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SUMMARY: A robust monitoring system is essential for ensuring safety and reliability in automated construction. 

Activity recognition is one of the critical tasks in automated monitoring. Existing studies in this area have not fully 

exploited the potential for enhancing the performance of machine learning algorithms using domain knowledge, 

especially in problem formulation. This paper presents a hierarchical machine learning framework for improving 

the accuracy of identification of Automated Construction System (ACS) operations. The proposed identification 

framework arranges the operations to be identified in the form of a hierarchy and uses multiple classifiers that 

are organized hierarchically for separating the operation classes. It is tested on a laboratory prototype of an ACS, 

which follows a top-down construction method. The ACS consists of a set of lightweight and portable machinery 

designed to automate the construction of the structural frame of low-rise buildings . Accelerometers were deployed 

at critical locations on the structure. The acceleration data collected while operating the equipment were used to 

identify the operations through machine learning techniques. The performance of the proposed framework is 

compared with that of the conventional approach for equipment operation identification which involves a flat list 

of classes to be separated. The performance was comparable at the top level. However, the hierarchical framework 

outperformed the conventional one when fine levels of operations were identified. The versatility and noise 

tolerance of the hierarchical framework are also reported. Results demonstrate that the framework is robust, and 

it is feasible to identify the ACS operations precisely. Although the proposed framework is validated on a full-

scale prototype of the ACS, the effects of strong ambient disturbances on actual construction sites have not been 

evaluated. This study will support the development of an automated monitoring system and assist the main 

operator to ensure safe operations. The high-level operation details collected for this purpose can also be utilised 

for project performance assessment and progress monitoring. The potential application of the proposed 

hierarchical framework in the operation recognition of conventional construction equipment is also outlined.  
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1. INTRODUCTION AND BACKGROUND 

Growing demand for complex buildings and affordable mass housing, along with the recognized need for 

improving working conditions and safety, have given a greater push to the adoption of automation and robotics in 

construction. Researchers have studied automation of various aspects of construction such as planning and 

scheduling (Piroozfar et al., 2019; Wang and Azar, 2019; Aslam et al., 2021), construction materials and methods 

(Raphael et al., 2016; Tamayo et al., 2018; Lemke et al., 2019; Men and Zhang, 2019), construction progress 

monitoring (Golparvar-Fard et al., 2009; Harichandran et al., 2018; Mahami et al., 2019), resource allocation and 

tracking (Azar, 2016; Kargul et al., 2017; Kim and Chi, 2017; Hongjo Kim et al., 2018), quality assurance and 

quality control (Zhong et al., 2018; Kazemian et al., 2019; Lakhal et al., 2019), improving safety at the worksite 

(Park et al., 2017; Nnaji and Karakhan, 2020; Ammad et al., 2021), assessing labour productivity (Joshua and 

Varghese, 2014; Cheng et al., 2017, 2021), and structural health monitoring (Alavi et al., 2016; Liu and Zhang, 

2019; Valero et al., 2019; Sun et al., 2020). However, the application of automation and robotic technologies in 

actual construction sites is still in very early stages. In particular, automated systems for the construction of low-

rise buildings are rare. A vast majority of automated construction systems (ACS) and related technologies were 

developed for high rise buildings (Gassel; Hamada et al., 1998; Bock and Linner, 2016b). Urgent relocation, 

treatment or temporary accommodation of a large population affected by natural calamities or pandemic are 

examples of situations that demand rapid construction of low-rise buildings. In this context, automation and robotic 

technologies for low-rise buildings are gaining increasing attention. A top to bottom construction method of low-

rise buildings with automated coordinated lifting is described in (Raphael et al., 2016). This is further developed 

into an automated top-down construction system for modular construction of low-rise buildings (Harichandran et 

al., 2019b, 2019a, 2020). 

Even in the midst of rapid technological advancements, the construction industry is far away from a fully 

automated or robotic construction site (Melenbrink et al., 2020). Until we reach this stage, the automation systems, 

robots and workers need to coexist on construction sites (Bock and Linner, 2016a). These scenarios involve 

complex interactions between machines and workers and have risks associated with unsafe conditions. This 

necessitates the development of an automated monitoring system for safe operations (Fig. 1). Construction 

monitoring using sensor data involves several challenges, such as designing an optimal sensor configuration and 

data interpretation. There have been several studies on sensor placement, both in construction and other domains. 

For examples, see (Papadopoulou et al., 2016; Yu et al., 2018; Goyal et al., 2019; Mahami et al., 2019; Mahjoubi 

et al., 2020; Pachón et al., 2020). While challenges related to sensor placement are not fully solved yet, greater 

challenges exist in data interpretation. Whether construction operations can be accurately identified using sensor 

data is an interesting question. In this paper, the term 'Operation' refers to low-level activities related to the use of 

the construction equipment. These might be considered as subparts in the decomposition of higher-level 

construction activities. 

