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SUMMARY: The disruptive development of ICT technologies can be a decisive element in bringing the 

productivity of the construction sector closer to the highest performing ones, such as automotive. We base the 

proposed research on the improvement of existing tools with artificial intelligence techniques, with the goal of 

having a self-adaptive model regarding the objectives to achieve. So, we present a general framework based on 

the Swarm Simulation Modelling approach. Building objects, goals, constraints and design solutions will be 

represented as a Multi-Agents System able to communicate, interact and integrate over the existing BIM systems, 

ensuring a reactive and proactive behaviour. Finally, the model presents many interconnected intelligent agents, 

linked to building object. They can sense external ‘perturbations’ and react by re-organising their structure to 

satisfy imposed constraints. We can find the near optimal solution via the DCOP approach, autonomously. 
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1. INTRODUCTION  

Present-day buildings are complex systems that have to comply with an articulated framework of rules, 

requirements and codes of practice, ever more extensive and detailed (Bertelsen and Sacks, 2007). Complexity 

and quantity of sub-systems of different disciplines and professional skills often generate difficulties that turn 

the design process into a highly unpredictable workflow. Inconsistencies and errors affecting design activity 

lead in many cases to indeterminacy and uncertainty about characteristics, performances and behaviour of the 

final product (Singh et al., 2011). Quality and reliability of the design often generate a building process 

characterised by opposing choices, sudden stop-offs, restarts and rethinks often increment time required to get 

the final product, intensifying the always conflicting relationships between clients and contractors (Lu et al., 

2016). 

Assessed and esteemed time and costs comparison show the inefficiencies, error propagation and unexpected 

budget growth affecting the building sector. These aspects are typically better managed in other industrial 

sectors, like manufacturing (Barbosa et al., 2017). We can often find causes can be often in goals vagueness 

and uncertainties, considering that, in some circumstances, the final product of the building process results 

outdated because of the context of rapid changes (Fazli et al., 2014). 

Several reasons, can explain this situation such as the slow adoption of e-procurement systems combined with 

the low level of standardisation and prefabrication, and the often-inadequate workforce skill. This non-exciting 

picture, according to some influential research, till now continues to generate the constant and impressive 

decline of construction sector productivity, in contrast with the clear parallel growing demand (Barbosa et al., 

2017). Approximately 50% of the errors reported during the construction phases originate from design phases 

(Bentley and Building Research Establishment, 1981), where the involved stakeholders cannot govern the 

required information to assure the correct realisation of the design intent, represent one of the key factor to 

provide adequate quality and productivity levels to the building process (Otey, 2014). 

According to (Matthews et al., 2015; Vähä et al., 2013), a real improvement of the effectiveness and efficiency 

of the building process can be reached in through the evolution of the tools nowadays available. Identifying 

industrialisation of building processes and prefabrication as a 'hard' component of the building process, it is 
clear the need of 'soft' innovations in the support and decisional tools available to designers and stakeholders 

(De Grassi, 1984). Buildings can rightly be considered complex systems. (Baccarini, 1996). Although there is 

no accepted definition of complexity and how its value can be measured, it seems undeniable that buildings 

characterised by the traits that distinguish this systems. Dynamic nature, instability and continuous rapid and 

often radical changes in most cases unpredictable are undeniable characteristics of the building process (Bennet, 

1991). 

A new paradigm is therefore required to manage this kind of complexity, so we will consider buildings as 

systems that include many individual agents, represented by the conceptual entities involved in the 

representation's creation on which it bases the design process. The entities of the model interact with each other 

according to rules that organise, at a local level, the interaction among them. 

The interaction between building objects is mainly local as 'no system-wide set of rules determining the 

interaction. The only rules are the rules at the level of the agent itself' (Stacey, 2001).  

On this basis, an advanced ‘Swarm’ simulation prototype based on Distributed Artificial Intelligence (DAI) and 

Multi-Agent-Based Simulation (MABS) is proposed, because nowadays appear a suited way that may approach 

the complexity of building design and process management. (Bonabeau et al., 1999; Eberhart et al., 2001; 

Kennedy, 2006). 

A prior goal of the research is the improvement of the cognitive capabilities of Design Support tools, in terms 

of automation in defining the rules to impose to building objects, the communication among the model and 

Designer and, to provide stakeholders of tools capable to auto-organise building properties to satisfy determined 

goals. 

So, we make The proposed Swarm Simulation Model up of agents equipped with an inventory of possible 

actions related to the building entity represented. We can undertake action as an answer to some activation 

conditions or triggering conditions. The primary goal of the agents is to achieve their own goals even though 

agents operate to a higher-level goal. 

The development of this study implies the clarification of original ideas, to be analysed to better define the field 

of investigation. So, we structure the paper in original sections, ideally gathered into three macro-chapters: 
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1) clarification of the problem: there are encompassed section from 2 to 4. The relevant aspect of these parts 

are related to the different problem that always recurs into the design process like the choice of a better 

representation framework, the complexity of building sector, and the limits of most-common methodologies; 

2) methodology: in these sections, from 5 to 7, we describe the way used to apply the Swarm-simulation in the 

BIM environment, via the connection of data from different sources (BIM database, agent modelling 

repositories etc); 

3) further improvements and conclusion: the in-depth analysis on the Distributed Constraint Optimisation 

Problem (DCOP) is to be intended like the next step of the research, that will be focused on the application of 

statistical approaches to solve best-solution comparison. 

2. CREATIVITY AND STANDARDISATION 

The construction industry has traditionally suffered from a low level of productivity, linked to a variety of 

motivations of a predominantly organisational nature. Thus Several strategies have been adopted in the past to 

react to this negative trend, mainly trying to turn the building process in prefabricated components assembling 

activity, to emulate industrial processes that in the same period had achieved impressive productivity 

increments. But this effort doesn't seem to have had the expected impact on, despite the interest and investments 

made by important companies from other more productive industrial sectors (Kieran and Timberlake, 2004). 

