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SUMMARY: Capturing geographic information from a mobile platform, a method known as mobile mapping, is 

today one of the best methods for rapid and safe data acquisition along roads and railroads. The digitalization of 

society and the use of information technology in the construction industry is increasing the need for structured 

geometric and semantic information about the built environment. This puts an emphasis on automatic object 

identification in data such as point clouds. Most point clouds are accompanied by RGB images, and a recent 

literature review showed that these are possibly underutilized for object identification. This article presents a 

method (image-based point cloud segmentations – IBPCS) where semantic segmentation of images is used to filter 

point clouds, which drastically reduces the number of points that have to be considered in object identification 

and allows simpler algorithms to be used. An example implementation where IBPCS is used to identify roadside 

game fences along a country road is provided, and the accuracy and efficiency of the method is compared to the 

performance of PointNet, which is a neural network designed for end-to-end point cloud classification and 

segmentation. The results show that our implementation of IBPCS outperforms PointNet for the given task. The 

strengths of IBPCS are the ability to filter point clouds based on visual appearance and that it efficiently can 

process large data sets. This makes the method a suitable candidate for object identification along rural roads 

and railroads, where the objects of interest are scattered over long distances. 
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1. INTRODUCTION 

The use of information technology is increasing in society and with this comes an increased demand for structured 

information about the built environment. In disciplines such as building information modeling (BIM), all data 

exists as objects, and in order to create models for existing buildings and assets, it is necessary to identify real-

world objects in unstructured geodata. BIM is more commonly used in new construction projects than for existing 

assets, and it is also more common for buildings than for infrastructure. The challenges related to BIM for 

infrastructure are in some cases different from their building counterparts. Roads and railroads span larger areas, 

which has implications regarding choices of map projections and georeferencing methods (Uggla and Horemuz, 

2018), and the methods used to acquire and process geodata are different as well. Mobile mapping1, or more 

specifically mobile laser scanning (MLS), is today commonly used to survey roads and railroads as the method is 

both safe and efficient (Guan et al., 2016). In comparison to terrestrial laser scanning (TLS), MLS can cover much 

larger areas, and it eliminates the safety risks of having unprotected surveyors working close to roads and railroads. 

The output from MLS is typically a georeferenced point cloud together with RGB images that are used to colorize 

the point cloud. In TLS it is common practice to scan objects from several different directions, which gives a more 

complete view and a more uniform point density over a scene. On the contrary, a point cloud created by MLS will 

mostly consist of partially scanned objects, and the point density will decrease significantly as the distance to the 

vehicle increases. 

A significant portion of all infrastructure exists in rural areas where manmade objects that are relevant for mapping 

and modeling are typically spread out over long distances. The number of points that represent such objects is very 

small compared to the large number of points representing forest and other surroundings, and it is therefore key to 

find methods that efficiently can locate regions of interest in the large data sets created by mobile laser scanning. 

Object identification in point clouds requires that patterns formed by several independent points can be recognized. 

Despite the innate human ability to perform this type of pattern recognition, it is difficult to formulate and program 

rules that allow a computer to see what humans can see in an image or a point cloud. For such pattern recognition, 

machine learning, and especially deep learning, have shown tremendous empirical results. These algorithms learn 

from data instead of being explicitly programmed, and they have the capacity to comprehend complex problem 

areas such as vision and natural languages. 

Semantic segmentation of street view images is common practice in the field of autonomous driving (for examples 

see Yang et al., 2018; Kong and Fowlkes, 2018), and even though images typically are captured during MLS, they 

are rarely used for object identification in point clouds (Che et al., 2019). Due to their higher resolution, images 

can show details and nuances that are not visible in point clouds. Methods for object recognition and segmentation 

of images are also more researched than their point cloud counterparts and finding ways to utilize this information 

and technology for object identification in point clouds can be of great value. 

1.1 Aim and contribution 

The aim of this research is to explore the benefits of utilizing image information for object identification in point 

clouds and to develop a robust method for identifying roadside objects in large MLS data sets. Uggla (2019) 

showed that semantic segmentation of images and perspective projection can be used to identify noise barriers in 

MLS data, and this article is a continuation of that work. In this article, the method image-based point cloud 

segmentation is formalized and divided into two steps, and an example implementation where it is used to identify 

roadside game fences along a country road in Sweden is provided. To validate the performance of the method we 

compare it to PointNet (Qi et al., 2017), which is a neural network capable of end-to-end classification and 

segmentation of point clouds. PointNet has shown strong performance in semantic segmentation and can be applied 

to different types of point clouds without the need for adaptation, and this makes it suitable for this type of 

comparison. 