Operation identification is one of the critical tasks in an automated monitoring system (Sherafat et al., 2020). The 

monitoring system must identify operations in progress and possibly discern faulty operations to warn the operator 

on time. To identify faulty operations, precise identification of the operating states is necessary. This paper presents 

the first stage of this research, which focuses on identifying the normal operations in an ACS. This will be further 

extended to the detection of faults. The ACS developed for this study is for the construction of low-rise buildings 

(Harichandran et al., 2020). However, the identification framework proposed in this study can be applied to 

traditional, automated or robotic construction (Fig. 1). Sensors measuring structural responses are installed on the 

structure during the construction. The interactions between labour, materials, equipment, and structure will be 

reflected in the structural responses. These responses reveal the operation being carried out. This is the central idea 

of this operation identification framework (Harichandran et al., 2018, 2019b, 2019a). Sensor placement is not 

considered within the scope of this study, and the present framework attempts to achieve the best identification for 

a given sensor configuration. 

Activity recognition is a widely studied area in construction. Most of these studies focus on identifying the right 

data to be collected, the data analysis method, the learning algorithm or features to be selected to improve 

identification performance (Sherafat et al., 2020). Some examples can be found in (Catal et al., 2015; Akhavian 

and Behzadan, 2016; Cheng et al., 2017; Twomey et al., 2018). A critical review of these studies is given in section 

2.2. However, the importance of the problem formulation for operation identification is seldom considered. By 

incorporating knowledge of relationships between activities, the efficiency of operation identification might be 
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improved (Soman et al., 2017). This paper incorporates this knowledge in the problem formulation by arranging 

the classes to be identified in a hierarchy.  Thus, the operation identification problem is decomposed into a 

hierarchy of learning tasks. The lower levels of the hierarchy contain the finer details of the operation. The 

information from previous classification levels is used to improve the identification in subsequent levels. This 

novel hierarchical identification framework based on machine learning is the main contribution of this paper. The 

performance of the proposed framework is compared with that of the conventional operation identification 

approach, which involves a flat list of operation classes. Artificial neural networks (ANN) are adopted as classifiers 

for both methods.  

 

FIG. 1: Role of the current study on the context of automated/robotic construction 

The overall objective of this study is the precise identification of Automated Construction System (ACS) 

operations using the hierarchical machine learning framework from acceleration data acquired from the structure. 

The broader context and the scope of the current study are shown in Fig. 2. The three major components of an 

automated construction monitoring system are operation identification, operation tracking and performance 

estimation (Sherafat et al., 2020). The present study addresses the operation identification problem focusing on 

the normal operations of an ACS. Identifying failure conditions is essential for the further development of a 

monitoring system. Generally, vibration, sound, images or videos of the construction equipment are collected for 

activity recognition. The present study uses the vibration data from the structure for operation identification. While 

there are several model-based methods like system identification (Soman et al., 2017) to estimate the actual 

condition from sensor data, the model-free method based on machine learning (Golparvar-Fard et al., 2013; Ahn 

et al., 2015) is adopted for this study. To benchmark the performance of the newly proposed hierarchical problem 

formulation, the conventional approach is also presented. 

The hierarchical identification framework will be most beneficial to the operators of automated equipment in the 

construction work. It helps them to ensure the safety and stability of the structure being constructed. For example, 

consider the coordinated lifting operation in an ACS. During coordinated lifting, all supports should lift 

simultaneously to move the structure upwards. Suppose one of the supports moves faster due to some internal error 

in the machine. A part of the structure will be lifted faster than the other and eventually result in the overturning 

of the entire structure. Situations like these will cause catastrophic accidents in real construction scenarios. Hence 

the monitoring system should be trained to accurately recognise each operation to detect any early signs of 

anomalies. This paper presents the first stage of this research, which focuses on identifying the normal operations 

in an ACS. This will be further extended to the detection of faults. During automated construction, the operator 

will be updated with the status of the operations to the finest level of the details to take necessary actions in case 

of potential failure cases. The final goal is to develop an integrated automated construction monitoring system. 

Such a system will provide real-time information about all the construction operations. This will help to ensure 

the correct execution of the operations. Besides, the construction progress can be monitored, the productivity rates 

could be estimated, and good quality of construction is ensured. The construction progress information can be 

made accessible to the client, the main subcontractor and the project manager for assessing the performance of the 
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whole project. Even though the identification framework is validated on a top-down construction case study here, 

it can be applied to any type of construction system. However, the hierarchy of learning tasks varies with the 

chosen construction method. 

 

FIG. 2: Research objective: Hierarchical identification of automated construction operations from sensor data 

(Scope of the current study is displayed in green colour boxes with dashed outline) 

The rest of the paper is organised as follows: Previous research on automated monitoring systems and construction 

operation identification are briefly described in Section 2. A brief description of the ACS and automated top-down 

construction method is given in Section 3. Section 4 contains the research methodology and the concept of the 

hierarchical identification framework. Section 5 describes the application of the developed framework on an ACS. 

The subsequent section covers the results of the analysis and discussion of the observations. The final sections 

illustrate the generality of the proposed framework and the conclusions from the study. 

2. REVIEW OF RELATED WORK 

The review of previous work in this area is divided into two sections. The first section gives an overview of the 

existing Automated Construction Systems and the monitoring methods adopted. The second section covers the 

studies related to operation identification of construction equipment. 