However, similarities are merely similarities. The design approach used in manufacturing sectors such 

automotive is nowadays based on a wide range of sophisticated simulation and physical prototypes construction, 

testing and destruction to measure performance starting from the initial phases of design activity (Elverum and 

Welo, 2014). 

It carries production out in high-tech plants using advanced automation processes, which ensures high levels of 

productivity. The enormous investments that the automotive industry or, more generally, the manufacturing 

industry can mobilise for production plants, simulations, destructive and non-destructive tests, are justified by 

the resulting impressive mass production. Despite the massive research and development activity, time spent 

on design phases, important investments, simulations and tests on prototypes that the automotive industry can 

mobilise, millions of cars are recalled each year for more or less serious defects (Lucky and Takim, 2015). 
Today, the building process product is undoubtedly as complex as the products of the automotive industry or 

the typical industrial products. However, unlike in industrial production, the design activity in the building 

industry cannot be based on investments, design times, quantity and quality of prototypes to be tested and 

destroyed, highly industrialised production sites and, above all, mass production that makes similar approaches 

affordable.  

So, each building is a prototype, always different or, in other words, a unique object whose design and 

construction undoubtedly cannot trigger investments comparable to an industrial product or, even less, allows 

destructive tests to be carried out. So, construction sites are accordingly characterised by low investments, 

comparable only to a small fraction of the total cost of the result. The designer is also required to guarantee the 

building's operability for a lengthy period, compared with other manufacturing products. In the building sector, 

defects may appear after a very long time, often decades, so Life Cycle Assessment (LCA) is so becoming a 

crucial aspect in the building design and construction process, to prevent high costly reworking activities 

(Sharma et al., 2011). 

According to this approach, the simulation of a complex system does not require the knowledge, representation 

or formalisation of the complete system but only the exact definition of the agent's behaviour. Dimension and 

nature of problems that can be approachable with this system depend on the Agent number and type that the 

system comprises. We build the proposed swarm simulation system in a bottom-up way, adding different agents 

as the complexity of the system growth or the context change providing the scalability and flexibility level 

require addressing complex systems simulation. 

Swarm Simulation systems are based, intrinsically, on parallelism and a-synchronicity, suitable for distributing 

systems in which agents, regardless of their location, can simultaneously interact with the context (Chen et al., 

2018). 

In robotics today we are witnessing a real renaissance, based on distributed intelligence and situatedness. The 

new paradigm for intelligent robotics focuses on physical embodiment and the absence of the representation. 

According to (Brooks, 1991), the traditional approach of artificial intelligence was based on a Top-Down 

approach in which representation played a fundamental role. An intelligent agent (e.g. a robot) constructed a 
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representation based on the context. We based the choices adopted using the 'artificial' representation ignoring 

the actual world. 

Distributed intelligence systems, on the other hand, pursue a bottom-up approach, considering the agents located 

in the actual world (Situatedness) without the need to interact with abstract representations, but experimenting 

directly, through sensors (Embodiment), the world that surrounds them, reacting to the stimuli transmitted by 

the sensors. 

Agents' intelligence does not derive only from the computational engine but also from the ability to process the 

signals coming from the external world, (Intelligence) to interact with the actual world and its internal 

components. (Emergence). This approach may appear inappropriate to model complex systems comprising 

buildings in the process aimed to their construction because during the greatest part of the process the object 

does not exist and thus there is no context where an agent can be placed. 

In the development of the proposed prototype, an opposed approach is used. The agents will be located in the 

symbolic representation of the context or within the project environment. 

3. DESIGN ACTIVITY AND REPRESENTATION 

The design activity is aimed at the realisation of «artefacts that have desired properties and is carried out using a 

representation of things to be built» (Simon, 1988). The design activity represents probably one of the most studied 

activities to understand its very nature, characteristics, modalities under which is carried out and tools used to 

represent and communicate the design choices. 

It has developed countless studies and experiences starting from Zwicky's General Morphological Analysis 

(Zwicky, 1967), to create tools to handle the design encountering soon in the first computers the perfect 'toolbox' 

usable to build the envisaged instruments. Those experiences have always been characterised by two distinct and 

conflicting approaches: to the utopian visions of Yona Friedman and Nicholas Negroponte who theorised the so-

called ‘Architectural Machine’, was opposed the 'pragmatic' approach of Skidmore, Owings and Merrill (SOM) 

whose Building Optimisation Program could be called a 'Perfect Slave' (Llach, 2015). 

Negroponte refused Coons' idea of design as an iterative process in which a 'creative stage' and a 'mechanical stage' 

were alternated and it verified the design choices against performance metrics. Friedman and Negroponte, on the 

other hand, envisaged a cohabitation between two intelligent species in a symbiotic relationship, that would create 

an 'extended designer' in «an ecology of mutual complementation design, augmentations, and substitution, even 

imagining the substitution of the architect considered being an 'elitist middlemen» (Negroponte, 1973). 

The unifying trait of some experiences starting from Zwicky, Engelbart's augmented architect (Douglas C. 

Engelbart, 1962) to the most recent approaches (Novembri, Rossini, & Fioravanti, 2017) are, in contrast, aimed to 

the creation of a formal model building object to allow and support the design activity. Formal representation 

present, explicitly, in the above approaches used to develop, test and define satisfactory solutions representing «an 

acceptable compromise between divergent objectives» (Simon, 1996). 

