

www.itcon.org - Journal of Information Technology in Construction - ISSN 1874-4753

ITcon Vol. 25 (2020), Uggla & Horemuz, pg. 545

IDENTIFYING ROADSIDE OBJECTS IN MOBILE LASER SCANNING
DATA USING IMAGE-BASED POINT CLOUD SEGMENTATION

SUBMITTED: December 2019

REVISED: November 2020

PUBLISHED: December 2020

GUEST EDITORS: Francis Siu, Hung-Lin Chi, Hsi-hsien Wei & Minkoo Kim

DOI: 10.36680/j.itcon.2020.031

Gustaf Uggla,

KTH Royal Institute of Technology;

gustaf.uggla@abe.kth.se

Milan Horemuz, PhD,

KTH Royal Institute of Technology;

milan.horemuz@abe.kth.se

SUMMARY: Capturing geographic information from a mobile platform, a method known as mobile mapping, is

today one of the best methods for rapid and safe data acquisition along roads and railroads. The digitalization of

society and the use of information technology in the construction industry is increasing the need for structured

geometric and semantic information about the built environment. This puts an emphasis on automatic object

identification in data such as point clouds. Most point clouds are accompanied by RGB images, and a recent

literature review showed that these are possibly underutilized for object identification. This article presents a

method (image-based point cloud segmentations – IBPCS) where semantic segmentation of images is used to filter

point clouds, which drastically reduces the number of points that have to be considered in object identification

and allows simpler algorithms to be used. An example implementation where IBPCS is used to identify roadside

game fences along a country road is provided, and the accuracy and efficiency of the method is compared to the

performance of PointNet, which is a neural network designed for end-to-end point cloud classification and

segmentation. The results show that our implementation of IBPCS outperforms PointNet for the given task. The

strengths of IBPCS are the ability to filter point clouds based on visual appearance and that it efficiently can

process large data sets. This makes the method a suitable candidate for object identification along rural roads

and railroads, where the objects of interest are scattered over long distances.

KEYWORDS: Object identification, Point clouds, Mobile mapping, Laser scanning, Deep learning

REFERENCE: Gustaf Uggla, Milan Horemuz (2020). Identifying roadside objects in mobile laser scanning data

using image-based point cloud segmentation. Journal of Information Technology in Construction (ITcon), Special

issue: ‘CIB World Building Congress 2019: Constructing Smart Cities’, Vol. 25, pg. 545-560, DOI:

10.36680/j.itcon.2020.031

COPYRIGHT: © 2020 The author(s). This is an open access article distributed under the terms of the Creative

Commons Attribution 4.0 International (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://dx.doi.org/10.36680/j.itcon.2020.031
https://creativecommons.org/licenses/by/4.0/

ITcon Vol. 25 (2020), Uggla & Horemuz, pg. 546

1. INTRODUCTION

The use of information technology is increasing in society and with this comes an increased demand for structured

information about the built environment. In disciplines such as building information modeling (BIM), all data

exists as objects, and in order to create models for existing buildings and assets, it is necessary to identify real-

world objects in unstructured geodata. BIM is more commonly used in new construction projects than for existing

assets, and it is also more common for buildings than for infrastructure. The challenges related to BIM for

infrastructure are in some cases different from their building counterparts. Roads and railroads span larger areas,

which has implications regarding choices of map projections and georeferencing methods (Uggla and Horemuz,

2018), and the methods used to acquire and process geodata are different as well. Mobile mapping1, or more

specifically mobile laser scanning (MLS), is today commonly used to survey roads and railroads as the method is

both safe and efficient (Guan et al., 2016). In comparison to terrestrial laser scanning (TLS), MLS can cover much

larger areas, and it eliminates the safety risks of having unprotected surveyors working close to roads and railroads.

The output from MLS is typically a georeferenced point cloud together with RGB images that are used to colorize

the point cloud. In TLS it is common practice to scan objects from several different directions, which gives a more

complete view and a more uniform point density over a scene. On the contrary, a point cloud created by MLS will

mostly consist of partially scanned objects, and the point density will decrease significantly as the distance to the

vehicle increases.

A significant portion of all infrastructure exists in rural areas where manmade objects that are relevant for mapping

and modeling are typically spread out over long distances. The number of points that represent such objects is very

small compared to the large number of points representing forest and other surroundings, and it is therefore key to

find methods that efficiently can locate regions of interest in the large data sets created by mobile laser scanning.

Object identification in point clouds requires that patterns formed by several independent points can be recognized.

Despite the innate human ability to perform this type of pattern recognition, it is difficult to formulate and program

rules that allow a computer to see what humans can see in an image or a point cloud. For such pattern recognition,

machine learning, and especially deep learning, have shown tremendous empirical results. These algorithms learn

from data instead of being explicitly programmed, and they have the capacity to comprehend complex problem

areas such as vision and natural languages.

Semantic segmentation of street view images is common practice in the field of autonomous driving (for examples

see Yang et al., 2018; Kong and Fowlkes, 2018), and even though images typically are captured during MLS, they

are rarely used for object identification in point clouds (Che et al., 2019). Due to their higher resolution, images

can show details and nuances that are not visible in point clouds. Methods for object recognition and segmentation

of images are also more researched than their point cloud counterparts and finding ways to utilize this information

and technology for object identification in point clouds can be of great value.

1.1 Aim and contribution

The aim of this research is to explore the benefits of utilizing image information for object identification in point

clouds and to develop a robust method for identifying roadside objects in large MLS data sets. Uggla (2019)

showed that semantic segmentation of images and perspective projection can be used to identify noise barriers in

MLS data, and this article is a continuation of that work. In this article, the method image-based point cloud

segmentation is formalized and divided into two steps, and an example implementation where it is used to identify

roadside game fences along a country road in Sweden is provided. To validate the performance of the method we

compare it to PointNet (Qi et al., 2017), which is a neural network capable of end-to-end classification and

segmentation of point clouds. PointNet has shown strong performance in semantic segmentation and can be applied

to different types of point clouds without the need for adaptation, and this makes it suitable for this type of

comparison.