2.1. Monitoring in automated construction systems 

Automated construction systems are widely developed for the construction of high-rise buildings. In literature, the 

space containing the automation equipment is referred to as the factory. This is because of its analogy with 

industrial production, where components are produced with a high level of automation. Construction automation 

systems belong to different classes based on the location of the main factory (Bock and Linner, 2016b). If the 

location of the main factory is the top of the building (sky factory) (Wakisaka et al., 2000), it will be shifted 

upwards as the work progresses. If the main factory is located on the ground floor (ground factory) (Sekiguchi et 

al., 1997), the constructed part of the building will be pushed vertically upwards or horizontally depending on the 

orientation of the building. There are other factory systems that combine both onsite and offsite construction (Bock 

and Linner, 2016b).  

Table 1 lists some of the ACSs and the monitoring systems adopted in them. The components of the monitoring 

system involve sensors, cameras, barcodes, control room, laser, RFID and software for data collection and analysis 

(Sekiguchi et al., 1997; Tanijiri et al., 1997; Yamazaki and Maeda, 1998; Wakisaka et al., 2000; Ikeda and Harada, 

2006). Some current ACSs lack real-time monitoring systems (Gassel; Bock and Linner, 2016b). However, 

monitoring in other ACSs is usually performed for checking whether specific tasks have been completed 

successfully. Most construction systems have independent sub-systems focusing on designated tasks like material 

handling, assembling, lifting, etc. (Kang et al., 2011). Hence, collecting integrated information about the whole 
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automated construction is highly challenging. This information is crucial for critical decision making, especially 

to avoid major accidents (Harichandran et al., 2019a). 

TABLE. 1: Monitoring systems in Automated Construction Systems (ACS) 

Reference ACS Company 
Construction scheme 

[29] 

Realtime 

monitoring 

system 

Monitoring system 

components 

(Hamada et al., 

1998) 
BIG CANOPY Obayashi 

Sky Factory moving 

upwards on supports 
Yes 

Simulation and 

optimization software, 

barcode 

(Wakisaka et 

al., 2000) 

Automated structural steel 

Building Construction System 

(ABCS) 

Obayashi 

Sky Factory moving 

upwards supported 

by the structure 

Yes 
Sensor system, 

cameras, barcode  

(Sekiguchi et 

al., 1997) 

Automatic Up-Rising 

Construction by Advanced 

Technique (AMURAD) 

Kajima 
Ground Factory and 

building push-up 
Yes Sensors, control room 

(Yamazaki and 
Maeda, 1998) 

Shimizu Manufacturing System 

by Advanced Robot Technology 

(SMART) 

Shimizu 

Sky Factory moving 

upwards supported 

by the structure 

Yes 

Bar code, laser, control 

room, simulation and 

optimization software 

(Kang et al., 

2011) 

Robotic and Crane based 
Automatic Construction System 

(RCACS) 

Korean Cons. 
Sky Factory pulled 

up along core 
Yes 

Sensor-based real-time 
progress and 

visualisation system 

Machines in automated or robotic construction should not be entrusted to make logical decisions when there are 

large uncertainties in situations that are likely to cause accidents. A human operator can act better in those 

scenarios. However, software systems are better equipped for discerning minute variations in patterns of 

construction-related data (Harichandran et al., 2019b). If the meaning of these patterns is readily interpretable, 

humans can take quick decisions based on the circumstances. This is why an integrated automated monitoring 

system with a human operator will have better control over overall construction than discrete construction sub-

systems. Unlike high rise ACSs with numerous sub-systems, the development of an integrated monitoring system 

for low-rise automated construction is feasible. Presently, there are limited studies in this area. The authors of the 

current study have developed an ACS for low-rise building construction  (Harichandran et al., 2019b, 2019a, 

2020). Identifying the basic operations of the ACS is the primary step in the development of an automated 

monitoring system. Integrated information about the construction process can be obtained from sensor 

measurements taken from either the structure under construction (Harichandran et al., 2019b) or the construction 

equipment (Soman et al., 2017). The present study attempts to identify the operations of an ACS from the sensor 

data collected from the structure. This approach applies to automated and robotic constructions involving different 

scenarios such as site factory and single or multiple robots on site. The construction operation can be identified 

irrespective of the construction method since the interaction of the robots, and the structure will create structural 

responses that have characteristic patterns. 

2.2. Identification of construction equipment operations 

In most studies, construction equipment is monitored to calculate cycle time, productivity, cost and fuel 

consumption or optimally allocate resources (Chen et al., 2020; Shi et al., 2020; Slaton et al., 2020). In such cases, 

minor mistakes in identification are not critical. Since this work aims to develop an automated monitoring system 

for the safe operation of construction equipment, the expected identification accuracy is high. The majority of 

existing equipment activity identification methods use computer vision, sensor data, audio data, or other 

characteristic measurements from the equipment. Table 2 and 3 summarise various equipment activity recognition 

methods and their performances. The methods are subdivided based on the data collected for identification (visual 

data, sensor data and audio data). The following paragraphs further examine each of these activity recognition 

methods and their applicability to identify automated construction operations. 