Design solutions are considered as a state of the formal representation and used, by the designer and stakeholders, 

to verify the compliance to performance requirements and constraints at the basis of design activity. In this 

approach the role of representation in the building process and in problem-solving is crucial. Many unsolvable 

problems can be easily solved using a different representation. So, «that representation makes a difference is a 

long-familiar point. We all believe that arithmetic has become easier since Arabic numerals and place notation 

replaced Roman numerals, although I know of no theoretic treatment that explains why» (Simon, 1996).  

Starting from the ‘Zwicky Box’ and the design support system envisioned by Engelbart which may be considered 

one of the most brilliant definitions of today's BIM systems, to the sophisticated representation techniques inspired 

by Artificial Intelligence (AI) the representation have always had a crucial role in the research activity aimed at 

the creation of support systems for the design activity (Fioravanti, Novembri & Rossini, 2017). 

It carries the design activity out its tests alternating representation changes and transformations to moments against 

the adopted goals (Visser, 2010). It verifies design choices acceptability against needs, mandatory constraints and 

'rules of thumb' at the basis of the design activity. 

The designer, using his models, defines performances that the building objects to fulfil goals of the project activity, 

defining the following construction phases preconditions. The project therefore also represents a fundamental 
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communication tool among various actors in the process and should provide all the required information to verify 

the decisions made and to ensure the correct and harmonious development of the following phases of construction. 

4. REPRESENTATION: LIMITS AND DEVELOPMENTS 

The designer uses sketch, drawings, and digital models to describe and explore the proposed solutions, so to 

different stages of the process correspond different representations, that are considered most appropriate to show 

and analyse the relevant information for that stage (Hornecker, 2007). 

However, it is necessary to understand whether the representation that is made by the designer using the available 

tools develops, at the end of the process, into a project. Or, in other words, if the representation used and shared 

among involved stakeholders represents the ‘artefacts’, properties and performances required, to be correctly 

understood and spread to the various operators of the process. We should note it that the current representation 

systems do not appear this goal. Comprehensive prefiguration of the artefacts, Design Intent and Rationale must 

be got by reinterpreting the received information, considering that the designer original intentions rarely 

correspond to the original ones (Crilly, Good, Matravers, & Clarkson, 2008) (Crilly et al., 2008). 

There are several strategies to verify the feasibility of projects, such as Integrated Project Delivery - IPD integrated 

with BIM systems, or the benefits - in terms of financial management of the project - that can be recorded with 

methods such as Earned Value Management - EVM (Jones, 2014). These methodologies, although successful in 

high-level practice, are consistent with model analysis processes, but do not trigger 'self-generative', autonomous 

and critical processes within the model itself. This is, therefore, a strong limitation of the state-of-the art because 

it shows how the employable technologies are oriented towards 'ex-post' analysis regarding the possibility, given 

by the proposed methodology, of obtaining an overall reactivity of the model, in an autonomous way, regarding 

the goal of achieving imposed quality standards. 

So, although the BIM systems are equipped with reactive capabilities, these are strictly limited to reporting the 

violation of imposed constraints, mainly geometric. The lack of semantic recognizability of the current systems, 

in fact, does not make it possible to recognise, directly in the modelling areas, the violation of rules related to the 

achievement of objectives, or rules that are not strictly geometric. 

It is therefore clear that current design tools cannot completely gain knowledge and information involved in a 

project. The relationship between the knowledge owned, and the tools used to support it has been analysed for a 

long time. According to Perkins, (1993) it appears natural to consider the notes taken by a student because of a 

future use leads to consider the knowledge owned as distributed between the student himself and his notes, 

laboriously catalogued and organised. We must move from 'Person-Solo’ to 'Person-Plus', with his tools and the 

catalogued and organised knowledge living outside.  

By analogy, it does not seem possible to consider a 'Designer-Solo' but rather, in order to share the complete 

design, seems more reasonable to consider the complex made up by the designer and his knowledge. These are to 

be integrated and completed by the set of documentation, regulations and experiences gained in previously 

developed projects. 

The design activity carried out by the 'Designer-Solo' in fact uses an ecosystem of tools aimed at adopted choice, 

representation, check and long-term storage. The complex made up by the designer 'internal' knowledge and 

'external' knowledge can be defined, by analogy, as 'Designer-Plus'. 

This intimate union and collaboration between designer and the tools used in architectural design immediately 

appeared one possibility offered by first computers, that represented a revolutionary new tool (Singh et al., 2011). 

The intimate connection between computer and designer that originally appeared to conflict with the original vision 

of Artificial Intelligence aimed to the substitution of the designer, appears today as one of the most promising 

ways and substantially refers, perhaps with great delay, to Engelbart’s visionary concept of the 'Augmented 

Architect'. Several experiences have been historically carried out according to this approach to develop design 

support tools to enhance the designer's capabilities (Carrara, Kalay, & Novembri, 1994). So, if it doesn't exist a 

'Designer Solo', in the same way, it does not seem possible the existence of a 'Design Solo'. 

The attempt to encompass in the project the so-called 'Design Intent' and 'Design Rationale' (Regli, Hu, Atwood, 

& Sun, 2000) answers to this consciousness and, emphasise the design tools inadequacy as designer solution 
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communication vehicle to share the design information, govern the construction process and improve the 

collaboration among involved stakeholders. Thus, it seems impossible to take into consideration a project without 

dealing with the part of the designer knowledge strictly related to it, to elaborate and share the envisaged solutions. 

Available support systems, often sophisticated, are nowadays mainly based on parametric modelling. These are 

gradually replacing the old one, deeply changing the building objects representation methods and, increasing the 

semantic level of the representation (Sacks et al., 2017). Building objects can now be recognized by current BIM 

systems as logical entities with attributes, default values and, limited, with some reactive abilities to the 

modification introduced by the Designer. 