The strength of the IBPCS method is that it can filter, or segment, point clouds based on inferred semantic

information rather than point characteristics. It also has a close to linear complexity with regards to distance

covered or the number of points in the point cloud and is therefore suitable for identifying infrequent roadside

1 Mobile mapping is a process of acquiring geodata from a vehicle, typically equipped with laser scanners and/or

cameras

ITcon Vol. 25 (2020), Uggla & Horemuz, pg. 547

objects spread out over long distances, which is typical for infrastructure such as roads and railroads in rural areas.

Since the method primarily uses images to identify relevant regions in point clouds, it is somewhat robust to

variations in driving speed, point density, and partially scanned objects.

The game fence object type is challenging in the sense that it is transparent to both cameras and laser scanners,

and in this article, it is used as a proxy for all roadside objects. The purpose is not to present the most accurate

method for identifying game fences, but rather to showcase the capabilities of IBPCS. If it is possible to

successfully identify game fences using IBPCS, it follows that it should be possible to identify most other roadside

objects as well, given that they can be recognized in images.

1.2 Background and related research

The basis of modern image recognition is the convolutional neural network (CNN), which was initially described

by LeCun at el. (1990). Since the development of AlexNet in 2012 (Krizhevsky et al., 2012), the CNN architecture

has dominated vision-related recognition fields (LeCun et al., 2015). A CNN is a neural network where the main

operator is a convolutional filter that processes each location in the input independently. The semantic

classification of an image rarely depends on where within the image certain objects appear, and the location

invariant nature of the CNN therefore makes it suitable for visual recognition. The fully convolutional network

(FCN) (Long et al., 2015) is an adaptation of a conventional CNN that performs semantic segmentation (pixel-

wise classification) instead of classifying entire images. This is accomplished by replacing the last fully connected

layer of the CNN, which maps the output from the last hidden layer to a vector representing the different classes,

with yet another convolutional layer of size 1×1 and with a depth corresponding to the number of classes. Donahue

et al. (2013) and Razavian et al. (2014) have shown that large portions of what a CNN learns from a data set such

as ImageNet2 can be transferred to other domains. This procedure is known as transfer learning. In practice, this

means that it is possible to copy the architecture of a top-performing CNN, initialize it with the weights it has

learned from ImageNet, and retrain the topmost layers on a much smaller data set without over-fitting to the small

data set. This makes CNNs more viable in real-world scenarios, as labeled training data typically is hard to find

and time consuming to produce.

Guan et al. (2016) conducted a literature review regarding the use of laser scanning and mobile mapping for road

applications. The authors concluded that MLS efficiently and safely can capture large amounts of data that include

information about the road surface, road markings, and trend-lines, as well as objects located in the proximity of

the road, such as road signs, traffic lights, and barriers. As a future challenge, the authors identified the

development of efficient post-processing routines where parametric representations and semantic objects are

extracted from the raw point cloud. Che et al. (2019) conducted a literature review of object identification in data

sets captured by MLS. The review showed that most existing work is conducted in urban areas and that the use of

image data is very limited. Rasterization of point clouds is used for identification of objects on planar surfaces

such as roads, as this allows the use of mature and high-performing image processing methods, and RGB

information is used for object identification in point clouds, but very few studies utilize the source images for

object identification. The authors recognize the potential in using CNNs and FCNs to classify MLS data, and they

mention the use of rasterization, virtual cameras, and voxelization as possible methods to vectorize the point clouds

so that they can be consumed by a neural network. The use of RGB images as input for a CNN or FCN is not

mentioned in the review. Challenges identified by the authors include object identification in rural areas, managing

complexity in large data sets, and developing methods invariant to the speed of the capturing vehicle.

Pu et al. (2011) recognized the potential in using road-borne mobile mapping systems to effectively acquire dense

point clouds covering roads and roadside objects. The authors proposed a rule-based classification method where

the point cloud was segmented into ground, on-ground, and off-ground, which was used as a basis to identify

objects such as traffic signs, poles, barriers, and walls. Yu et al., (2015) presented a method for classifying road

markings in point clouds. Road markings were extracted using a rule-based approach that considered the geometry

and intensity of the point cloud. The road markings were transformed into 2D raster images that were classified

using a two-layer Deep Boltzmann machine (Salakhutdinov and Hinton, 2009). Guan et al. (2015) proposed a

method to extract and classify trees from point clouds in urban areas. The trees were extracted from ground points

2 ImageNet is a data set consisting of well over a million images divided between 1000 classes that is used in the

ImageNet Large Scale Visual Recognition Challenge (Russakovsky et al., 2015)

ITcon Vol. 25 (2020), Uggla & Horemuz, pg. 548

using a voxel-based upward-growing algorithm, and the extracted tree clusters were classified using a two-layer

deep Boltzmann machine. Soilan et al. (2016) proposed a method that can extract road signs from point clouds and

classify the road signs using image recognition. The road sign geometries were detected in the point cloud from

their intensity and projected to the corresponding images captured by during MLS. The image was cropped

according to the bounding box of the projected geometry, and the cropped image was classified using a support

vector machine (SVM). Arcos-García et al. (2017) proposed a similar method but where the image classification

was performed by a neural network instead of an SVM.

Image-based deep learning has been utilized to identify regions of interest and to measure efficiency in

construction sites (Chen et al., 2019; Chen et al., 2020), but there are no examples of it being used as a primary

data source in point cloud object identification in the existing literature.

2. IDENTIFYING GAME FENCES IN A POINT CLOUD

Game fences are roadside objects that occur sporadically along country roads and for which there is a demand for

automatic mapping methods (Halvorsen, 2015). The appearance and geometry of a game fence is somewhat special

as it is largely transparent for both cameras and laser scanners. Game fences are commonly occurring in close

proximity to forest, which makes it challenging to distinguish them from trees and branches. The data set used was

captured by a road-borne MLS system in May 2016 on a mostly overcast day, and it covers 7 km of country road

in Västergötland, Sweden. The point cloud consists of approximately 160 million points and is accompanied by

4200 images that were captured at 700 locations and in 6 different directions relative to the trajectory of the vehicle.