With the advent of low-cost recording devices and better computing platforms, computer vision-based methods of 

activity identification become extremely popular. Golparvar-Fard et al. (Golparvar-Fard et al., 2013) used Spatio-

temporal features from video recordings to identify activities of excavator and dump truck with Support Vector 

Machines (SVM). They focus on identifying the single actions of earthmoving equipment. The problems due to 

noisy feature points, varied background, poses of equipment and levels of occlusion were addressed. Kim et al. (J. 
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Kim et al., 2018) included the interactions between excavators and dump trucks to identify their operations using 

tracking-learning-detection. They showed that the incorporation of domain knowledge in problem formulation 

considerably improved the identification accuracy. Kim and Chi (Kim and Chi, 2019) considered the sequential 

working pattern of excavators for improving vision-based action recognition. They have used a hybrid of two deep 

learning methods for classification. The activities of heavy equipment and labours were identified by the bag-of-

video-feature-words framework and overcame the limitations of variations in scale, partial obstruction and point 

of view (Gong et al., 2011). All of these methods show promising results. However, the construction site is a 

complex environment with various disturbances and obstructions. The dynamic nature of operations cannot be 

fully captured by still cameras (Sherafat et al., 2020). The applicability of computer vision-based methods is 

limited in this aspect. Most of these studies identify activities of earth excavation or moving equipment. This 

equipment has articulating parts or movements which can be clearly captured through visual data. Identifying 

minute variations in the parts of equipment during various operations is exceptionally challenging by computer 

vision-based methods. Hence, activity recognition based on visual data will not be suitable for identifying 

operations of ACS. 

TABLE. 2: Overview of equipment activity identification systems 

Reference 
Purpose of activity 

identification 
Equipment Data collected 

Testing 

environment 

Number and type of 

activities 

Activity recognition based on visual data 

(Golparvar-Fard et 
al., 2013) 

For automating 

construction activity 

analysis 

Excavator and  
truck 

Videos 
Actual construction  
site 

Excavator: 3 (digging, 

dumping, hauling / 
swinging); Truck: 3 

(filling, moving, dumping) 

(J. Kim et al., 2018) 

Estimating cycle time 

and equipment 

productivity 

Excavator and  

dump truck 
Images 

Actual construction  

site 

3 (stopping, moving, 

scooping/ rotating/ 

dropping) 

(Kim and Chi, 

2019) 

Estimating cycle time 

and equipment 

productivity 

Excavator Images 
Actual construction  

site 

4 (digging, hauling, 

dumping, swinging) 

(Roberts and 

Golparvar-Fard, 

2019) 

Estimating equipment 
productivity 

Excavator and  
dump truck 

Videos 
Actual construction  
site 

Excavator: 5 (idle, swing 

bucket, load bucket, 
dump, move); Dump 

truck: 2 (fill, move) 

(Chen et al., 2020) 

Estimating equipment's 

operation time, 

operating cycle and 
productivity. 

Excavators Videos 
Actual construction  

site 

3 (digging, swinging, 

loading) 

 Activity recognition based on sensor data   

(Ahn et al., 2015) 

Estimating 

environmental 

performance and 

equipment operational 

efficiency 

Excavator 
Acceleration  
data 

Instructed 

operations in an 

actual construction 
site (sensors inside 

the equipment 

cabin) 

3 (engine-off, idling, 
working modes) 

(Akhavian and 

Behzadan, 2015) 

Estimating activity 

duration for simulation 

input modelling 

Front-end loader 

Acceleration  

data, 

Gyroscope data 

and Positional 
data (GPS) 

Actual construction  

site (smartphone 
(built-in 

smartphone 

sensors) inside 

equipment cabin) 

At classification level 2: 3 

(engine off, idle, busy); 
At classification level 3: 4 

(engine off, idle, moving 

& scooping, moving & 

dumping); 
At classification level 4: 5 

(engine off, idle, moving, 

scooping, dumping) 

(Hyunsoo Kim et 
al., 2018) 

Estimating equipment 
cycle time  

Excavator 

Inertial 

Measurement 
Unit (IMU) 

data 

Actual construction  

site (smartphone 

(built-in 
smartphone sensor) 

inside equipment 

cabin) 

5 (idle, wheelbase motion, 

cabin rotation (anti-

clockwise and clockwise 

rotation), bucket/arm 

movement) 



 

 

 
ITcon Vol. 26 (2021), Harichandran et al., pg. 597 

Reference 
Purpose of activity 

identification 
Equipment Data collected 

Testing 

environment 

Number and type of 

activities 

(Rashid and Louis, 

2019) 

Estimating the 
performance of 

equipment 

Excavator and 

front-end loader 
IMU data 

Actual construction  

site (sensors on 
different articulated 

parts of the 

equipment) 

Excavator: 9 (engine off, 

idle, scoop, dump, swing 

loaded, swing empty, 
move forward, move 

backwards, level ground); 

Front-end loader: 10 

(engine off, idle, scoop, 

raise, dump, lower, move 
forward loaded, move 

backwards loaded, move 

forward empty, move 

backwards empty) 

(Shi et al., 2020) 

Estimate the working  
cycle stages of 

equipment for energy 

and fuel efficiency. 