The geometric modelling approach still appears yet to be most widely used. This approach emphasises the 

paradoxical lack of even the smallest levels of common-sense knowledge as also sophisticated tools still allow 

creating unreasonable objects impairing information exchange and sharing (Bloch & Sacks, 2018). To overcome 

these difficulties, we propose a so-defined Swarm Modelling Approach, to create a pro-active tool to support 

design activity and to represent, manage and transmit the knowledge needed for a correct interpretation of contents 

in the building process. 

5. SWARM SIMULATION MODELLING APPROACH 

Distributed intelligence and multi-agent systems appear today to be a promising approach adaptable to attain the 

level of accuracy and ‘intelligence’ of design support tools previously envisaged. The success achieved by this 

approach also in buildings (Minar, Burkhart, Langton, & Askenazi, 1996) has generated significant interest due to 

the ability to simulate complex systems combined with top levels of modularity, scalability and flexibility.  

Physical embodiment and the absence of the representation appears to be one of the major reasons for this success. 

In contrast with the traditional approach of Artificial Intelligence, based on the representation of the context where 

agents live and work, the representation of the context is no longer necessary. Agents react to external signals 

coming from the context where they are situated. Reality is experienced and changed by Agents respectively 

through sensors and actuators (Drogoul, Vanbergue, & Meurisse, 2002). In this way, Agents perceive the reality 

interacting with each other and to the context, possibly changing it. 

This approach may seem unsuitable to model building object's properties and behaviour not in the context, because, 

during the design activity, they still don't exist. Agents are symbolic entities embodied in a symbolic computational 

system interacting with the external world sending and receiving messages with other Agents, experimenting and 

changing the context using their sensors and actuators. It creates the absence of representation from an informatics 

point of view. Interaction with the environment does not require to agents to build a symbolic representation of 

the surrounding context because it's unnecessary, and the Agent doesn't know if the context in which they embody 

it it's real. The knowledge of the world owned by the agent derives only from sensors, which receive and send 

signals interacting with a world that can be symbolic and in ongoing development. 

Based on this principle, we adopt an approach that could be called recursive. The almost-detailed abstract and 

symbolic representation of the context in the world where agents are situated, act, interact, send and receive 

messages from sensors and where, through actuators, take actions aimed to change the context in which they live 

(Abar, Theodoropoulos, Lemarinier, & O’Hare, 2017). 

BIM models, in this sense, make up a 'real-symbolic' world - the BIM World, where the ‘building digital twin’ is 

located, representing an ideal context in which it can embody agents. Every entity of the BIM model are linked to 

an agent, that we call 'mirror agent' that complement and enhance the entities structure with the ability to interact 

with other BIM entities, change the model to cooperate with the design activity (Novembri, Rossini, & Fioravanti, 

2017). 

When the Agents in the 'BIM World' interact with each other applying a Swarm behaviour, the simulative Agent-

model is created. Agents dynamically react to inputs originating by the designer and, with continuous monitoring 

involving the fulfilment of the objectives of all agents verifying the proposed solutions, suggest or directly 

undertaking actions required to comply with design goals and rules, using the designer's choices as a basis to 

optimisation processes activation (Rogalska, Bożejko, & Hejducki, 2008), aimed to improve the adopted choices 

to comply, with the highest degree, with goals. 
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6. HYBRID AGENT PARADIGM 

The growing interest in agent-based simulation systems nowadays there is not a universally accepted definition of 

the term Agent. Despite the wide popularity this system is achieving, structure and characteristics that Agents must 

have aren't widely codified. 

The term Agent is normally used to refer to an abstraction, an idea or a concept that can represent any element 

whatever of an identifiable complex system like a BIM model. Agents are capable of autonomous behaviour 

taking, autonomous actions and can autonomously decide the most appropriate action to adopt to achieve the 

objectives for which they were designed (Van der Hoek & Wooldridge, 2008). An agent is normally equipped 

with a repertoire of actions that can be undertaken as a function of some conditions of activation. The primary goal 

of an agent is to achieve the set aim, even though agents operate in the interests of a user. The behaviour of the 

system derives from the behaviour and interaction of the community agents (Agency). Agents can cooperate with 

other agents to achieve their goals and are located in a context in this case represented by the BIM Model (Rossini, 

Novembri, & Fioravanti, 2017). An agent does not, however, have full control over the environment in which it is 

situated but can influence it. The same action activated twice in apparently identical conditions, can produce 

different results or even fail because Agent-based systems must allow that failure can be a possibility. 

Different typologies of agents have been proposed to get desired autonomy and interaction levels varying over a 

wide spectrum, ranging from a purely reactive behaviour characterised by a reaction to stimuli with no reasoning 

to a purely deliberative behaviour, where the reaction results from a complex reasoning process. The so-called 

‘Hybrid Agents structure’, that can provide both behaviours, appears to be the most suitable structure to adopt in 

the Swarm Model definition (Wooldridge, 2009), because allow both merely reactive than complex reaction, also 

toward the same input. We design hybrid Agents to attain an intermediate behaviour between the two extremes 

and represent one of the most promising Agent systems, based on 'Subsumption Architecture' (R. Brooks, 1986). 

The lower levels of the structure are purely reactive (i.e. ‘switch behaviour’) and automatically react to input from 

the context, whilst higher levels tend to 'proactivity', and can inhibit lower levels preventing immediate reactions. 

The subsumption architecture creates in this way a multilevel system (fig. 1) in which the higher layers use the 

lower-level competencies (Rodney Allen Brooks, 1999). 