The images were captured by a Ladybug 5 camera (Point Grey, 2017) that was mounted in such a way that its

lenses were facing 36°, 108°, 180°, 252°, and 324°, relative to the trajectory of the vehicle, as well as one lens

facing straight up. The dimensions of the rectified images were 4096×4896 pixels. The distance between the laser

scanner and the game fences was typically 7-10 meters.

2.1 Image-based point cloud segmentation

The IBPCS method consists of two stages. The first stage is to classify pixels in images and to transfer this

classification to the point cloud. This creates a subset of the point cloud with limited spatial extents and with

limited semantic content. In the second stage, this subset is processed geometrically in order to refine the selection

and to divide the points into discrete objects, see Figure 1. The first stage is performed identically regardless of

object type while the algorithms used in the second stage will depend on the characteristics of the sought-after

objects. The algorithms used in the second stage can vary from simple noise filtering and point clustering (Uggla,

2019) to more advanced algorithms such as the one described in Section 2.1.2.

Figure 1. Schematic overview of the two stages of image-based point cloud segmentation (IBPCS).

ITcon Vol. 25 (2020), Uggla & Horemuz, pg. 549

The point cloud was stored in a relational database and indexed on timestamps. This made it possible to quickly

extract points captured within a specific temporal interval. The most unobstructed views of the roadside features

that were of interest in this article were given by the two lenses facing right, since the vehicle was driving on the

right side of the road, and only images from those two lenses were therefore used. This means that 1400 images

out of the total 4200 were used.

All data processing was performed using code written by the authors in Python 3.7 together with the libraries SciPy

(Jones et al., 2001), scikit-learn (Pedregosa et al., 2011), TensorFlow (Abadi et al., 2015), and Keras (Chollet,

2015). All image processing was performed using a Nvidia GTX 970 GPU.

2.1.1 Stage one - semantic segmentation and classification transfer

The semantic segmentation was performed using an FCN with a filter size of 64×64 pixels and a stride of 32 pixels

as described by Long et al. (2015). The FCN was based on the 4 convolutional layers of the CNN VGG16

(Simonyan and Zisserman, 2014). To utilize the benefits of transfer learning, the convolutional layers from VGG16

were initialized with the weights learned from the ImageNet data set (Russakovsky et al., 2015) and the first three

of them were frozen during the training. It was therefore only the fourth convolutional layer from VGG16 and the

new convolutional top layer that were affected by the training process.

Due to limitations of GPU memory, the images were cropped into square tiles with sides of 1000 pixels. The

camera lenses had a wide viewing angle that caused all relevant pixels to be located in the center of the images,

and two or three (depending on camera) tiles were extracted automatically from each image, see Figure 2. A

training sample consisted of one 1000×1000×3-pixel RGB image together with a 1000×1000×1-pixel image that

shows the class affiliation of all pixels in the RGB image. 526 positive and 531 negative samples3 were created.

The labels for the positive samples were created using the Matlab tool LIBLABEL (Geiger et al., 2014), which

allows the user to annotate images with polygons corresponding to different object classes. Empty labels for the

negative samples were generated automatically.

To determine how well the FCN can identify game fences in images, the images were divided into five pools

containing equal proportions of positive and negative samples, and the FCN was trained using cross validation.

After cross validation, a trained FCN was used to create predictions for all images in the data set. The information

in the predictions that contained game fence pixels was transferred to the point cloud using perspective projection.

The point cloud was transformed from the map projection to the coordinate frame of the vehicles inertial

measurement unit (IMU), from the IMU-frame to the frame of the camera body, and from the camera-frame to the

frame of the individual lens, by using a 6-parameter Helmert transformation:

𝑋𝐵 = 𝑇𝐵 + 𝑅𝐴
𝐵𝑋𝐴

where 𝑋𝐴 are the coordinates in 𝐴-frame, 𝑋𝐵 are the coordinates in 𝐵-frame, 𝑇𝐵 is the translation vector from 𝐴 to

𝐵 described in 𝐵-frame, and 𝑅𝐴
𝐵 is the rotation matrix from 𝐴 to 𝐵. Once transformed, the point cloud was projected

to a plane parallel to the image sensor using perspective projection:

[

𝑥
𝑦
1

] = [
𝑋
𝑌
𝑍

]
1

𝑍

where 𝑋, 𝑌, and 𝑍 are coordinates in the camera frame, and 𝑥 and 𝑦 are coordinates in the parallel plane. The

coordinates in the parallel plane were transformed to pixel coordinates (𝑢, 𝑣) in the image by using:

[

𝑢
𝑣
1

] = [
𝑓𝑢 0 𝑐𝑢

0 𝑓𝑣 𝑐𝑣

0 0 1
] [

𝑥
𝑦
1

]

where 𝑓𝑢 and 𝑓𝑣 are focal lengths for the respective coordinate axes, and where 𝑐𝑢 and 𝑐𝑣 are the coordinates for

the intersection between the sensor and the optical axis. The points, now in pixel coordinates, were given the same

classification as the pixels they intersect.

3 A positive sample is a sample that contains the sought-after object class, and a negative sample is a sample that

does not contain the sought-after object class

ITcon Vol. 25 (2020), Uggla & Horemuz, pg. 550

This transformation and classification transfer were performed for all positive predictions, and the results were

stored in a database. After the transformation from the IMU-frame to the camera-frame, all points with negative

𝑍-values were discarded, as points behind the camera cannot appear in the image. In order to reduce the

computational cost, only the points that were captured within a temporal interval of 0.8 seconds centered around

the timestamp of the image were transformed. The images were captured roughly 0.72 seconds apart, and an

interval length of 0.8 seconds proved to include all relevant points visible in the image. A schematic overview of

the implementation of IBPCS stage one is shown in Figure 2.

