be seen in the 
dependency diagram in Figure 15 – where a small parametric tunnel was modelled using the two previously 
mentioned alignment and tunnel axis models – the parametric CAD system does not recognize any dependency 
between the splines produced by the two logic models, and therefore the geometry can become inconsistent if the 
user modifies the alignment. 

 
Figure 15: Railway tunnel modelled combining logic models and traditional parametric operations. Its 
dependency diagram shows the advanced procedural geometry dependency (dashed arrow) generated by the 
logic model and the parametric dependencies (solid arrows) generated by the CAD system. 

To address this shortcoming we propose to extend the concept of horizontal connectors into a novel advanced 
procedural geometry dependency. Horizontal connectors, whose main purpose is to notify the update on a related 
logic model, can now be used as elements that trigger an update in the geometry. In this way, parametric 
dependencies guarantee consistency between procedural operations generated by CAD features, while the 
advanced procedural geometry dependencies keep consistency between geometries generated by logic models. 

4.   PROOF OF CONCEPT 
To prove the feasibility of our approach, we applied it for modeling a subway tunnel that is soon to be 
constructed in the city of Munich, Germany. This infrastructure project, called the Second main suburban track, 
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has been designed to increase the limited capacity the actual main track shows and to provide a faster connection 
between the two ends of the city (Deutsche Bahn AG 2015). 

The newly designed infrastructure facility is a nine-kilometer railway track with seven kilometers running 
underground in a twin-tunnel configuration. To avoid collisions with existing transportation networks the tunnels 
are planned 40 meters beneath the city’s surface. This requirement, together with the length of tunnel sections – 
only three stops are planned within the city center – will make necessary to construct nine rescue shafts that 
allow passengers to safely leave the tunnel if required. Finally, an underground turnout has been designed for a 
future possible south branch. Altogether, this infrastructure facility is a highly challenging and dynamic project 
and the perfect scenario for testing our approach. 

4.1.   Logic models applied to the design of subway tunnels 
For the case study we focused on the modeling of the tunnel section located between the stations Hauptbahnhof 
(city main station) and Marienhof that can be seen in Figure 16. Of the different engineering rules applied in the 
design of the proposed tunnel, we implemented four of them to test our approach. Although all four logic models 
are based on the same three-layer methodology already presented, each of them introduces slight differences to 
adapt them to their input and output requirements. 

 
Figure 16: Partial model of the new second main suburban track planned for the city of Munich. In the model 
are represented the main station, one section of the tunnel and the inner city. 

The first two models focus on the alignment and tunnel axis design, the third on the automatic generation of the 
ring used for the tunnel’s lining and the fourth is responsible for the optimized combination of rings to minimize 
deviation of the tunnel within its axis. In the following we explain them in detail: 

•   The Alignment Model (AM) is responsible for converting the alignment information in a set of 3D 
splines in the parametric CAD system. The alignment of an infrastructure facility represents the curve 
mid-way between the two rails and is usually built on two 2D curve representations known as 
horizontal and vertical alignments. While the horizontal alignment is defined by straight segments, arcs 
and connection curves, the vertical alignment is only described by straight lines and their interpolation 
curves that generate the crest and sag curves. In our implementation, we divided the outcome alignment 
curve into a set of 3D spline segments that are equivalent in number to the divisions of the horizontal 
alignment. This division is not fixed and can be established differently for other infrastructure projects. 
Finally, for this logic model we developed the logic interpreter in such a way that the user can load the 
logic information directly from an exchange data format. More specifically, we use the LandXML data 
model as input for the logic model. 
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Figure 17: Example of how the clearance space of the train is affected by shifting the tunnel axis. On the left the 
axis is not shifted and the clearance of the train is overlapping the construction tolerances of the tunnel. On the 
right, the axis has been shifted and both spaces do not overlap. 

•   The Tunnel Axis Model (TAM) represents the alignment’s shifted curve that guides the tunnel boring 
machine. By default the vertical shift parameter remains constant, while the horizontal parameter can 
differ for each curve. This shifting tries to minimize the tunnel’s diameter caused by the train running 
on a canted curve. For the implementation of its logic unit we modelled the engineering rule as a table 
that allows tunnel experts to introduce a different horizontal shift parameter for each curve. 

 
Figure 18: (left) UML diagram of the TAM’s logic unit and its connection to the alignment model. (right) 
Geometrical representation of the tunnel axis curve in relation to the alignment curve 

•   The Ring Design Model (RDM) makes it possible to update a parametric ring model based on the input 
introduced in its logic unit. This logic model covers the inherent aspects of the ring, namely, the number 
of segments, its length, and its conicity. From one side rings have one or two tapered faces. The 
distance from its tapered surface and a theoretical parallel face is known as conicity and allow rings to 
follow a curved tunnel axis. The value of the conicity and the length of the ring define the minimum 
curvature radius a tunnel based on such a ring can follow. From the other side the number of segments 
in a ring is related to the diameter of the tunnel and the size of the key-segment, which is mounted last 
and closes the ring. Although the minimum value of conicity can be determined based on the curvature 
of the tunnel axis, the logic model is developed managing the design inputs as fixed values defined by 
the engineer, updating the model accordingly.  
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Figure 19: (left) Graphical user interface developed to introduce the logic information of the RDM and TCM. 
(right) Section of the outcome tunnel limited to ten rings 