Agents are equipped with a utility function allowing the self-assessment of performing the actions, concerning a 

goal represented by the attainment of preservation of the desired state: an agent may, however, have as a goal the 

achievement and maintenance of an aim, also after it has been achieved. Regarding the Agent theoretical definition, 

there is no universally accepted software architecture or software development approach for multi-agent systems 

implementation. A distinction must be made between different approaches that can be used for this aim: Multi-

agent systems differ from Object-Oriented (OO) programming (McCarthy & Levin, 1965) and distributed or 

concurrent software systems (Stojcev, 2000) which they are often inappropriately identified. In the OO approach 

Object are typically defined in terms of given methods and attributes, whereas an agent instead is defined in terms 

of the behaviour that this can express. The distributed software or competitive systems are characterised by pre-

set synchronisation and coordination protocols whereas, in Multi-agent systems, the interaction between agents is 

autonomously established during the simulation. Object-Oriented and Agent paradigms share however many 

aspects, even if the two approaches are conceptually different. Since decades, Object-Oriented (OO) is a very 

popular programming paradigm (Booch, 1980). Objects are software entities that encapsulate some state and 

perform actions and methods over their internal state. This paradigm implements encapsulation, composition, 

inheritance, delegation and message passing. Objects remain passive and are activated only when a message 

processing in needed. So, the object existing in the system is irrelevant, unless some messages are sent to it. To 

communicate with an Object by sending a message, you know that the Object exists in the system. 

The Actors paradigm was defined by Carl Hewitt (Hewitt, Bishop, & Steiger, 1973), and has been made popular 

by the Erlang language used at Ericsson, with significant success to build highly concurrent and reliable 

Communication system (Armstrong, 1996). Actors and Agents entities differ in some  aspects. The Actor-based is 

a programming approach, whereas Agent-based is a modelling approach. So, The Actor Model represents a way 

to implement a Hybrid Actor-Agent Model. To this aim, the AKKA.net toolkit has been used. (Roestenburg, 

Bakker, & Williams, 2016). 

Actors paradigm is similar to OO as this approach implements the same concepts but, in this case, Actors have 

control over their internal state. Actors like Objects communicate to each other exchanging messages, although in 
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this case is not strictly necessary to know if the Actor exists since messages can be broadcasted. Once an Actor 

receives a message, it may send messages, create new actors and change its local state (Ricci, 2016). Actors process 

messages are taken from a mailbox in a sequential way: to complete a task, actors can store information locally, 

waiting for other messages to complete the information needed to accomplish the task. The key difference between 

Actors and Object in the OO paradigm is autonomy of entities involved. In an OO system, an object exposes 

methods and attributes to other objects that can invoke the method itself, whereas Actors are software elements 

that autonomously decide, based on the received messages, to activate procedures and methods. In the Actor 

paradigm, the Actor is the fundamental element of a concurrent computation model used to develop parallel and 

distributed systems.  

 

Figure 1. A simplification of the hierarchical scheme of ‘Subsumption architecture’. 

7. PROPOSED SYSTEM STRUCTURE 

AS-BIM (Agent Swarm Building Information Modelling), is a general support system designed to interact with 

BIM tools to create a complex, dynamic, symbolic, and proactive representation of building objects aimed to 

support design activities. AS-BIM comprises a BIM system interlaced with Multi-Agent System (MAS). 

The MAS system is composed by Agents in the BIM model, to integrate and enhance the BIM building objects 

representation providing them with the interaction, reactivity and proactivity abilities (Park et al., 2013) 

characteristic of multi-agent systems. 

Agents living inside MAS interact and are closely interlinked with BIM objects through the Advanced 

Programming Interface (API) which represents, borrowing a typical robotic terminology, Agents sensors and 

actuators used to interact with the BIM system (fig. 2). 

Provide to BIM objects, the Agent's typical behaviour represents a complex task, because of the need to coordinate 

simultaneous interaction between Designer, BIM system itself and external MAS. The API of existing BIM 

systems impose several severe restrictions. The autonomous activity of an external MAS aimed to react in real-

time to the designer choices, undertake action in order BIM model modification and integration is so normally 

strictly disciplined since concurrent access to the BIM model data can easily generate race condition conflicts. 

(Gharachorloo et al., 1992). To guarantee the more compliant behaviour, the system works hence in distinct ways: 

the easiest consists in satisfying any request raised by the designer via the interface of the BIM-tool system, that 

waits for the task completion. Here, it establishes a Synchronous mode of interaction. 

However, the designer does not use continuously the system's resources. The BIM system thus alternates moments 

when it is busy responding to the user and moments when it is in a state known as IDLE. Tasks running on a 

computer typically occupy only a part of processing time on the CPU. When the CPU has completed all tasks is 

the IDLE state, other tasks can use that. When the MAS, that run concurrently and asynchronously with the BIM 

system, needs to interact with the BIM World, raises a request that it will append them to the queue of the tasks to 

be undertaken among Designer's tasks request. So, whenever is possible, it passes control to the Agents interested 

to perform transactions in BIM context. This solution allows to avoid race conditions between Designer and Agents 

of the MAS and attains an efficient asynchronous partnership. It should be noted that a MAS is intrinsically 

transparent to the Network, in how an Agent can live anywhere in any computational resource connected to the 

Network, and thus can have access to high computational power. 

Agents of MAS and BIM objects are only linked with a counterpart called Mirror Agent, that replicates part of the 

information placced in the BIM system integrated with those necessary to provide the expected behaviour. Families 
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and instances of the BIM System are linked to the actors by the Unique_ID identifier. (Autodesk Developer Guide, 

2017).  

Actor in this manner can represent non-editable behaviour of family and instances in the BIM system, acting as a 

cache memory of the Actor system too. When the required information is not available, Agents try to find it in the 

BIM system: if got, it is duplicated in the Agent memory. So, multiple access to the same information does not, 

therefore, require continuous interaction with the BIM system. If it changes the BIM object from which the 

information was derived, the system will refresh data in the Agents memory to avoid inconsistency between Agents 

and BIM systems. 