Since any given point in the point cloud could be visible in more than one image, most points were given several,

possibly contradictory, classifications. In order to export a classified point cloud from the stored classifications, a

single classification had to be chosen for each point. In this article, each match between a pixel and a point was

stored together with the 2D distance from the image center to the pixel and the 3D distance from the lens’s focal

point to the point in the point cloud. The effects of radial distortion are greater in the edges of an image, and all

points were therefore classified according to the match where the pixel was closest to the image center. One could

consider using more sophisticated decision making, for example weighted voting, but the chosen approach was

deemed sufficient. The subset exported from the database contained all points classified as game fence that were

within 15 meters from the lens’s focal point for at least one of its matches. Points farther away were discarded

because the game fences always appear in closer proximity to the road.

Generally, it could be beneficial to use some sort of visibility analysis, for example the method described by

Vechersky et al. (2018), when choosing the correct classification for each point. Even though the camera and the

scanner were mounted close to each other, roughly 0.5 meter, and therefore shared approximately the same field

of view at all times, there will always be points that are intersected with the pixels in an image without actually

being visible in the image. However, due to the transparent nature of game fences, visibility analysis would not

solve the problem of objects behind the game fence being intersected with the image.

Figure 2. Flowchart showing the implementation of the first stage of IBPCS. Two cameras facing right were

used, and from each image pair, 5 tiles were cropped. Each tile was segmented by the FCN, new images with

identical dimensions to the original ones were created, and the tiles were placed in their original locations. The

timestamp of each image capture was used to retrieve the corresponding points from the database, and the pixel

information was transferred to the points via perspective projection. Finally, the points were filtered based on

this newly transferred attribute, and a subset was created.

ITcon Vol. 25 (2020), Uggla & Horemuz, pg. 551

2.1.2 Stage two – geometric processing

The result of the first stage is a subset of the point cloud that contains all likely game fence points as well as any

points appearing behind them or in front of them. Unlike the ground and trees that surround them, game fences

form a polyline in the horizontal plane. This characteristic, together with the fact that game fences are vertical

structures, was used to separate the game fences points from the rest of the subset.

In order to identify ground points, a voxel-grid that covers the point cluster was created. The voxel size was 10

centimeters, and a voxel was seen as populated if it contained at least one point. All vertical columns where more

than one voxel was populated were kept, and all other points were discarded. This resulted in a point cloud where

all points were part of some sort of vertical structure. The linear segments constituting the game fences were

identified using Hough transform (Ballard, 1981), which is an algorithm that is able to recognize weak geometric

shapes in strong noise. A down-sampled version of the point cloud was created in order to achieve a more uniform

point density, and the two versions are from now on referred to as the dense point cloud and the sparse point cloud.

All unique coordinate combinations in the horizontal plane were extracted from the sparse point cloud, effectively

creating a binary 2D image. The vertical axis was in this step ignored, and two points with identical coordinates

in the horizontal plane but with different heights were therefore considered as one point. For each point in this

image, lines were created with attitudes ranging from 0° to 180° and with 1° intervals. Each line was stored as a

tuple consisting of the attitude angle and the orthogonal distance between the line and the origin of the 2D

coordinate system, which created a list of all possible linear features in the image.

The most frequently occurring line was chosen, and within this line, the largest cohesive cluster of points was

chosen using density-based clustering (scikit-learn, 2018). Even though the most frequent line represents a section

of the game fence, there will in many cases be points outside of the game fence that are located on the same line.

The clustering is therefore necessary to separate the game fence section from e.g., tree points that happen to be

part of the line. All points along the extents of this cluster, including the cluster itself, were removed from the

sparse point cloud, see Figure 3. This procedure was repeated until it was no longer possible to find a cohesive

linear cluster containing at least 300 points. The limit of 300 points was determined empirically.

The topology of the lines was determined by the points’ timestamps, and intersections were created between

neighboring lines if their angular difference was greater than an empirically determined threshold. In other cases,

a new line was created between the end points of the neighboring lines. The resulting polyline was matched against

the dense point cloud, and all points within a horizontal distance of 0.2 meters from the polyline were selected.

Since the ground points had already been removed from the dense point cloud, in cases where there was an actual

gap in the game fence, no points would likely be retrieved from the matching and the gap would therefore be

present in the final point cloud even though it was closed in the polyline.

Figure 3. Three images showing the first three steps (in order left to right) of the sequential application of

Hough transform. The images show the point cloud viewed from above. The red points are the identified linear

segment, and the black points are the remaining points. The identified segment and all points along its extent

were removed in each step.

ITcon Vol. 25 (2020), Uggla & Horemuz, pg. 552

2.2 PointNet

PointNet is written using Python and TensorFlow, and the code has been made available by Qi (2019). The creation

of training data described in this section was done using Python-code written by the authors and all training and

inference were performed using a Nvidia GTX 970 GPU.

PointNet is capable of point cloud classification, part segmentation, and semantic segmentation, out of which

semantic segmentation is most suitable for finding objects in MLS data. Semantic segmentation of point clouds is

similar to semantic segmentation of images in the sense that each individual point is given a classification, and

that objects of a given class may or may not be present in a sample presented to the network. PointNet requires

data to be in the form of blocks where every block contains the same number of points. In Qi et al. (2017), the

semantic segmentation functionality of PointNet was evaluated using the Stanford 3D semantic parsing data set

(Armeni et al., 2016) that consists of point clouds created by indoor terrestrial laser scanning. The dataset consists

of rooms, and for each room, the horizontal coordinate axes are aligned with the walls of the room. Each room

was divided into 1×1-meter blocks in the horizontal plane, and the points in each block were either down-sampled

or duplicated so that each block contained exactly 4096 points. Every point was represented by a vector consisting

of normalized local 3D coordinates describing the position of the points within each block, normalized 3D

coordinates describing the position of the points relative to the entire room, and the RGB values of the points. The

coordinates are normalized in such a way that they range from 0 to 1 within each block and within each room.