The strength of the IBPCS method is that it can filter, or segment, point clouds based on inferred semantic 

information rather than point characteristics. It also has a close to linear complexity with regards to distance 

covered or the number of points in the point cloud and is therefore suitable for identifying infrequent roadside 

 
1 Mobile mapping is a process of acquiring geodata from a vehicle, typically equipped with laser scanners and/or 

cameras 
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objects spread out over long distances, which is typical for infrastructure such as roads and railroads in rural areas. 

Since the method primarily uses images to identify relevant regions in point clouds, it is somewhat robust to 

variations in driving speed, point density, and partially scanned objects. 

The game fence object type is challenging in the sense that it is transparent to both cameras and laser scanners, 

and in this article, it is used as a proxy for all roadside objects. The purpose is not to present the most accurate 

method for identifying game fences, but rather to showcase the capabilities of IBPCS. If it is possible to 

successfully identify game fences using IBPCS, it follows that it should be possible to identify most other roadside 

objects as well, given that they can be recognized in images. 

1.2 Background and related research 

The basis of modern image recognition is the convolutional neural network (CNN), which was initially described 

by LeCun at el. (1990). Since the development of AlexNet in 2012 (Krizhevsky et al., 2012), the CNN architecture 

has dominated vision-related recognition fields (LeCun et al., 2015). A CNN is a neural network where the main 

operator is a convolutional filter that processes each location in the input independently. The semantic 

classification of an image rarely depends on where within the image certain objects appear, and the location 

invariant nature of the CNN therefore makes it suitable for visual recognition. The fully convolutional network 

(FCN) (Long et al., 2015) is an adaptation of a conventional CNN that performs semantic segmentation (pixel-

wise classification) instead of classifying entire images. This is accomplished by replacing the last fully connected 

layer of the CNN, which maps the output from the last hidden layer to a vector representing the different classes, 

with yet another convolutional layer of size 1×1 and with a depth corresponding to the number of classes. Donahue 

et al. (2013) and Razavian et al. (2014) have shown that large portions of what a CNN learns from a data set such 

as ImageNet2 can be transferred to other domains. This procedure is known as transfer learning. In practice, this 

means that it is possible to copy the architecture of a top-performing CNN, initialize it with the weights it has 

learned from ImageNet, and retrain the topmost layers on a much smaller data set without over-fitting to the small 

data set. This makes CNNs more viable in real-world scenarios, as labeled training data typically is hard to find 

and time consuming to produce. 

Guan et al. (2016) conducted a literature review regarding the use of laser scanning and mobile mapping for road 

applications. The authors concluded that MLS efficiently and safely can capture large amounts of data that include 

information about the road surface, road markings, and trend-lines, as well as objects located in the proximity of 

the road, such as road signs, traffic lights, and barriers. As a future challenge, the authors identified the 

development of efficient post-processing routines where parametric representations and semantic objects are 

extracted from the raw point cloud. Che et al. (2019) conducted a literature review of object identification in data 

sets captured by MLS. The review showed that most existing work is conducted in urban areas and that the use of 

image data is very limited. Rasterization of point clouds is used for identification of objects on planar surfaces 

such as roads, as this allows the use of mature and high-performing image processing methods, and RGB 

information is used for object identification in point clouds, but very few studies utilize the source images for 

object identification. The authors recognize the potential in using CNNs and FCNs to classify MLS data, and they 

mention the use of rasterization, virtual cameras, and voxelization as possible methods to vectorize the point clouds 

so that they can be consumed by a neural network. The use of RGB images as input for a CNN or FCN is not 

mentioned in the review. Challenges identified by the authors include object identification in rural areas, managing 

complexity in large data sets, and developing methods invariant to the speed of the capturing vehicle. 

Pu et al. (2011) recognized the potential in using road-borne mobile mapping systems to effectively acquire dense 

point clouds covering roads and roadside objects. The authors proposed a rule-based classification method where 

the point cloud was segmented into ground, on-ground, and off-ground, which was used as a basis to identify 

objects such as traffic signs, poles, barriers, and walls. Yu et al., (2015) presented a method for classifying road 

markings in point clouds. Road markings were extracted using a rule-based approach that considered the geometry 

and intensity of the point cloud. The road markings were transformed into 2D raster images that were classified 

using a two-layer Deep Boltzmann machine (Salakhutdinov and Hinton, 2009). Guan et al. (2015) proposed a 

method to extract and classify trees from point clouds in urban areas. The trees were extracted from ground points 

 
2 ImageNet is a data set consisting of well over a million images divided between 1000 classes that is used in the 

ImageNet Large Scale Visual Recognition Challenge (Russakovsky et al., 2015) 
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using a voxel-based upward-growing algorithm, and the extracted tree clusters were classified using a two-layer 

deep Boltzmann machine. Soilan et al. (2016) proposed a method that can extract road signs from point clouds and 

classify the road signs using image recognition. The road sign geometries were detected in the point cloud from 

their intensity and projected to the corresponding images captured by during MLS. The image was cropped 

according to the bounding box of the projected geometry, and the cropped image was classified using a support 

vector machine (SVM). Arcos-García et al. (2017) proposed a similar method but where the image classification 

was performed by a neural network instead of an SVM. 