This digital tool interacts with the BIM system and the designer: it carries these tasks out by the BIM Worker 

Agent (BWA) and the User Interface Agent (UIA) respectively. The BWA, located into the BIM API, perform the 

transactions requested by the agents in the BIM system, while the UIA performs a similar task interacting with the 

user, showing messages received from the Agents and translating the user's actions into messages for the MAS. 

The Request Handler Agent (RHA) serialises the requests of the agents managing the queue of events raised to the 

BIM System. 

 

Figure 2. AS-BIM conceptual framework, with evidence on different ways in which a message become an agent, 

that interact with the whole system. 

Each message sent by the Agents concerning information request or BIM model modification is interpreted and 

inserted in the system queue waiting to be satisfied. BIM Event Manager (BEM) is a key element of the system. 

It subscribes and intercepts the events of interest raised by the BIM system, sending them to the Master Agent. 

The typology of events intercepted by BEM will depend on the design phase and the user goals. Master Agent 

(MA) starts the MAS system and creates Agents using existing prototypes, connecting them through UniqueID to 

the respective BIM objects (fig. 3). Once the Agents system has been created, the BEM remains in 'listening mode' 

of BEM messages. 

Two distinct situations can occur when a message is received: if the message is of general interest, it is broadcasted 

to all agents; otherwise, messages are of interest only for a specific Agent and specifically sent to them. Agents 

interested or the specific agent involved by the message respond activating them to its repertoire of actions sending 

messages and interacting with the other agents of the system and the user, requiring eventually to operate in the 

BIM System through the Request Handler and BIM Worker Agent. 
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8. THE ANSWER IS IN THE QUESTION: DISTRIBUTED CONSTRAINT 
OPTIMISATION PROBLEMS (DCOP) 

The Swarm-Model goal is the development of an integrated representation of Building Objects, design goals 

and solutions that develop during the design activity to the last solution (Carrara et al., 1994). Design goals 

representation makes up a key element to ensure design choices, evaluation or distance quantification from 

optimal values.  

Goals are strictly related to object representation as expected, desired and allowed values. They can be specified 

only for attributes explicitly represented or the existence of which is derivable. To this aim, the representation 

of Goals has been objectively and unambiguously defined as a set of Design Requirements, that represent 

constraints consisting as a set of desired or mandatory values defined for Objects Attributes. Performances are 

defined by the values achieved against the attributes affected by Design Requirements. The attribute set affected 

by a Design Requirement is the scope of itself: requirements may be added, edited, and deleted during the design 

process, as it develops towards a more detailed representation. 

A direct correspondence thus subsists between characteristics and functions explicitly represented, and it to 

verify those to. Goals, through design requirements, represent a means to backtrack from characteristic to the 

original request. In this context, generalized values may be assumed by an attribute such as desired or 

mandatory. 

 

Figure 3. the connection among BIM object, that encompasses information and properties linked to the 

instance’s geometry, and the Action-Message-Agent system. 

Procedures that can obtain computable values. To predict and compare performances achieved by the emerging 

design solutions against the stated goals, object attributes will be Variables and Design Requirements as Agents. 

Optimal or near optimal solution suggested to the designer and choices we can thus treat check against 

constraints as a Distributed Constraint Optimisation problems (DCOP), (Petcu and Faltings, 2005). It represents 

attributes affected by design requirements as variables. It assigns each variable to an Object Mirror Agent, 

constraint affects whose attribute or to a Constraint Agent depending on the constraint typology as shown below. 

The Object Mirror or Constraint Agent control attributes, values, defining acceptable and invalid ones. 

However, attributes Values are not independent so agents must coordinate their choices to determine workable 
solutions. We have considered two types of constraints defined as Hard Constraints and Soft Constraints. 

It defines a Hard constraint as a request for a joint attribution to a set of variables of values belonging to an 

allowable domain. It is not always possible to assign compatible values to all variables, but it is often necessary 

to adopt not satisfying solutions violating some constraint minimising, as much as possible, the distance from 

a complete solution. If compliance with constraints is mandatory, a Constraint Satisfaction Problem (CSP) 

occurs, and it defines related constraints as ‘hard’ constraints. The aim of CSP is to find an assignment for all 

the variables that satisfies all constraints. This problem occurs when the feasibility of solutions needs to be 

tested to identify absurd and unrealistic solutions. Hard constraints are usually handled and hosted in Object 

Mirror Agents, to maintain Objects' attribute values within the admissible values, that cannot be derogated 

without violating the model's coherence. 
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Situations where constraints of compliance is not mandatory and the constraint violation leads however to quite 

appreciated valid solutions, the problem is characterised by so-called ‘Soft Constraints’. In these cases, we 

normally define a utility function for mapping all joint variable attributions to a scale of values which represents 

the cost of a violation of a constraint. 

In these cases a CSP occurs (Carrara and Novembri, 1986), that is typical for constraints derived from design 

goals, which can be satisfied at different levels identifying so-called satisfying solutions (Simon, 1988). We 

should note it to this regard that a CSP can be considered as a Constraint Optimisation Problem (COP) where 

the utility function, in case of non-compliance, produce a relevant growth of costs in terms of computational 

time. 

They will achieve design solution definition and proactive behavior both basing on Distributed Constraint 

Optimisation (DCOP) approach, leading the problem to the search of a variable assignment that satisfies all 

constraints and that optimises a global utility function, minimising its cost. 

Formally a DCOP problem (Fioretto et al., 2014) is represented by a tuple P=〈A,X,D,F,α〉 where: 

− A = { a1… an } is a finite set of agents. 

− X = { x1… xm } is a finite set of variables, with n ≥ m. 