To determine how well PointNet can identify game fences in the given point cloud, two data sets were created.

The first data set consists of all points on the right side of the road along the stretches where game fences were

present, and the second data set consists of the filtered points created from the first stage of IBPCS. These two

data sets will from now on be referred to as the full point cloud and the IBPCS subset. For both data sets, four

regions with varying topography (flat ground and forest) were extracted. Each region was then divided into five

chunks creating a total of 20 chunks, see Figure 4. The chunks were divided into five groups so that each region

was represented in every group.

In each chunk, game fences were manually labeled using CloudCompare (2019). In order to efficiently divide each

chunk into the blocks required to train PointNet, all chunks were rotated so that they were aligned with the

coordinate axes in such a way that is shown in Figure 5.

After rotation, the point cloud was divided into a grid of 1×1-meter blocks and the number of points in each block

was either up or down sampled so that each block contained exactly 256 points, which was close to the average

point density of the point cloud. PointNet was then trained using cross validation between the five groups so that

all topographies were always present in the training and validation pools.

Figure 4. Regions and chunks used for training PointNet (full point cloud). The regions have been moved closer

together, but their orientation has not been changed. The bounding boxes of the individual chunks are shown as

red rectangles.

ITcon Vol. 25 (2020), Uggla & Horemuz, pg. 553

Figure 5. Orientation of point clouds used for PointNet. The grey area represents the road and the green area the

roadside region.

2.3 RESULTS

The image segmentation was evaluated using precision, recall and Cohen’s kappa coefficient Κ (Cohen, 1960):

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 , 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+ 𝐹𝑁
 , Κ =

𝑝𝑜− 𝑝𝑒

1− 𝑝𝑒

where 𝑇𝑃 is true positive, 𝐹𝑃 is false positive, and 𝐹𝑁 is false negative. 𝑝𝑜 is the observed agreement and 𝑝𝑒 is

the chance agreement. Precision is a measure of how many of the extracted features are of the sought-after class,

recall is a measure of how many of the sought-after features were extracted, and Κ is a measure of how well the

classifier performed in comparison to a random classifier. The numerical results shown in Table 1 are the average

values from 5 separate training sessions with randomly sampled training and validation pools.

Table 1. Numerical results from the FCN training. The precision and recall have been rounded to whole percent,

and the true positives (TP), false positives (FP), and false negatives (FN) are the number of pixels.

Precision Recall TP FP FN 𝒑𝒐 𝒑𝒆 𝚱

95% 87% 57719542 3347501 8338351 0.989 0.899 0.89

Figure 6 shows two samples from the validation pool and the predictions made by the FCN for the respective

samples. In the left sample, both the poles and the wiring of the game fence are clearly visible in the image, and

in the right sample, only the poles are visible. It is clear that the prediction for the left sample is better, but the

FCN still manages to predict a large portion of the game fence in the right sample even though the wiring is not

visible.

The final point classification was evaluated against a manual classification and point-wise precision and recall

were computed. No kappa coefficient was computed for the points as the large number of true negatives would

cause the kappa coefficient to be very close to 1 regardless of the results. The results from presented in Table 2.

Figure 6. Two samples from the validation pool and their respective predictions. The red color indicates pixels

that have been identified as game fence by the FCN.

ITcon Vol. 25 (2020), Uggla & Horemuz, pg. 554

Table 2. Precision and recall (rounded to whole percent) together with number of true positives (TP), false

positives (FP), and false negatives (FN) after the first and second stage of IBPCS. Total number of points in the

input data sets are shown in brackets.

Data set Precision (%) Recall (%) TP FP FN

1st stage

(160 000 000)

14 100 89864 569085 0

2nd stage

(659 000)

88 99 89386 12150 478

Visual examples of the results are shown in Figure 7. The left column (a) shows the results after the first stage of

IBPCS and it clearly explains the low precision in Table 2. The middle column (b) shows the results after the

second stage of IBPCS and the third column (c) shows the manual classification.

The precision and recall from the different PointNet data sets are shown in Table 3. The results show that the

accuracy of the classification is higher in the IBPCS subset compared to the full point cloud.

Table 3. Precision and recall (rounded to whole percent) together with number of true positives (TP), false

positives (FP), and false negatives (FN) from PointNet cross validation. Total number of points in the input data

sets shown in brackets.

Data set Precision (%) Recall (%) TP FP FN

Full point cloud

(12 223 000)

80 70 62958 15446 26275

IBPCS subset

(659 000)

90 75 66904 7195 22780

Visual examples from the PointNet applications are shown in Figure 8 and Figure 9.

Figure 7. Points remaining after the first stage (a), points remaining after the second stage (b), and ground truth

points (c), for two different locations in the data set. The upper row shows a game fence with forest behind it

and the second row shows a game fence surrounded by flat ground.

ITcon Vol. 25 (2020), Uggla & Horemuz, pg. 555

Figure 9. Example results from the PointNet cross validation of the IBPCS subset. Input data to the left (a), PointNet

prediction in the middle (b), and manually classified ground truth to the right (c). The top row shows an area with

forest, and the bottom row shows an area with flat ground.

Figure 8. Example results from the PointNet cross validation of the full point cloud. Input data to the left (a), PointNet

prediction in the middle (b), and manually classified ground truth to the right (c). The top row shows an area with forest,

and the bottom row shows an area with flat ground.