Excavator 

Main pump  
pressure and 

displacement 

data 

Instructed 
operations (pressure 

sensors on main 

pump outlet, 

displacement 

sensors on rod 
chamber of the 

boom, arm, and 

bucket cylinders) 

5 (pre-digging, digging,  

lifting, unloading, 

swinging) 

(Slaton et al., 2020) 
Estimating equipment  

productivity 

Roller compactor  

and excavator 

Acceleration  

data 

Actual construction  

site (sensors on 

arms and inside 

equipment cabins) 

Compactor: 6 

(combinations of forward 
and backward movements 

with 3 vibration modes); 

Excavator: 7 (idling, 

travelling, scooping, 

dropping, rotating (left), 
rotating (right), various) 

Activity recognition based on sound data 

(Cao, Huang, et al., 

2017) 

Equipment recognition 

for surveillance system 

4 machines 

(Electric hammers, 

hydraulic hammers, 

cutting machines, 
and excavators) 

Audio data 

Actual construction 

site (microphone 

sensors in 

proximity to the 
equipment) 

5 (Activities of electric 

hammers, hydraulic 
hammers, cutting 

machines, engine of 

cutting machine, and 

excavators) 

(Cao, Wang, et al., 

2017) 

Equipment recognition 

for surveillance system 

4 machines 
(Electric hammers, 

hydraulic hammers, 

cutting machines, 

and excavators) 

Audio data 

Actual construction 
site (microphone 

sensors in 

proximity to the 

equipment) 

4 (Activities of electric 

hammers, hydraulic 

hammers, cutting 
machines, and excavators) 

(Cao, Zhao, et al., 

2017) 

Equipment recognition 

for surveillance system 

4 machines 
(Electric hammers, 

hydraulic hammers, 

cutting machines, 

and excavators) 

Audio data 

Actual construction 
site (microphone 

sensors in 

proximity to the 

equipment) 

4 (Activities of electric 

hammers, hydraulic 

hammers, cutting 
machines, and excavators) 

(Cheng et al., 2017) 

Estimating equipment 

productivity and activity 

analysis 

11 different types of 

machines  
Audio data 

Actual construction 
site (microphones 

in proximity to the 

equipment) 

2 (major activity, minor 
activity; identifying 

operations of one machine 

at a time) 

(Sabillon et al., 
2018) 

Estimating cycle time of 
equipment  

Multiple  
machines 

Audio data 

Actual construction 

site (microphones 
in proximity to the 

equipment) 

2 (major activity, minor 
activity) 

(Cheng et al., 2019) 

Estimating cycle time 

and equipment 
productivity 

Multiple  

machines 
Audio data 

Actual construction 

site (microphones 

in equipment cabin 
and in proximity to 

the equipment) 

2 (major activity, minor 

activity) 

Sensor-based activity recognition methods rely on a wide range of characteristic measurements from the 

equipment. Most popularly used data include acceleration or vibration, location of the equipment or a combination 

of these. Ahn et. al. (Ahn et al., 2015) demonstrated the feasibility of using the low-cost accelerometer for 

identifying the operations of an excavator with machine learning classifiers and achieved 93% identification 

accuracy. Akhavian and Behzadan (Akhavian and Behzadan, 2015) used accelerometer and gyroscope data for 

predicting the operations of a front-end loader with machine learning classifiers.  
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TABLE. 3: Equipment activity identification methods and performance 

Reference Methods/Algorithms Activity detector/ Features  
Performance in activity 

identification 

Activity recognition based on visual data 

(Golparvar-Fard et 

al., 2013) 
Support Vector Machine (SVM) 

Spatio-temporal visual features represented by 

Histogram of Oriented Gradients (HOG) 

Average accuracy for 

excavator 86.33%, for 
truck 98.33% 

(J. Kim et al., 2018) Tracking-Learning-Detection (TLD) Proximity threshold 
Average precision 91.27% 

and average recall 92.42%  

(Kim and Chi, 
2019) 

TLD, Hybrid deep learning algorithm 

(Convolutional Neural Network (CNN) 
and Double-layer Long Short Term 

Memory (LSTM)) networks 

Sequential patterns of visual features and 
operation cycles 

Average accuracy 93.8% 

(Roberts and 

Golparvar-Fard, 

2019) 

CNN, Hidden Markov Model (HMM), 
Gaussian Mixture Model (GMM), SVM 

Spatio-temporal features  

Average precision for 

excavators 97.43%, for 

dump trucks 75.29%; 
Accuracy for excavators 

86.8%, for dump trucks 

88.5% 

(Chen et al., 2020) Faster R-CNN Spatio-temporal features  Overall accuracy 87.6%  

Activity recognition based on sensor data 

(Ahn et al., 2015) 

Naïve Bayes, kNN (K-Nearest 

Neighbour), Decision tree (J48), 

Multilayer perceptron (feedforward 

ANN) 

Totally 15 time-domain features (average 
resultant acceleration, mean, standard 

deviation (SD), peak, correlation) 

Accuracy over 93% 

(Akhavian and 
Behzadan, 2015) 