− D = { D1… Dm } is a set of finite domains for the variables in X, where Di represents the domain of 

the variable X1. 

− F = { F1… Fk } is a finite set of cost functions, with (1), where xi ⊆ X is the set of variables 

relevant to fi usually defined as the scope of fi. 

𝑓𝑖 ∶  𝑋𝑥𝑖𝑒𝑋𝑖𝐷𝑗  →  ℝ+ ∪  {⊥} (1) 

The number of variables in its scope is the value of a cost function. Each cost function fi represents a factor in 

a global aim cost function fi. Cost function represent the constraints of the problem but may be regarded as 

utility or reward functions. 

− α : X → A  is a total and onto function, from variables to agents, which assigns the control of 

each variable x 𝑋 ∈ 𝑋  to an agent α(x). 

− α(fi) will denote the set of agents whose variables are involved in the scope of fi where 

 𝛼 (𝑓𝑖) =  {𝛼(𝑥)|𝑥 ∈  𝑋𝑖}. 

An assignment of a valid value for a subset of variables of X represent a partial assignment, where the 

assignment itself is complete if for each variable a valid assignment is given. For an assignment σ a cost function 

fi is deemed satisfied by σ if 𝑓𝑖  (𝜎𝑋𝑖)  ≠ ⊥. A complete assignment is a solution of a DCOP if it satisfies all its 

cost functions. The goal in a DCOP is to find a solution that minimises or maximise the total cost expressed by 

its cost functions (2): 

𝜎∗ ≔ 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜎∈𝛴

𝐹𝑔(𝜎) = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝜎∈𝛴

∑ 𝑓𝑖𝑓𝑖∈𝐹 (𝜎𝑋𝑖) (2) 

Where Σ is the set of all viable solutions. So, given an agent  𝑎𝑖 , 𝐿𝑎𝑖
= {𝑥𝑗 ∈ 𝑋|𝛼(𝑥𝑖) =  𝑎𝑖} denotes the set of 

variables controlled by agent ai or its local variables, and (3) denotes the set of its neighbouring agents.  

𝑁𝑎𝑖
=  {𝑎′𝑖 ∈ 𝐴|𝑎𝑖  ≠  𝑎′

𝑖 ,∃ 𝑓𝑖 ∈ 𝐹, 𝑥𝛾 , 𝑥𝜍 , ∈  𝑥𝑗 , 𝛼(𝑥𝛾) =  𝑎𝑖 ∧  𝛼(𝑥𝜍) = 𝑎′𝑖   } (3) 

A cost function  fi   is said to be hard if ∀𝜎 ∈ Σ we have that 𝑓𝑖(𝜎𝑋𝑖) ∈  {0, ⊥}. Otherwise, the cost function is 

said to be soft. Constraints can be defined with regarding subset of variables. 

Each agent operates asynchronously and knows only about constraints in which they involve it. Solution 

algorithms have been defined mainly using binary constraint graph using Boolean variables that can only 

assume True/False values.  

The figure (fig. 4) shows a simple example of a Constraint Graph with four Variables 𝑉 =  {𝑥1, 𝑥2, 𝑥3, 𝑥4} with 

validity domain   𝐷 =  {0, 1} and four constraints with their cost functions 𝑓 =  (𝑑𝑖 , 𝑑𝑖 , ) whose values are 

represented in the table. Two variables 𝑥I, 𝑥j are neighbours if a constraint exists between them.It controls each 

variablemple by an Agent which can handle multiple variables too. 

Real-World applications require that global aim functions return a range of allowable values not limited to the 

Boolean True/False and the constraint binary nature imposed by the algorithm may appear unrealistic. It may 

be proved however that general constraint graph may be mapped to a binary constraint network based on 

Boolean True/False variables using additional variables and constraints (Bacchus and Van Beek, 1998). 
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Figure 4. Constraint Graph with for variables. 

Any DCOP problem can be automatically converted to Binary Constraints formulation using basically two 

different methodologies called respectively dual and hidden transformations. Dual Transformation derives from 

studies carried out on relational databases and was originally introduced by Dechter and Pearl (Peirce, 1931; 

Rossi et al., 1990). 

According with Bacchus (Bacchus et al., 2002), during the dual transformation, new variables representing the 

original problem constraints are defined. As shown in (figure 5) the new variables c1, c2, c3, c4 are created. The 

constraint between 𝑐1 (𝐶1 (𝑥1, 𝑥3, 𝑥6)) and 𝑐1  (𝐶2 (𝑥1, 𝑥3, 𝑥4)) establishes that the tuple 𝑐1{← (0,0,1)} is 

incompatible with the tuple 𝑐2{← (0,1,0)} to 𝑥3 variable, as are assigned two conflicting values. Among the 

dual variables that share original variables is so defined a so-called dual constraint, that prevents solutions with 

not consistent values of the variables shared among constraints. 

 

Figure 5. An example of dual transformation. A problem with four constraints based on three variables is 

transformed into a problem with four dual constraints. 

In the hidden transformation, in addition to system and dual variables defined analogously to the dual 

transformation, ‘Hidden constraint’ defined between dual variables and each of the original variables in the 

constraint are added. These new variables guarantee that the original variable's value is the same, as the value 

assigned by the dual variables. The problem thus becomes characterised by ten variables, six original and four 

additional (fig. 6). 

 

Figure 6. An example of dual transformation. A problem with four constraints based on three variables, is 

transformed into a problem with four dual constraints. 
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The constraint established between the dual variable 𝑐1 (𝐶1 (𝑥1, 𝑥3, 𝑥6)) and the 𝑥1 constraint establishes that 

the dual variable value 𝑐1{← (0,0,1)} os compatible with the assignment {𝑥1 ← 0} but 𝑐1{← (0,0,1)} 

incompatible with {𝑥1 ← 1} 

In a first pre-processing phase, agents are ordered in an acyclic parent-child edges-based Depth-First Search 

tree (DFS) in which an agent is identified as the tree root where, thanks to the transformations described above, 

all agents have a single parent. 