ITcon Vol. 25 (2020), Uggla & Horemuz, pg. 556

3. COMPUTATIONAL EFFICIENCY

There are many factors influencing the computational cost of the two methods. The horizontal extent of the point

cloud, the physical block size, and the number of points per block will affect the cost of using PointNet, while the

number of images, the image resolution, the frequency of the sought-after objects, and the choice and

implementation of the second stage algorithm will influence the cost of IBPCS. However, this does not mean that

there is nothing to say regarding their relative efficiency. The first stage of IBPCS creates a subset of the initial

point cloud, and if it is quicker to create this subset and apply an algorithm to it than it is to apply the same

algorithm to the full point cloud, it would mean that IBPCS can reduce the computational cost over the entire data

set. In equation form, this comparison can be written as:

𝐶𝑆 + 𝐶𝑇 + 𝐶𝐴(𝑆) < 𝐶𝐴(𝐹)

where 𝐶𝑆 is the cost of segmenting all images, 𝐶𝑇 is the cost of transferring the pixel information from the positive

predictions to the point cloud, 𝐶𝐴(𝑆) is the cost of applying an algorithm to the resulting subset, and 𝐶𝐴(𝐹) is the

cost of applying the same algorithm to the full point cloud. In order to investigate this, a theoretical experiment

was carried out using values taken from the implementations in this article. It is difficult to compare the cost of

applying a geometric algorithm to the full point cloud to applying the same algorithm to a subset of the point cloud,

especially since the second stage algorithm used in this article would not deliver the desired results when applied

to a full point cloud. Also, most geometric algorithms are to some extent exponential in their complexity, and the

methods used for clustering and indexing the point cloud would greatly affect the outcome. However, the

complexity of PointNet is truly linear with respect to the horizontal extents of the point cloud, and PointNet could

be applied to both a full point cloud as well as a subset. Therefore, the question this analysis tries to answer is: can

it be more efficient to create a subset of a point cloud using IBPCS and applying PointNet to this subset compared

to applying PointNet to the full point cloud?

The experiment considers a stretch of road that is 70 meters long. The images in the data set were captured roughly

7 meters apart, and there are therefore 10 image pairs covering this stretch, considering images from the two

cameras that are facing right in direction of the vehicle. Five 1000×1000-pixel tiles were extracted from each

image pair (2 and 3 tiles from the respective cameras) which means that there is a total of 50 image tiles for this

stretch of road. The average width of the point cloud, assuming that there are trees on both sides of the road, is

roughly 70 meters, which corresponds to 4900 blocks. If there were flat ground on both sides of the road, the width

of the point cloud would be greater. The subset created by IBPCS was on average 6 meters wide, which in turn

corresponds to 420 blocks. The approximate times required for the different computations are shown in Table 4.

Table 4. Computation times for different operations. All times are estimated averages.

Operation Time (s)

Segmenting one image tile with FCN 0.33

Segmenting 50 image tiles with FCN 16.5

Projecting points for one image 0.50

Projecting points for 20 images 10.00

Processing one block with PointNet 0.01

Processing 420 blocks with PointNet 4.20

Processing 4900 blocks with PointNet 49.00

This means that the total computation time for IBPCS where PointNet is used as its second stage is 16.5 + 10 +

4.2 = 30.7 seconds, while applying PointNet directly would take 49 seconds. This is shown visually in Figure 10.

It is possible that the extent of the point cloud could be limited in such a way that only the right side of the road

and only the points closer than e.g., 15 meters from the scanner were considered by filtering the raw data from the

scanner. This would mean that there are now only 1050 blocks for PointNet to process, and this would take 10.5

ITcon Vol. 25 (2020), Uggla & Horemuz, pg. 557

seconds. If the raw data from the scanner is not available, such a limitation would have to be computed from the

trajectory of the car using e.g., the known camera positions.

This example shows us that using IBPCS with PointNet as its second stage can in fact be quicker than applying

PointNet to the full point cloud. It also shows that if the extent of the point cloud can be limited in through other

means, using PointNet without the first stage of IBPCS can also be the quicker alternative. In this scenario, it is

assumed that the game fence is continuous throughout the area, which would rarely be the case when scanning

larger road networks. For the cases where the sought-after objects are not continuous in the entire data set, the

computational efficiency of IBPCS improves. Only the images that contain positive pixels would have to be

considered during perspective projection, and the ratio between the size of the exported subset and the distance

driven would decrease.

The results from this experiment do not include the computations required for cropping and stitching images or

for splitting the point cloud into blocks. In addition, changes to the factors described in the beginning of the section

heavily affects the outcome. For example, reducing the size of the image tiles from 1000×1000 pixels to 500×500

reduces the segmentation time from 0.33 to 0.09 seconds, and increasing the number of points per block from 256

to 4096 increases the computation time from 0.01 to 0.025 seconds.

4. DISCUSSION

The task and data set used in this article are limited in both size and scope, and one should be careful to draw too

strong conclusions from the presented results. Nonetheless, the results do show that IBPCS manages to identify a

challenging object type with higher accuracy and efficiency when compared to PointNet. The chosen scenario is

challenging mainly due to two reasons: a majority of the points in the subset created through perspective projection

do not belong to the sought-after object, and since the game fence is continuously present, all images have to be

projected to the point cloud. Most other object types, given that they are more solid in their nature, will be easier

to identify and extract, and if the sought-after objects are more infrequent, the efficiency of IBPCS will increase.

It typically requires less effort to annotate training data in 2D images compared to 3D point clouds, and the

availability of pre-trained 2D CNNs makes training a neural network for image segmentation a relatively easy

task.

An obvious weakness of the IBPCS is that the second stage depends on the object type. The algorithm used in this

article to separate game fences from trees is somewhat elaborate, but still much simpler than any algorithm that

could be applied to the full point cloud. For many object types, the second stage algorithm would likely consist of

ground point removal and noise filtering, which possibly could allow for approaches that are more generic. IBPCS

does not require that a specific neural network is used for image segmentation. Therefore, implementations of the

method are flexible and can be updated to follow advances made in the field without having to change other

Figure 10. Bar chart showing the computational costs of the different computations. Filtering the point cloud

using IBPCS before applying PointNet is more efficient than applying PointNet to the full point cloud.