Image-based deep learning has been utilized to identify regions of interest and to measure efficiency in 

construction sites (Chen et al., 2019; Chen et al., 2020), but there are no examples of it being used as a primary 

data source in point cloud object identification in the existing literature. 

2. IDENTIFYING GAME FENCES IN A POINT CLOUD 

Game fences are roadside objects that occur sporadically along country roads and for which there is a demand for 

automatic mapping methods (Halvorsen, 2015). The appearance and geometry of a game fence is somewhat special 

as it is largely transparent for both cameras and laser scanners. Game fences are commonly occurring in close 

proximity to forest, which makes it challenging to distinguish them from trees and branches. The data set used was 

captured by a road-borne MLS system in May 2016 on a mostly overcast day, and it covers 7 km of country road 

in Västergötland, Sweden. The point cloud consists of approximately 160 million points and is accompanied by 

4200 images that were captured at 700 locations and in 6 different directions relative to the trajectory of the vehicle. 

The images were captured by a Ladybug 5 camera (Point Grey, 2017) that was mounted in such a way that its 

lenses were facing 36°, 108°, 180°, 252°, and 324°, relative to the trajectory of the vehicle, as well as one lens 

facing straight up. The dimensions of the rectified images were 4096×4896 pixels. The distance between the laser 

scanner and the game fences was typically 7-10 meters. 

2.1 Image-based point cloud segmentation 

The IBPCS method consists of two stages. The first stage is to classify pixels in images and to transfer this 

classification to the point cloud. This creates a subset of the point cloud with limited spatial extents and with 

limited semantic content. In the second stage, this subset is processed geometrically in order to refine the selection 

and to divide the points into discrete objects, see Figure 1. The first stage is performed identically regardless of 

object type while the algorithms used in the second stage will depend on the characteristics of the sought-after 

objects. The algorithms used in the second stage can vary from simple noise filtering and point clustering (Uggla, 

2019) to more advanced algorithms such as the one described in Section 2.1.2. 

 

Figure 1. Schematic overview of the two stages of image-based point cloud segmentation (IBPCS). 
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The point cloud was stored in a relational database and indexed on timestamps. This made it possible to quickly 

extract points captured within a specific temporal interval. The most unobstructed views of the roadside features 

that were of interest in this article were given by the two lenses facing right, since the vehicle was driving on the 

right side of the road, and only images from those two lenses were therefore used. This means that 1400 images 

out of the total 4200 were used. 

All data processing was performed using code written by the authors in Python 3.7 together with the libraries SciPy 

(Jones et al., 2001), scikit-learn (Pedregosa et al., 2011), TensorFlow (Abadi et al., 2015), and Keras (Chollet, 

2015). All image processing was performed using a Nvidia GTX 970 GPU. 

2.1.1 Stage one - semantic segmentation and classification transfer 

The semantic segmentation was performed using an FCN with a filter size of 64×64 pixels and a stride of 32 pixels 

as described by Long et al. (2015). The FCN was based on the 4 convolutional layers of the CNN VGG16 

(Simonyan and Zisserman, 2014). To utilize the benefits of transfer learning, the convolutional layers from VGG16 

were initialized with the weights learned from the ImageNet data set (Russakovsky et al., 2015) and the first three 

of them were frozen during the training. It was therefore only the fourth convolutional layer from VGG16 and the 

new convolutional top layer that were affected by the training process. 

Due to limitations of GPU memory, the images were cropped into square tiles with sides of 1000 pixels. The 

camera lenses had a wide viewing angle that caused all relevant pixels to be located in the center of the images, 

and two or three (depending on camera) tiles were extracted automatically from each image, see Figure 2. A 

training sample consisted of one 1000×1000×3-pixel RGB image together with a 1000×1000×1-pixel image that 

shows the class affiliation of all pixels in the RGB image. 526 positive and 531 negative samples3 were created. 

The labels for the positive samples were created using the Matlab tool LIBLABEL (Geiger et al., 2014), which 

allows the user to annotate images with polygons corresponding to different object classes. Empty labels for the 

negative samples were generated automatically. 

To determine how well the FCN can identify game fences in images, the images were divided into five pools 

containing equal proportions of positive and negative samples, and the FCN was trained using cross validation. 

After cross validation, a trained FCN was used to create predictions for all images in the data set. The information 

in the predictions that contained game fence pixels was transferred to the point cloud using perspective projection. 