Logistic Regression, kNN, Decision 

Tree, Neural Network (feed-forward 

backpropagation), SVM 

Totally 42 features (Time domain features: 

mean, variance, peak, interquartile range 

(IQR), correlation, and root mean error 

(RMS), Frequency-domain feature: signal 

energy) 

Overall accuracy 86.09% 

for the highest 

classification level 

(Hyunsoo Kim et 

al., 2018) 

Dynamic Time Warping (DTW), 

Random Forest, Naive Bayes, J48, 

Sequential Minimum Optimization 
(SMO) 

Totally 74 features (Time domain features: 

resultant, mean, SD and peak of acceleration, 

correlation, zero crossing rate, kurtosis, 

skewness, Frequency-domain features: 
spectral entropy, spectral centroid, short time 

energy, and spectral roll-off) 

Overall accuracy 88.61% 

(Rashid and Louis, 

2019) 
ANN, LSTM networks 18 features (3 IMUs X 6 data stream per IMU) 

Accuracy for excavator 

97.9%, for front-end 
loader 96.7%; F1 Score 

for excavator 97.6%, for 

front-end loader 96.3% 

(Shi et al., 2020) 
SVM, Back Propagation Neural 
Network (BPNN), LR 

6 features (Mean and variance of various 
combinations of main pump pressure signals) 

Accuracy 93.82%  

(Slaton et al., 2020) 
CNN, Hybrid network (CNN and 

LSTM) 

6 features (2 accelerometers X 3 data stream 

per accelerometer) 

Accuracy over 77% and 

up to 96% for compactor 

and up to 90% for 

excavator 

Activity recognition based on sound data 

(Cao, Huang, et al., 

2017) 

A newly proposed algorithm based on 
single hidden layer feedforward neural 

network and Extreme Learning 

Machine (ELM), Back Propagation 

(BP), KNN, SVM, ELM 

MFCC (Mel-Frequency Cepstral Coefficients) 

features and their dynamic statistics 

Accuracy over 40%, up to 

88% 

(Cao, Wang, et al., 

2017) 

A newly proposed Cascade algorithm 

developed in MATLAB and LabView, 
ELM, SVM 

Short frame energy ratio, concentration of 

spectrum amplitude ratio, truncated energy 
range, and interval of pulse 

Accuracy over 86%, up to 

99% 

(Cao, Zhao, et al., 

2017) 
BP, ANN using ELM First and second order MFCC features  

Accuracy over 74%, up to 

96% 

(Cheng et al., 2017) SVM STFT features Accuracy over 80% 

(Sabillon et al., 
2018) 

SVM Frequency magnitude and phase features 
Accuracy of cycle times as 
high as 90% 

(Cheng et al., 2019) SVM 
Sinusoidal frequency, magnitude, phase 

content 
Accuracy over 85% 
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The identified operations were used to estimate the activity duration for simulation input modelling. Even though 

the identification of major classes of operations was highly accurate, the performance reduced while identifying 

finer classes. For cycle time measurement of equipment, Kim et. al. (Hyunsoo Kim et al., 2018) used IMUs 

embedded in a smartphone. With the help of the dynamic time warping algorithm, they achieved 91.83% accuracy 

in cycle time estimation. Rashid and Louis (Rashid and Louis, 2019) placed inertial measurement units (IMUs) on 

the articulated part of the equipment to identify their operations using deep learning methods. The improvement 

of prediction results with various types and levels of data augmentation is explored in this study. Shi et. al. (Shi et 

al., 2020) considered the working stages of an excavator and main pump pressure for operation identification. 

Instead of using complex deep learning methods, they have applied machine learning classifiers for identification. 

The domain knowledge is introduced in the problem formulation employing a rule-based intelligent calibration 

system to obtain a prediction accuracy of 93.82%. The location of the equipment and vibration patterns captured 

by sensors have the potential to identify operations better compared to limited visual data. The sensor-based 

activity recognition methods are capable of delivering high performance in real-time. Most of these methods are 

unaffected by ambient or climatic conditions. These serve as promising attributes for identification of automated 

construction operations. 

Audio-based activity recognition methods are mainly suitable for equipment that produce significantly measurable 

sounds. Cheng et al. (Cheng et al., 2017) used audio signals and SVM classifiers to identify various construction 

equipment activities. This method attempts to address the limitations of computer vision methods and sensor 

methods by capturing the sound patterns of heavy equipment to identify its activity. Similar studies have been 

carried out for equipment activity recognition using audio data as listed in the last sections of Table 2 and 3. Audio-

based methods can identify multiple machines at once. However, the level of details of the activities identified by 

these methods is minimal. Hence, audio-based activity recognition methods are not suitable for developing a 

monitoring system. 

Previous research shows that the operations which involve the limited movement of equipment are best identified 

by sensor-based methods or by characteristic measurements from the equipment. Operations that involve machine 

vibrations are best captured by accelerometers. The development of an automated construction system requires a 

high level of detail about the operations. Sensor measurements have the potential to provide detailed information 

about the equipment. Among all the activity recognition methods, sensor-based methods seem to be the best option 

for identifying automated construction operations.  