•   The Tunnel Configurator Model (TCM) generates an assembly model based on the tunnel axis, the 
output ring defined by the RDM, and the limitations specified by the tunnel boring machine (TBM). 
Those limitations are usually restriction rules on the feasible combination of pairs of rings. From one 
side, rings are made out of several ring-segments that enable only a discrete number of assembly 
positions. From the other side some TBM delimits a lock sector where the key-segment cannot be 
mounted. Therefore an optimization process is needed in the logic interpreter that minimizes the 
deviation of the polygonal axis created by the selected combination of rings from the theoretical tunnel 
axis curve. For our prototypical implementation, we make use of the algorithm described by Socher 
(2013), which provides reliable results for short tunnels. 

 
Figure 20: Tunnel section composed of five rings. The TCM creates an optimized combination of them to 
minimize the deviation between the theoretical and resulting polygonal tunnel axis curve 

Besides the logic models, we additionally developed three horizontal connectors and its corresponding advanced 
geometrical dependencies that keep the parametric model updated in advance of changes. The horizontal 
connectors are defined by a single letter and are developed as follows: 

•   The connector Track (T) links in our case study the alignment and the tunnel axis models. In addition 
to the update events of the active connection, the track connection makes the horizontal alignment 
description and neutral procedural operations available to any logic model that implements the sink-
plug.  

•   The connector Axis (A) links the tunnel axis and tunnel configurator models. An additional application 
of the axis connector – not covered in our case study – can link the tunnel axis with the ring design 
model. Thus, the ring’s conicity parameter, defined as a fixed value in the ring design, could be 
dynamically updated with the alignment. 

•   The connector Ring (R) links the ring design and tunnel configurator models. This connector 
communicates the ring parameters defined in the logic unit. 
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Figure 21: Instantiated logic model diagram and horizontal connections for the second main suburban tunnel in 
Munich 

Finally, the partition of the horizontal alignment created by the alignment model makes it possible to represent 
the infrastructure facility based on several submodels. This modeling strategy enables the independent 
manipulation of one section of the tunnel. To avoid inconsistencies due to local modifications of the alignment, 
the logic model introduces extra geometrical dependencies among the submodels’ splines that ensure the 
alignment’s continuity on changes. This modeling methodology based on advanced procedural geometry 
dependencies guarantees not only the preservation of consistency of the model through the detailing process, but 
also through equivalent operations located in different submodels, making the logic model’s approach more 
general and widely used. 

4.2.   Coupling logic models and parametric CAD systems on a real case study 

For our prototypical implementation on the basis of a parametric CAD system we chose to use the commercial 
software Autodesk Inventor. The Autodesk product is one of the most widespread parametric systems and 
provides a convenient API development environment based on the .NET framework. Consequently, the 
combination of applications developed using the .NET programming language with add-in extensions of the 
parametric system achieved using the API environment, allowed us to follow a two-stage implementation 
strategy. First, we developed, using the .NET framework, the logic units and logic interfaces, which were 
generated separately from the parametric system selected. Second, we made use of the API environment to 
develop the geometry layer, which accesses the parametric CAD system and converts the neutral procedural 
operations into a set of construction operations proprietary to the parametric system. 

 
Figure 22: Tunnel and rescue shaft of the second main suburban track planned for the city of Munich 

From a modeling point of view, the workflow begins with the definition of the alignment of the subway 
infrastructure. To perform this modeling step, the designer imports the alignment information directly from a 
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LandXML file. Once the alignment is converted into a set of 3D splines by the AM logic model, the definition of 
the tunnel axis can be introduced. To achieve this, the TAM provides a user interface where the value of the 
horizontal parameter can be defined separately for each curve. At this modeling point, the designer can carry on 
with the detailing process on the parametric system as usual, regardless of the logic model extension. Next, at the 
time of constructing the lining of the tunnel, the designer only needs to fill in the information requested by the 
user interface of the RDM and RCM, and the tunnel’s lining will be automatically generated. Finally, to avoid 
inconsistencies in the generated geometry, logic models lock the construction operations to prevent manual 
manipulation. However, the interfaces defined by each logic models can be always reopened and its abstract 
information revised to complete a rapid and consistent modification of the final geometry. 

4.3.   Measuring efficiency gains 
To find a metric that allows us to compare our approach with traditional modelling techniques is a difficult issue. 
First, there is a software implementation effort that due to the complexity in the development of a logic model an 
average engineer cannot alone undertake. We strongly believe that the development of new logic models must be 
the result of a collaboration between civil engineers and software developers.  