The point cloud was transformed from the map projection to the coordinate frame of the vehicles inertial 

measurement unit (IMU), from the IMU-frame to the frame of the camera body, and from the camera-frame to the 

frame of the individual lens, by using a 6-parameter Helmert transformation: 

𝑋𝐵 = 𝑇𝐵 + 𝑅𝐴
𝐵𝑋𝐴 

where 𝑋𝐴 are the coordinates in 𝐴-frame, 𝑋𝐵 are the coordinates in 𝐵-frame, 𝑇𝐵 is the translation vector from 𝐴 to 

𝐵 described in 𝐵-frame, and 𝑅𝐴
𝐵  is the rotation matrix from 𝐴 to 𝐵. Once transformed, the point cloud was projected 

to a plane parallel to the image sensor using perspective projection: 

[

𝑥
𝑦
1

] =  [
𝑋
𝑌
𝑍

] 
1

𝑍
 

where 𝑋, 𝑌, and 𝑍 are coordinates in the camera frame, and 𝑥 and 𝑦 are coordinates in the parallel plane. The 

coordinates in the parallel plane were transformed to pixel coordinates (𝑢, 𝑣) in the image by using: 

[
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𝑣
1

] =  [
𝑓𝑢 0 𝑐𝑢

0 𝑓𝑣 𝑐𝑣
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where 𝑓𝑢 and 𝑓𝑣 are focal lengths for the respective coordinate axes, and where 𝑐𝑢 and 𝑐𝑣  are the coordinates for 

the intersection between the sensor and the optical axis. The points, now in pixel coordinates, were given the same 

classification as the pixels they intersect. 

 
3 A positive sample is a sample that contains the sought-after object class, and a negative sample is a sample that 

does not contain the sought-after object class 
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This transformation and classification transfer were performed for all positive predictions, and the results were 

stored in a database. After the transformation from the IMU-frame to the camera-frame, all points with negative 

𝑍-values were discarded, as points behind the camera cannot appear in the image. In order to reduce the 

computational cost, only the points that were captured within a temporal interval of 0.8 seconds centered around 

the timestamp of the image were transformed. The images were captured roughly 0.72 seconds apart, and an 

interval length of 0.8 seconds proved to include all relevant points visible in the image. A schematic overview of 

the implementation of IBPCS stage one is shown in Figure 2. 

 

Since any given point in the point cloud could be visible in more than one image, most points were given several, 

possibly contradictory, classifications. In order to export a classified point cloud from the stored classifications, a 

single classification had to be chosen for each point. In this article, each match between a pixel and a point was 

stored together with the 2D distance from the image center to the pixel and the 3D distance from the lens’s focal 

point to the point in the point cloud. The effects of radial distortion are greater in the edges of an image, and all 

points were therefore classified according to the match where the pixel was closest to the image center. One could 

consider using more sophisticated decision making, for example weighted voting, but the chosen approach was 

deemed sufficient. The subset exported from the database contained all points classified as game fence that were 

within 15 meters from the lens’s focal point for at least one of its matches. Points farther away were discarded 

because the game fences always appear in closer proximity to the road.  

Generally, it could be beneficial to use some sort of visibility analysis, for example the method described by 

Vechersky et al. (2018), when choosing the correct classification for each point. Even though the camera and the 

scanner were mounted close to each other, roughly 0.5 meter, and therefore shared approximately the same field 

of view at all times, there will always be points that are intersected with the pixels in an image without actually 

being visible in the image. However, due to the transparent nature of game fences, visibility analysis would not 

solve the problem of objects behind the game fence being intersected with the image. 

Figure 2. Flowchart showing the implementation of the first stage of IBPCS. Two cameras facing right were 

used, and from each image pair, 5 tiles were cropped. Each tile was segmented by the FCN, new images with 

identical dimensions to the original ones were created, and the tiles were placed in their original locations. The 

timestamp of each image capture was used to retrieve the corresponding points from the database, and the pixel 

information was transferred to the points via perspective projection. Finally, the points were filtered based on 

this newly transferred attribute, and a subset was created. 



 

 

 
ITcon Vol. 25 (2020), Uggla & Horemuz, pg. 551 

2.1.2 Stage two – geometric processing 

The result of the first stage is a subset of the point cloud that contains all likely game fence points as well as any 

points appearing behind them or in front of them. Unlike the ground and trees that surround them, game fences 

form a polyline in the horizontal plane. This characteristic, together with the fact that game fences are vertical 

structures, was used to separate the game fences points from the rest of the subset. 

In order to identify ground points, a voxel-grid that covers the point cluster was created. The voxel size was 10 

centimeters, and a voxel was seen as populated if it contained at least one point. All vertical columns where more 

than one voxel was populated were kept, and all other points were discarded. This resulted in a point cloud where 

all points were part of some sort of vertical structure. The linear segments constituting the game fences were 

identified using Hough transform (Ballard, 1981), which is an algorithm that is able to recognize weak geometric 

shapes in strong noise. A down-sampled version of the point cloud was created in order to achieve a more uniform 

point density, and the two versions are from now on referred to as the dense point cloud and the sparse point cloud. 