The existing studies mainly focus on identifying construction activities at a macro level without considering the 

hierarchical relationship. This is primarily because the objectives of these studies are mainly to collect the overall 

information about the construction cycle. But, close monitoring of the micro-level operations to detect early signs 

of failure requires a high level of activity details. Hence a new approach that focuses on problem formulation is 

essential for the broad research objective of this study, i.e., the development of an automated monitoring system. 

While monitoring the construction operations for purposes such as cycle time estimation or resource allocation, 

minor mistakes in identification are not critical. However, even minor identification mistakes in a fast-paced 

automated construction would have disastrous consequences. Therefore, the development of a monitoring system 

for automated construction demands high identification accuracy. Most of these identification methods have 

adopted conventional machine learning or deep learning methods for classification. However, none of these 

methods has achieved the high accuracy of identification required to develop an automated monitoring system. 

Most of the studies were focused on improving the performance, either through the type of data collected or by 

exploring multiple classification algorithms. This study explores the possibility of improving the performance of 

operation identification focusing on the problem formulation. Instead of using high performing deep learning 

methods, this study uses a well-established machine learning algorithm (artificial neural networks) for identifying 

automated construction operations. In summary, the current research identifies automated construction operations 

at a high level of details based on acceleration data from the structure using a machine learning-based identification 

framework.  

3. TOP-DOWN MODULAR CONSTRUCTION 

The ACS in the present study consist of a set of lightweight and portable machinery designed to automate the 

construction of a low-rise building’s structural frame (Harichandran et al., 2020). This ACS adopts the top-down 

modular construction method as explained in (Raphael et al., 2016; Harichandran et al., 2019a, 2019b, 2020). This 
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method involves constructing the structural frame of the building from the topmost floor and lifting it upwards to 

add floors below. It is similar to the ‘ground factory and building push-up’ category of automated construction 

described by Bock and Linner (Bock and Linner, 2016b). However, the present method uses modules of structural 

elements rather than using the building components as a whole. This method is developed primarily for the 

construction of low-rise buildings. It eliminates the need for heavy equipment like tower cranes.  

In top-down construction, the construction works progress in the vertical direction. The control and main operating 

units are placed at ground level. The prototype used in the current study consists of six lifting machines placed 

inside the core of the structural frame. Each lifting machine has a small platform that can be moved up or down 

using a hydraulic or electrical motor system. Each of the platforms supports a column of the structural frame during 

the construction. Fig. 3 shows a schematic representation of the operations in a top-down construction. The 

components of the structural frame are shown in blue and the supporting platforms in orange. For enhancing the 

clarity of representation, only a diagonal section of the entire construction system is shown. C1, C2 and C3 

represent the columns whose modules are added sequentially in each step of the construction process. S1, S2 and 

S3 represent corresponding platforms that support the columns. 

 

FIG. 3: Operations of top-down modular construction 

Simultaneous operation (lifting or lowering) of all the lifting machines in the top-down construction system will 

result in coordinated lifting (or lowering) of the entire structure under construction. In addition, each machine can 

be individually operated to lower or raise its supporting platform. When one lifting platform is individually 

lowered, the structural frame will be supported on the remaining platforms, and the column at this location will be 

hanging from the system of beams above. When the platform is raised again to make contact with the column base, 

the load will be transferred to the platform. 

The structural configuration, number and position of columns are designed to ensure the stability of the structure 

during automated construction. The structural frame is divided into smaller modules. The modules are assembled 

and lifted upwards step by step, starting with the topmost components of the structure. The first step is the 

connection of modules at the roof, supported on lifting platforms kept at construction level 0. The top-down 

modular construction consists of various stages depending on the total number of construction levels at which the 
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operations happen. Construction stage 0 (CS0) is when the operations are happening at construction level 0 and so 

on. The addition of each module of the column increases the height of the structure by one stage.  

There are four major operations in top-down modular construction: coordinated lifting, lowering of support, the 

connection of a column module, and lifting of support. These operations are further divided into subclasses based 

on the position of the supporting platform (SupNo1, SupNo2, …, SupNo6) and the construction stage (CS0, CS1, 

CS2) at which the operation starts. Identifying the operations and the construction stage helps monitor the progress 

of construction, detecting the faults and their location. This makes restoration and further corrective actions easier. 

The sequence of operations in one cycle of top-down modular construction is illustrated in Fig. 3. All the operations 

in this construction method are carried out at the ground level. This improves safety of workers and makes it easy 

to automate the connection of modules with equipment fixed on the ground. More details and alternate schemes 

of top-down modular construction can be found in (Harichandran et al., 2020). 

4. METHODOLOGY 

The overall methodology for hierarchical identification of automated construction operations is shown in Fig. 4. 

First, sensor data from the structure is collected during controlled experiments. The raw data are then subjected to 

pre-processing, and features are extracted for supervised learning. The next stage is machine learning classification 

and operation identification. The novel hierarchical operation identification framework adopted in this study is 

described in the next paragraph. The output of the hierarchical operation identification is supplied to an automated 

construction monitoring system. The monitoring system evaluates the operation execution and signals the operator 

in case of anomalies. The scope of the current study is limited to operation identification. The development of the 

automated construction monitoring system is a work in progress.  