ITcon Vol. 25 (2020), Uggla & Horemuz, pg. 558

components of the system. The image segmentation used in IBPCS is largely invariant to driving speed, given that

fast enough shutter times can be used, but it is on the other hand dependent on ambient light. Since MLS data are

usually not collected during the night or during heavy rainfall, the images will likely be taken under one of two

light conditions – sunlight or overcast. The FCN architecture has shown strong performance on data sets consisting

of many object classes and where the images have been captured by different cameras and under different

conditions (Long et al., 2015; Everingham et al., 2012), so training an FCN that is robust to differences in ambient

light is likely not too difficult. The second stage of IBPCS processes the point cloud directly and will therefore to

some extent be affected by varying driving speeds and varying point densities.

Comparing the complexity and computational cost of the IBPCS and PointNet is difficult since there are many

influencing factors. Without considering hardware, the two most influential factors for the cost of IBPCS are image

resolution and point cloud density, while the cost of PointNet almost entirely depends on the point cloud density,

or more exactly the number of points per block. The example in Section 3 shows that using the first stage of IBPCS

before applying PointNet can be more efficient than applying PointNet to the entire point cloud even in a situation

where the sought-after object is continuously present along the road. For continuous objects, it is possible that

other filtering methods can be more efficient than IBPCS. Examples of such could be to use raw data from the

scanner and filter the point cloud based on distance, or to use the trajectory of the vehicle and selecting areas within

a certain distance from the trajectory. What IBPCS can do that these filtering methods cannot is to extract regions

based on semantic information and visual appearance. Therefore, in situations where the sought-after objects are

not continuously present (e.g., poles, lights, signs, and signals), the benefits of IBPCS become apparent.

This article focuses solely on mobile laser scanning, but IBPCS is compatible with point clouds created through

photogrammetry as well. Since all points in a photogrammetric point cloud have a topological connection to the

pixels in the images, it is not necessary to use perspective projection to transfer the semantic information. In the

case of laser scanning there is a problem of occlusion, where points appearing behind a certain object from the

perspective of the camera are assigned the same classification as the object. This does not happen with

photogrammetry, as there are no points in the point cloud that are not visible in the corresponding images.

5. CONCLUSIONS AND FUTURE OUTLOOK

This article provides a description of the IBPCS method, an example where it was used to identify roadside game

fences, and a discussion of its strengths, weaknesses, and when it is suitable to use. It was shown that IBPCS

outperformed PointNet, in both terms of accuracy and efficiency, for a scenario that was not geared towards the

strengths of IBPCS.

The strength of IBPCS is that it has close to linear complexity with respect to distance covered, and that it can

identify relevant regions of based on their visual appearances in images. This in turn drastically reduces the number

of points that have to be considered in the object identification and it allows much simpler algorithms to be used.

Two characteristics of point clouds captured by MLS in rural areas are that they typically cover long distances and

that most points often are irrelevant for object identification, and this makes IBPCS a suitable method for the task.

The main weakness of IBPCS is the second stage processing. Choosing and tuning an appropriate algorithm can

be very dependent on the type of object and the density of the point cloud. Going forward, it would be valuable to

investigate if the second stage processing techniques can be generalized, making the method more robust. For

example, it could be possible that most objects with a solid appearance can be extracted by simply removing

ground points and noise. This should be tested using data captured from different geographic regions, topographies,

and MLS systems in order to identify algorithms that are robust to such variations.

The academic contribution of this work is a novel method for object identification in MLS data that uses images

as its primary data source. The method takes advantage of data that often is captured but rarely used, and this

article shows how this data can be used to create a subset of a point cloud, limiting both the number of points and

the semantic content. The practical contribution of this work is an efficient method capable of identifying roadside

objects that can be used for infrastructure documentation. Thanks to transfer learning and the relative ease of

creating image training data, the method is easy to implement and use in practice.

ITcon Vol. 25 (2020), Uggla & Horemuz, pg. 559

ACKNOWLEDGMENT

The authors would like to acknowledge the support by the Swedish Transport Administration, Grant No. FUD

6240.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin,

M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L.,

Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens,

J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals,

O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015). TensorFlow: Large-scale

machine learning on heterogeneous systems. https://www.tensorflow.org/about/bib. Last accessed 2019-

12-10.

Arcos-García, A., Soilán, M., Alvarez García, J. A., and Riveiro, B. (2017). Exploiting synergies of mobile

mapping sensors and deep learning for traffic sign recognition systems. Expert Systems with Applications,

89:286 – 295.

Armeni, I., Sener, O., Zamir, A. R., Jiang, H., Brilakis, I., Fischer, M. and Savarese, S. (2016). 3D semantic parsing

of large-scale indoor spaces. In proceedings: IEEE International Conference on Computer Vision and

Pattern Recognition 2016.

Ballard, D. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition, 13(2):111–

122.

Che, E., Jung, J., and Olsen, M. J. (2019). Object recognition, segmentation, and classification of mobile laser

scanning point clouds: A state of the art review. Sensors, 19(4).

Chen, L., Lin, K. X., Siu, M. F., Wang, Y. H., Chan P. C., and Lau, C. F. (2019). Classification of construction

trade and quantification of work efficiency using posture recognitions and deep neural networks. In

proceedings: CIB World Building Congress 2019. Hong Kong.

Chen, L., Wang, Y. H., and Siu, M. F. (2020). Detecting semantic regions of construction site images by transfer

learning and saliency computation. Automation in Construction, 114:103185.

Chollet, F. (2015). Keras. https://github.com/fchollet/keras. Last accessed 2019-12-10.

CloudCompare (version 2.9.1) [GPL software]. (2019). Retrieved from http://www.cloudcompare.org. Last

accessed 2019-12-10.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20

(1), pp. 37-46.

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E. and Darrell, T. (2013). DeCAF: a deep

convolutional activation feature for generic visual recognition. arXiv:1310.1531 [cs.CV].

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., and Zisserman, A. (2012). The PASCAL Visual

Object Classes Challenge 2012 (VOC2012) Results.

http://www.pascalnetwork.org/challenges/VOC/voc2012/workshop/index.html. Last accessed 2019-12-

10.