In the first step of the algorithm, each Agent selects a value in the validity range and communicates it to the 

neighbour agents following the constraint graph edges. Two messages are sent to other agents concerning 

respectively the adopted value (VALUE Message) and the threshold value (THRESHOLD Message). Threshold 

values represent the limit beyond which the backtrack procedure is activated. Agents at lower graph level 

receive the VALUE message only from higher level agents, while the THRESHOLD message is sent only 

between child-parent chain (fig. 7). 

 

Figure 7. Communication among agents in the optimization procedure. 

Once an agent has received any message, he checks if controlled variable value changes are necessary, 

computers costs related to the choices taken and, eventually, adjusts his backtrack threshold by sending the new 

value to neighbour Agents and the threshold value messages to its children. Cost messages containing the cost 

calculated by the Agent plus costs received by its children is then sent to Agent's parent. 

Value messages go from the root to the tree leaves using the DFS tree while COST messages feedback go up 

from the leaves following the DSF tree while it sends threshold messages down the DSF tree to reduce redundant 

search. 

DCOP algorithms performance depends on the variable’s admissible values. Threshold and allowable ranges 

play a key role in this regard, and most times le variables correspond to BIM system object parameters. 

Admissible values domain definition is often infeasible a priori but depends on the values assumed during the 

search of a solution by the other variables. 

Attempts have been made in order to dynamically define acceptable values ranges according to designer's 

preferences or based on already taken choices in the design process using statistical predictive techniques 

(Novembri et al., 2017), to provide the basis to use for a ‘Heuristic Repair’ process of the achieved solutions. 

The need for the heuristic approach is given by the large number of variables present in a building project , and 

allow designer to reduce the brute force needed for computing, and speed up the validation process as well. 

Thanks to this methodology, it is possible to start from a given result, to trace the entire causal chain and verify 

the plausibility of the values checked. In this way, besides having a methodology of iterative verification of 

information, it is possible to lighten the processes of parallel calculations that, if there had not been a 

heuristically determined starting point, it would have had to perform. 

Based on the designer's preference and typically adopted we will define solutions by learning to leverage 

designers’ tendency to adopt, where possible, analogous design solutions in comparable contexts. 

It will carry heuristic repair out using the min-conflict approach (Minton et al., 1992) that, in most cases, has 

shown a successful behaviour (Armstrong, 1996). The initial solution defined on commonly accepted variable’s 

values is revised by subsequent trials where values that minimise the number of possible constraints violations 

is adopted. The heuristic approach seems, compared to the systematic backtracking, better suited for the building 

design solutions search (Fig. 8). 
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Figure 8. Clustered and evenly distributed solutions. 

‘Artifact’ make up actually nearly decomposable systems (Simon, 1996), in which the design is characterised 

by subproblems often weakly interacting to each other (fig. 9). The composition of the partial solutions leads to 

additional constraints seem to generate DCOP solutions tree characterised by the presence of clustered solutions. 

 

Figure 9. Pseudocode formalisation of Heuristic correction procedure. 

9. CONCLUSIONS 

The path undertaken to increase productivity in the construction sector is the digitisation of processes. We move 

towards implementing the tools used in the processes, through the systematic application of AI techniques, to 

automate the mechanisms of modelling and solution of design issues. 

One of the major limitations of the current tools is the lack of automatic reactivity of the models, in the terms in 

which a BIM model can automatically adapt its elements and components, to changes imposed by the designer, or 

to a change of input conditions because of the compliance of design goals. There have been, in fact, many 

developments of model analysis tools (e.g. the continuous evolution of clash detection tools) or in the field of 

knowledge sharing and collaboration. But, regarding the capabilities of the modelling tools, there is still a reactivity 

behaviour linked to simple geometric rules, or parametric algorithms managed, in parallel, by visual programming 

applications (i.e. Dynamo for Revit; Grasshopper for Rhinoceros etc).  
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So, the proposed system prototype is based on a new approach called Building Swarm Modelling, in which the 

information managed through a traditional BIM system is enriched and completed in order to provide building 

objects with a typical behaviour of Multi-Agent systems aimed at verifying the choices made by the designer from 

the early stages of the design activity while providing a proactive behaviour to the overall system. 

Constraints and characteristics of building objects are represented by agents placed in the virtual model represented 

by the BIM model with which the Agents interact through the API of the system. Agents can manage what we 

have defined as Hard Constraints through which are represented the common-sense Knowledge, the so-called 

Thumb rules and mandatory constraints arising from the regulations. While hard constraints are aimed to ensure 

the consistency of the information embedded in the BIM model with proper objects, soft constraints are the design 

objectives for which we can define a degree of dissatisfaction. 

The multi-agent system, through Distributed Constraint Optimisation problem-solving techniques, can test the 

choices made by the designer but, at the same time, independently suggest, during the project activity, different 

solutions based on the search for high levels of satisfaction of the hard and soft Constraints. 

The next steps of the research will be the implementation of this framework in one or more case studies, to test the 

proactivity of this system, regarding the design constraints. After that, we will focus the developments towards a 

higher autonomy of the modelling tool, which will have to be equipped with machine learning systems able, first, 

to select the experience gained from previous projects, to understand the conditions of similarity of information. 

This is necessary for training the tool to the imitation mechanisms. Then we can verify the cognitive possibilities 

of a digital tool able, therefore, not only to govern the self-organisation of the model but, further, to produce 

experience automatically, from similar cases. 
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