All unique coordinate combinations in the horizontal plane were extracted from the sparse point cloud, effectively 

creating a binary 2D image. The vertical axis was in this step ignored, and two points with identical coordinates 

in the horizontal plane but with different heights were therefore considered as one point. For each point in this 

image, lines were created with attitudes ranging from 0° to 180° and with 1° intervals. Each line was stored as a 

tuple consisting of the attitude angle and the orthogonal distance between the line and the origin of the 2D 

coordinate system, which created a list of all possible linear features in the image.  

The most frequently occurring line was chosen, and within this line, the largest cohesive cluster of points was 

chosen using density-based clustering (scikit-learn, 2018). Even though the most frequent line represents a section 

of the game fence, there will in many cases be points outside of the game fence that are located on the same line. 

The clustering is therefore necessary to separate the game fence section from e.g., tree points that happen to be 

part of the line. All points along the extents of this cluster, including the cluster itself, were removed from the 

sparse point cloud, see Figure 3. This procedure was repeated until it was no longer possible to find a cohesive 

linear cluster containing at least 300 points. The limit of 300 points was determined empirically. 

The topology of the lines was determined by the points’ timestamps, and intersections were created between 

neighboring lines if their angular difference was greater than an empirically determined threshold. In other cases, 

a new line was created between the end points of the neighboring lines. The resulting polyline was matched against 

the dense point cloud, and all points within a horizontal distance of 0.2 meters from the polyline were selected. 

Since the ground points had already been removed from the dense point cloud, in cases where there was an actual 

gap in the game fence, no points would likely be retrieved from the matching and the gap would therefore be 

present in the final point cloud even though it was closed in the polyline. 

Figure 3. Three images showing the first three steps (in order left to right) of the sequential application of 

Hough transform. The images show the point cloud viewed from above. The red points are the identified linear 

segment, and the black points are the remaining points. The identified segment and all points along its extent 

were removed in each step. 
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2.2 PointNet 

PointNet is written using Python and TensorFlow, and the code has been made available by Qi (2019). The creation 

of training data described in this section was done using Python-code written by the authors and all training and 

inference were performed using a Nvidia GTX 970 GPU. 

PointNet is capable of point cloud classification, part segmentation, and semantic segmentation, out of which 

semantic segmentation is most suitable for finding objects in MLS data. Semantic segmentation of point clouds is 

similar to semantic segmentation of images in the sense that each individual point is given a classification, and 

that objects of a given class may or may not be present in a sample presented to the network. PointNet requires 

data to be in the form of blocks where every block contains the same number of points. In Qi et al. (2017), the 

semantic segmentation functionality of PointNet was evaluated using the Stanford 3D semantic parsing data set 

(Armeni et al., 2016) that consists of point clouds created by indoor terrestrial laser scanning. The dataset consists 

of rooms, and for each room, the horizontal coordinate axes are aligned with the walls of the room. Each room 

was divided into 1×1-meter blocks in the horizontal plane, and the points in each block were either down-sampled 

or duplicated so that each block contained exactly 4096 points. Every point was represented by a vector consisting 

of normalized local 3D coordinates describing the position of the points within each block, normalized 3D 

coordinates describing the position of the points relative to the entire room, and the RGB values of the points. The 

coordinates are normalized in such a way that they range from 0 to 1 within each block and within each room. 

To determine how well PointNet can identify game fences in the given point cloud, two data sets were created. 

The first data set consists of all points on the right side of the road along the stretches where game fences were 

present, and the second data set consists of the filtered points created from the first stage of IBPCS. These two 

data sets will from now on be referred to as the full point cloud and the IBPCS subset. For both data sets, four 

regions with varying topography (flat ground and forest) were extracted. Each region was then divided into five 

chunks creating a total of 20 chunks, see Figure 4. The chunks were divided into five groups so that each region 

was represented in every group. 

In each chunk, game fences were manually labeled using CloudCompare (2019). In order to efficiently divide each 

chunk into the blocks required to train PointNet, all chunks were rotated so that they were aligned with the 

coordinate axes in such a way that is shown in Figure 5. 

After rotation, the point cloud was divided into a grid of 1×1-meter blocks and the number of points in each block 

was either up or down sampled so that each block contained exactly 256 points, which was close to the average 

point density of the point cloud. PointNet was then trained using cross validation between the five groups so that 

all topographies were always present in the training and validation pools. 

Figure 4. Regions and chunks used for training PointNet (full point cloud).  The regions have been moved closer 

together, but their orientation has not been changed. The bounding boxes of the individual chunks are shown as 

red rectangles. 
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Figure 5. Orientation of point clouds used for PointNet. The grey area represents the road and the green area the 

roadside region. 