Once this software implementation is done, the CAD users can integrate logic models into to their workflow as 
they would do it with any other feature of the parametric CAD system. For testing how much time is saved 
during the design stage and with every design’s iteration we performed two experiments: Firstly, we selected 
from the presented case study a section of the tunnel containing 110 rings resulting in a total length of 300 
meters. The time required by the TCM logic model to generate the model was about 25 seconds, while the 
manual assembly took an advanced Autodesk Inventor user almost two hours (1h 57min). Secondly, we 
modified the alignment of this tunnel section implementing a standard what-if analysis: Specifically, we changed 
the radius of a curve from 200 meters to 300 meters. This modification implied the update of the rotation 
parameter of 80 tunnel rings. Undertaking these changes manually took the advanced Inventor modeler almost 
10 minutes (9 min 23 sec), while the logic model performed it almost instantaneously. 

In conclusion, the employment of logic models and parametric CAD systems enables us to model our complex 
case study in a short time and with little effort. Moreover, the resulting parametric model is extremely flexible, 
i.e. the modification of one parameter, as the curvature radius of a horizontal alignment segment, will 
consistently update the complete tunnel model. 

5.   CONCLUSIONS AND FUTURE WORK 
In this paper, we presented a new methodology that encapsulates the design knowledge engineers apply when 
constructing models of infrastructure facilities in order to fulfil technical demands, guidelines, codes or 
standards. The core concept of our approach is based on the definition of knowledge units denoted as logic 
models that encapsulate the generation knowledge needed to convert the abstract design rules engineers have to 
implement into a set of construction operations in a parametric CAD system. 

We introduced logic models in a three-layer architecture that allow different experts to develop different layers 
depending on their expertise. On the top layer, the logic unit encapsulates the abstract knowledge experts and 
designers need to provide to fulfill the engineering rule. In our approach, logic units are integrated in parametric 
CAD systems as a new set of domain-specific feature interfaces. The second layer is the logic interpreter which 
is responsible for interpreting the abstract knowledge and translating it into a set of neutral construction 
operations. Although, these operations cannot be directly employed by the parametric system, they can be easily 
exchanged and used by other logic models. On the bottom layer, the geometry layer is responsible for converting 
the neutral construction operations provided by the logic interpreter into a set of proprietary operations specific 
to each parametric system. 

In addition, several logic models can be interrelated to achieve more complex modeling results, reducing logic 
complexity and redundancy. This communication is achieved by the use of horizontal connectors, which inform 
the related logic models of any update arising on the referred model. This notification and update mechanism is 
introduced in the parametric CAD system as a novel advanced procedural geometry dependency. Consequently, 
construction operations created by two connected logic models, without any parametric dependencies among 
them, can still be updated, ensuring the consistency of the complete model. 

The presented approach is general and applicable to a wide range of large infrastructure facilities such as roads, 
bridges or tunnels. Our Logic Model’s architecture based on three layers enables the collaboration of different 
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experts in the development process. Later on, as our KBE methodology is totally integrated in the parametric 
CAD system, the end-user needs neither background knowledge in object-oriented programming nor advanced 
skills in parametric modeling, and gains flexibility in the modeling process for the what-if analysis. 

With the presented case study we demonstrated that our approach is feasible for designing real-world 
infrastructure facilities. In particular, we developed four logic models that enable us to create and modify, at a 
highly detailed level, a parametric tunnel section of the second main suburban track, which will soon be 
constructed in the city of Munich, Germany. We showed that even in its most detailed stage the tunnel can be 
modified in a flexible and consistent way, from its more basic definition, i.e. its alignment. 

After verifying our approach with the mentioned case study, we realize two main limitations. Firstly, the 
required software development task is highly demanding and requires the collaboration of civil engineers and 
software developers. Consequently, the implemented engineering rules must be carefully selected in order to 
balance the benefits gained with the effort created. Though the proposed common geometric layer clearly 
reduces this implementation effort, it may also create an additional burden when it has to be implementing in a 
multitude of CAD systems. Secondly, as soon as the engineering rule to be automated is getting closer to the 
finest level of abstraction, the logic interpreter needs to generate and manage larger sets of construction 
operations. This fact makes that complex geometry, such as the tunnel ring and the tunnel segments generated by 
the RDM, becomes rapidly too complex to be implemented in one single (monolithic) function. To solve this 
problem we created a simplified parametric model that the geometric layer can update with the results produced 
by the logic interface. This solution shows strong similarities with the High Level CAD templates (HLCt) 
proposed by Amadori et al. (2012). A future development of the logic model approach will thus be to explore the 
integration of HLCt in the logic interpreter layer for all those models based on complete geometries. This dual 
approach will reduce the implementation task and make the complete methodology more flexible. 

Another suggested future development is the integration of logic models with computational design software 
(Autodesk, 2015). Such systems have their roots in visual programming languages and enable the easy and fast 
design of models with repetitive patterns. In particular, visual languages create geometry based on visual 
diagrams where nodes denote variables or geometry operations, and edges represent dependencies between these 
variables or operations. One of the most important characteristics here is the ability to generate loops over the 
generated geometry. This fact, together with the division of infrastructure models into parametric submodels as 
reported by Jubierre & Borrmann (2013), makes us believe that an integration of logic models as new type of 
nodes is possible and can increase the potential of such visual modeling tools.  
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