Geiger, A., Lauer, M., Wojek, C., Stiller, C. and Urtasun, R. (2014). 3D traffic scene understanding from movable

platforms, IEEE Transactions on Pattern Analysis and Machine Intelligence, 36 (5), pp. 1012-1025.

Guan, H., Li, J., Cao, S., and Yu, Y. (2016). Use of mobile LiDAR in road information inventory: a review.

International Journal of Image and Data Fusion, 7(3):219–242.

Guan, H., Yu, Y., Ji, Z., Li, J. and Zhang, Q. (2015). Deep learning-based tree classification using mobile LiDAR

data. Remote Sensing Letters, 6 (11), pp. 864-873.

Halvorsen, I. (2015). [Asset Database – Stakeholder analysis regarding data needs]. Swedish Transport

Administration/TRV 2013/24513 (in Swedish).

Jones, E., Oliphant, T., Peterson, P., et al. (2001). SciPy: Open source scientific tools for Python.

http://www.scipy.org/. Last accessed 2019-12-10.

Kong, S. and Fowlkes, C. C. (2018). Pixel-wise attentional gating for parsimonius pixel labeling.

arXiv:1805.01556 [cs.CV].

http://www.cloudcompare.org/

ITcon Vol. 25 (2020), Uggla & Horemuz, pg. 560

Krizhevsky, A., Sutskever, I. and Hinton, G. (2012). ImageNet classification with deep convolutional neural

networks. In proceedings: Advances in Neural Information Processing Systems, 25, pp. 1090-1098.

LeCun, Y., Bengio, Y. and Hinton, G. (2015). Deep learning. Nature, 521, pp. 436-444.

LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. E., and Jackel, L. D. (1990).

Handwritten digit recognition with a back-propagation network. In Touretzky, D. S., editor, Advances in

Neural Information Processing Systems 2, pages 396– 404. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA.

Long, J., Shelhamer, E. and Darrell, T. (2015). Fully convolutional networks for semantic segmentation. IEEE

Transactions on Pattern Analysis and Machine Intelligence, pp. 640-651.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,

Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and

Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,

12:2825–2830.

Point Grey. (2017). Ladybug 5 specification. https://www.ptgrey.com/support/downloads/10150. Last accessed

2019-12-10.

Pu, S., Rutzinger, M., Vosselman, G. and Oude Elberink, S. (2011). Recognizing basic structures from mobile

laser scanning data for road inventory studies. ISPRS Journal of Photogrammetry and Remote Sensing,

66 (6), pp. 28-39.

Qi, C. R. (2019). PointNet GitHub repository. https://github.com/charlesq34/pointnet. Last accessed 2019-12-10.

Qi, C. R., Su, H., Kaichun, M., and Guibas, L. (2017). PointNet: Deep learning on point sets for 3D classification

and segmentation. arXiv:1612.00593 [cs.CV].

Razavian, A. S., Azizpour, H., Sullivan, J. and Carlsson, S. (2014). CNN features off-the-shelf: an astounding

baseline for recognition. In proceedings: 2014 IEEE Conference on Computer Vision and Pattern

Recognition Workshops, Columbus, OH, pp. 512-519.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,

M., Berg, A. C. and Li, F. (2015). ImageNet large scale visual recognition challenge. International

Journal of Computer Vision, 115 (3), pp. 211-252.

Salakhutdinov, R. & Hinton, G. (2009). Deep Boltzmann machines. In proceedings: International Conference on

Artificial Intelligence and Statistics, pp. 448-455.

scikit-learn (2018). DBSCAN. https://scikit-learn.org/stable/modules/clustering.html#dbscan. Last accessed

2019-12-10.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition.

arXiv:1409.1556 [cs.CV].

Soilán, M., Riveiro, B., Martínez-Sánchez, J. and Arias, P. (2016). Automatic road sign inventory using mobile

mapping systems. The International Archives of the Photogrammetry, Remote Sensing and Spatial

Information Sciences, XLI-B3, pp. 717-723.

Uggla, G. (2019). Classification and object reconstruction in point clouds using semantic segmentation and transfer

learning. In proceedings: CIB World Building Congress 2019. Hong Kong.

Uggla, G. and Horemuz, M. (2018). Geographic capabilities and limitations of Industry Foundation Classes.

Automation in Construction, 96:554–566.

Vechersky, P., Cox, M., Borges, P. and Lowe, T. (2018). Colourising point clouds using independent cameras,

IEEE Robotics and Automation Letters, 3 (4), pp. 3575-3582.

Yang, G., Zhao, H., Shi, J., Deng, Z., and Jia, J. (2018). Segstereo: Exploiting semantic information for disparity

estimation. In Ferrari, V., Hebert, M., Sminchisescu, C., and Weiss, Y., editors, Computer Vision – ECCV

2018, pp. 660-676, Cham. Springer International Publishing.

Yu, Y., Li, J., Guan, H., Jia, F. and Wang, C. (2015). Learning hierarchical features for automated extraction of

road markings from 3-D mobile LiDAR point clouds. IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, 8 (2), pp. 709-726.

https://www.ptgrey.com/support/downloads/10150
https://github.com/charlesq34/pointnet

	Identifying roadside objects in mobile laser scanning DATA USING IMAGE-BASED POINT CLOUD SEGMENTATION
	1. INTRODUCTION
	1.1 Aim and contribution
	1.2 Background and related research

	2. IDENTIFYING GAME FENCES IN A POINT CLOUD
	2.1 Image-based point cloud segmentation
	2.1.1 Stage one - semantic segmentation and classification transfer
	2.1.2 Stage two – geometric processing

	2.2 PointNet
	2.3 RESULTS

	3. Computational efficiency
	4. DISCUSSION
	5. CONCLUSIONS AND FUTURE OUTLOOK
	ACKNowledgment
	REFERENCES