2.3 RESULTS 

The image segmentation was evaluated using precision, recall and Cohen’s kappa coefficient Κ (Cohen, 1960): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
  ,    𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑇𝑃

𝑇𝑃+ 𝐹𝑁
  ,    Κ =  

𝑝𝑜− 𝑝𝑒

1− 𝑝𝑒
 

where 𝑇𝑃 is true positive, 𝐹𝑃 is false positive, and 𝐹𝑁 is false negative. 𝑝𝑜  is the observed agreement and 𝑝𝑒 is 

the chance agreement. Precision is a measure of how many of the extracted features are of the sought-after class, 

recall is a measure of how many of the sought-after features were extracted, and Κ is a measure of how well the 

classifier performed in comparison to a random classifier. The numerical results shown in Table 1 are the average 

values from 5 separate training sessions with randomly sampled training and validation pools. 

Table 1. Numerical results from the FCN training. The precision and recall have been rounded to whole percent, 

and the true positives (TP), false positives (FP), and false negatives (FN) are the number of pixels.  

Precision Recall TP FP FN 𝒑𝒐 𝒑𝒆 𝚱 

95% 87% 57719542 3347501 8338351 0.989 0.899 0.89 

Figure 6 shows two samples from the validation pool and the predictions made by the FCN for the respective 

samples. In the left sample, both the poles and the wiring of the game fence are clearly visible in the image, and 

in the right sample, only the poles are visible. It is clear that the prediction for the left sample is better, but the 

FCN still manages to predict a large portion of the game fence in the right sample even though the wiring is not 

visible. 

The final point classification was evaluated against a manual classification and point-wise precision and recall 

were computed. No kappa coefficient was computed for the points as the large number of true negatives would 

cause the kappa coefficient to be very close to 1 regardless of the results. The results from presented in Table 2. 

Figure 6. Two samples from the validation pool and their respective predictions. The red color indicates pixels 

that have been identified as game fence by the FCN. 
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Table 2. Precision and recall (rounded to whole percent) together with number of true positives (TP), false 

positives (FP), and false negatives (FN) after the first and second stage of IBPCS. Total number of points in the 

input data sets are shown in brackets. 

Data set Precision (%) Recall (%) TP FP FN 

1st stage 

(160 000 000) 

14 100 89864 569085 0 

2nd stage 

(659 000) 

88 99 89386 12150 478 

Visual examples of the results are shown in Figure 7. The left column (a) shows the results after the first stage of 

IBPCS and it clearly explains the low precision in Table 2. The middle column (b) shows the results after the 

second stage of IBPCS and the third column (c) shows the manual classification. 

The precision and recall from the different PointNet data sets are shown in Table 3. The results show that the 

accuracy of the classification is higher in the IBPCS subset compared to the full point cloud. 

Table 3. Precision and recall (rounded to whole percent) together with number of true positives (TP), false 

positives (FP), and false negatives (FN) from PointNet cross validation. Total number of points in the input data 

sets shown in brackets. 

Data set Precision (%) Recall (%) TP FP FN 

Full point cloud 

(12 223 000) 

80 70 62958 15446 26275 

IBPCS subset 

(659 000) 

90 75 66904 7195 22780 

Visual examples from the PointNet applications are shown in Figure 8 and Figure 9. 

Figure 7. Points remaining after the first stage (a), points remaining after the second stage (b), and ground truth 

points (c), for two different locations in the data set. The upper row shows a game fence with forest behind it 

and the second row shows a game fence surrounded by flat ground. 
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Figure 9. Example results from the PointNet cross validation of the IBPCS subset. Input data to the left (a), PointNet 

prediction in the middle (b), and manually classified ground truth to the right (c). The top row shows an area with 

forest, and the bottom row shows an area with flat ground. 

Figure 8. Example results from the PointNet cross validation of the full point cloud. Input data to the left (a), PointNet 

prediction in the middle (b), and manually classified ground truth to the right (c). The top row shows an area with forest, 

and the bottom row shows an area with flat ground. 
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3. COMPUTATIONAL EFFICIENCY 

There are many factors influencing the computational cost of the two methods. The horizontal extent of the point 

cloud, the physical block size, and the number of points per block will affect the cost of using PointNet, while the 

number of images, the image resolution, the frequency of the sought-after objects, and the choice and 

implementation of the second stage algorithm will influence the cost of IBPCS. However, this does not mean that 

there is nothing to say regarding their relative efficiency. The first stage of IBPCS creates a subset of the initial 

point cloud, and if it is quicker to create this subset and apply an algorithm to it than it is to apply the same 

algorithm to the full point cloud, it would mean that IBPCS can reduce the computational cost over the entire data 

set. In equation form, this comparison can be written as: 

𝐶𝑆 + 𝐶𝑇 + 𝐶𝐴(𝑆)  <  𝐶𝐴(𝐹) 

where 𝐶𝑆 is the cost of segmenting all images, 𝐶𝑇 is the cost of transferring the pixel information from the positive 

predictions to the point cloud, 𝐶𝐴(𝑆) is the cost of applying an algorithm to the resulting subset, and 𝐶𝐴(𝐹) is the 

cost of applying the same algorithm to the full point cloud. In order to investigate this, a theoretical experiment 

was carried out using values taken from the implementations in this article. It is difficult to compare the cost of 

applying a geometric algorithm to the full point cloud to applying the same algorithm to a subset of the point cloud, 

especially since the second stage algorithm used in this article would not deliver the desired results when applied 

to a full point cloud. Also, most geometric algorithms are to some extent exponential in their complexity, and the 

methods used for clustering and indexing the point cloud would greatly affect the outcome. However, the 

complexity of PointNet is truly linear with respect to the horizontal extents of the point cloud, and PointNet could 

be applied to both a full point cloud as well as a subset. Therefore, the question this analysis tries to answer is: can 

it be more efficient to create a subset of a point cloud using IBPCS and applying PointNet to this subset compared 

to applying PointNet to the full point cloud? 

The experiment considers a stretch of road that is 70 meters long. The images in the data set were captured roughly 

7 meters apart, and there are therefore 10 image pairs covering this stretch, considering images from the two 

cameras that are facing right in direction of the vehicle. Five 1000×1000-pixel tiles were extracted from each 

image pair (2 and 3 tiles from the respective cameras) which means that there is a total of 50 image tiles for this 

stretch of road. The average width of the point cloud, assuming that there are trees on both sides of the road, is 

roughly 70 meters, which corresponds to 4900 blocks. If there were flat ground on both sides of the road, the width 

of the point cloud would be greater. The subset created by IBPCS was on average 6 meters wide, which in turn 

corresponds to 420 blocks. The approximate times required for the different computations are shown in Table 4. 

Table 4. Computation times for different operations. All times are estimated averages. 

Operation Time (s) 

Segmenting one image tile with FCN 0.33 

Segmenting 50 image tiles with FCN 16.5 

Projecting points for one image 0.50 

Projecting points for 20 images 10.00 

Processing one block with PointNet 0.01 

Processing 420 blocks with PointNet 4.20 

Processing 4900 blocks with PointNet 49.00 

This means that the total computation time for IBPCS where PointNet is used as its second stage is 16.5 + 10 + 

4.2 = 30.7 seconds, while applying PointNet directly would take 49 seconds. This is shown visually in Figure 10. 

It is possible that the extent of the point cloud could be limited in such a way that only the right side of the road 

and only the points closer than e.g., 15 meters from the scanner were considered by filtering the raw data from the 

scanner. This would mean that there are now only 1050 blocks for PointNet to process, and this would take 10.5 
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seconds. If the raw data from the scanner is not available, such a limitation would have to be computed from the 

trajectory of the car using e.g., the known camera positions. 

 

This example shows us that using IBPCS with PointNet as its second stage can in fact be quicker than applying 

PointNet to the full point cloud. It also shows that if the extent of the point cloud can be limited in through other 

means, using PointNet without the first stage of IBPCS can also be the quicker alternative. In this scenario, it is 

assumed that the game fence is continuous throughout the area, which would rarely be the case when scanning 

larger road networks. For the cases where the sought-after objects are not continuous in the entire data set, the 

computational efficiency of IBPCS improves. Only the images that contain positive pixels would have to be 

considered during perspective projection, and the ratio between the size of the exported subset and the distance 

driven would decrease. 

The results from this experiment do not include the computations required for cropping and stitching images or 

for splitting the point cloud into blocks. In addition, changes to the factors described in the beginning of the section 

heavily affects the outcome. For example, reducing the size of the image tiles from 1000×1000 pixels to 500×500 

reduces the segmentation time from 0.33 to 0.09 seconds, and increasing the number of points per block from 256 

to 4096 increases the computation time from 0.01 to 0.025 seconds.  

4. DISCUSSION 

The task and data set used in this article are limited in both size and scope, and one should be careful to draw too 

strong conclusions from the presented results. Nonetheless, the results do show that IBPCS manages to identify a 

challenging object type with higher accuracy and efficiency when compared to PointNet. The chosen scenario is 

challenging mainly due to two reasons: a majority of the points in the subset created through perspective projection 

do not belong to the sought-after object, and since the game fence is continuously present, all images have to be 

projected to the point cloud. Most other object types, given that they are more solid in their nature, will be easier 

to identify and extract, and if the sought-after objects are more infrequent, the efficiency of IBPCS will increase. 

It typically requires less effort to annotate training data in 2D images compared to 3D point clouds, and the 

availability of pre-trained 2D CNNs makes training a neural network for image segmentation a relatively easy 

task. 

An obvious weakness of the IBPCS is that the second stage depends on the object type. The algorithm used in this 

article to separate game fences from trees is somewhat elaborate, but still much simpler than any algorithm that 

could be applied to the full point cloud. For many object types, the second stage algorithm would likely consist of 

ground point removal and noise filtering, which possibly could allow for approaches that are more generic. IBPCS 

does not require that a specific neural network is used for image segmentation. Therefore, implementations of the 

method are flexible and can be updated to follow advances made in the field without having to change other 

Figure 10. Bar chart showing the computational costs of the different computations. Filtering the point cloud 

using IBPCS before applying PointNet is more efficient than applying PointNet to the full point cloud. 
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components of the system. The image segmentation used in IBPCS is largely invariant to driving speed, given that 

fast enough shutter times can be used, but it is on the other hand dependent on ambient light. Since MLS data are 

usually not collected during the night or during heavy rainfall, the images will likely be taken under one of two 

light conditions – sunlight or overcast. The FCN architecture has shown strong performance on data sets consisting 

of many object classes and where the images have been captured by different cameras and under different 

conditions (Long et al., 2015; Everingham et al., 2012), so training an FCN that is robust to differences in ambient 

light is likely not too difficult. The second stage of IBPCS processes the point cloud directly and will therefore to 

some extent be affected by varying driving speeds and varying point densities. 

Comparing the complexity and computational cost of the IBPCS and PointNet is difficult since there are many 

influencing factors. Without considering hardware, the two most influential factors for the cost of IBPCS are image 

resolution and point cloud density, while the cost of PointNet almost entirely depends on the point cloud density, 

or more exactly the number of points per block. The example in Section 3 shows that using the first stage of IBPCS 

before applying PointNet can be more efficient than applying PointNet to the entire point cloud even in a situation 

where the sought-after object is continuously present along the road. For continuous objects, it is possible that 

other filtering methods can be more efficient than IBPCS. Examples of such could be to use raw data from the 

scanner and filter the point cloud based on distance, or to use the trajectory of the vehicle and selecting areas within 

a certain distance from the trajectory. What IBPCS can do that these filtering methods cannot is to extract regions 

based on semantic information and visual appearance. Therefore, in situations where the sought-after objects are 

not continuously present (e.g., poles, lights, signs, and signals), the benefits of IBPCS become apparent. 

This article focuses solely on mobile laser scanning, but IBPCS is compatible with point clouds created through 

photogrammetry as well. Since all points in a photogrammetric point cloud have a topological connection to the 

pixels in the images, it is not necessary to use perspective projection to transfer the semantic information. In the 

case of laser scanning there is a problem of occlusion, where points appearing behind a certain object from the 

perspective of the camera are assigned the same classification as the object. This does not happen with 

photogrammetry, as there are no points in the point cloud that are not visible in the corresponding images. 

5. CONCLUSIONS AND FUTURE OUTLOOK 

This article provides a description of the IBPCS method, an example where it was used to identify roadside game 

fences, and a discussion of its strengths, weaknesses, and when it is suitable to use. It was shown that IBPCS 

outperformed PointNet, in both terms of accuracy and efficiency, for a scenario that was not geared towards the 

strengths of IBPCS.  

The strength of IBPCS is that it has close to linear complexity with respect to distance covered, and that it can 

identify relevant regions of based on their visual appearances in images. This in turn drastically reduces the number 

of points that have to be considered in the object identification and it allows much simpler algorithms to be used. 

Two characteristics of point clouds captured by MLS in rural areas are that they typically cover long distances and 

that most points often are irrelevant for object identification, and this makes IBPCS a suitable method for the task. 

The main weakness of IBPCS is the second stage processing. Choosing and tuning an appropriate algorithm can 

be very dependent on the type of object and the density of the point cloud. Going forward, it would be valuable to 

investigate if the second stage processing techniques can be generalized, making the method more robust. For 

example, it could be possible that most objects with a solid appearance can be extracted by simply removing 

ground points and noise. This should be tested using data captured from different geographic regions, topographies, 

and MLS systems in order to identify algorithms that are robust to such variations. 

The academic contribution of this work is a novel method for object identification in MLS data that uses images 

as its primary data source. The method takes advantage of data that often is captured but rarely used, and this 

article shows how this data can be used to create a subset of a point cloud, limiting both the number of points and 

the semantic content. The practical contribution of this work is an efficient method capable of identifying roadside 

objects that can be used for infrastructure documentation. Thanks to transfer learning and the relative ease of 

creating image training data, the method is easy to implement and use in practice. 
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