 

FIG. 4: Methodology for identification of automated construction operations 

In the proposed operation identification framework, operations are hierarchically decomposed using domain 

knowledge about the construction equipment and operations types. A schema containing the equipment states, 

operations and their hierarchical relationships is developed first. Activities at the top level are general; specialized 

operations with more details appear at lower levels. Activity recognition occurs in multiple stages, starting from 

the topmost level using different machine learning classifiers at each level. That is, a single machine learning 

model (classifier) is not used to separate all the classes. Instead, a new classifier is used to explore the subclasses 

of a previously identified operation class. 



 

 

 
ITcon Vol. 26 (2021), Harichandran et al., pg. 602 

5. CASE STUDY: HIERARCHICAL OPERATION IDENTIFICATION OF AN 
AUTOMATED CONSTRUCTION SYSTEM 

The proposed hierarchical framework is implemented to identify the operations of an ACS prototype developed at 

the Building Automation Laboratory, IIT Madras. The development of the ACS, hardware and software 

specifications are elaborated in (Harichandran et al., 2020). A detailed description of the ACS operation cycles 

and top-down construction method is given in section 3. Vibration measurements from the structure are collected 

through controlled experiments using accelerometers. Six repetitions of experiments were conducted to capture 

multiple operations of the ACS. More than 19 million readings were collected from 8 accelerometers. The 

acceleration pattern associated with each operation is used for identification through 4 classification levels. The 

lowermost classification level delivers the finest operation details. Classification level 1 recognizes whether the 

ACS is in operating condition or idle. If the ACS is in operating condition, the second classification level 

determines the major operation class. The third classification level identifies the sub-operation class. The 

construction stage in which the operation happens is identified in the fourth and final classification level. The 

hierarchical identification relies on the hierarchical relationships of operations to refine the operation category at 

each classification level. After identifying an operation to the finest level of detail, the next operation is identified. 

The process completes when all operations are identified up to classification level 4. To benchmark the 

performance of the hierarchical identification framework, a conventional identification approach is also evaluated.  

5.1. Controlled automated construction 

The controlled automated construction experiments are conducted in a laboratory using the top-down modular 

construction system prototype as described in Section 3. Fig. 5 shows the complete experimental setup. The 

automation construction system (ACS) consists of six lifting machines, each of 2-ton lifting capacity with its 

supporting platforms facing outwards. The structural frame to be constructed is modularised into small 

components. These structural modules are made of standard steel tube sections with external threading on both 

ends (50 mm nominal bore, 60.3 mm outer diameter and 4.5 mm thickness). The column modules are connected 

by standard steel sockets (couplers) with internal threading (50 mm nominal bore, 70 mm outer diameter and 65 

mm length).  

 

FIG. 5: Experimental Setup 
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Based on an extensive review of equipment activity recognition methods (section 2.2), a sensor-based method 

suitable for identifying ACS operations was chosen. All operations induce vibrations in the structure which have 

signature patterns associated with them. After careful consideration of the configuration and operation sequence 

of the ACS prototype, the accelerometer is selected for data collection. The location of the sensors on the structure 

was determined based on heuristics and these criteria: a) locations that give maximum vibration during 

construction, b) locations where normal operations will not get affected, c) locations where the entire duration of 

the construction can be captured. Eight monoaxial piezoelectric accelerometers (1000 mv/g sensitivity and -5g to 

+5g measurement range) are fixed on the topmost beam-column assembly of the structure. They are numbered as 

AM_01 to AM_08. AM_07 and AM_08 are positioned at the mid-height of the topmost column modules, parallel 

to ground level and perpendicular to each other. AM_01 to AM_06 are placed on different locations on the bottom 

surface of the beam assembly perpendicular to ground level. 

The control unit of the ACS and data acquisition system are located at the ground level. HBM universal measuring 

amplifier (model: QuantumX MX840B, Number of channels: 8) is used for acquiring accelerometer data with a 

time-stamp. Based on previous studies on construction equipment activity recognition (Akhavian and Behzadan, 

2014, 2015; Hyunsoo Kim et al., 2018) and the Nyquist criterion (Lyons et al., 2005), the sampling frequency for 

data collection is set to 200Hz. This sampling rate ensured the capturing of minute vibrations during machine 

operations without creating excessive data. The data was collected using HBM Catman data acquisition software 

(catman Data Acquisition Software, no date) and later imported to Microsoft Excel (XLSX format) and MATLAB 

(mat format) files for further analysis. Separate time tracking excel sheets are used for recording timestamps of 

each operation during the experiments. This data is compared with the timestamps from the data acquisition system 

to extract signals corresponding to each operation accurately. The automated construction experiments involve the 

construction of two stages of a structural frame. The experiment is repeated six times and accelerometer data is 

collected continuously during the experiments. All the operations except connection of modules were automated 

in the current prototype of ACS. A trained operator controls the ACS while two unskilled labours carry out the 

connection of the modules. The operations involved in the top-down modular construction is described in section 

3. 

5.2. Raw sensor data 

Each operation in the automated top-down construction has a pattern of acceleration associated with it. The 

vibration of the machine and the structure during the operation cycle is captured in the acceleration data. 

Intuitively, all the automated operations should have similar patterns irrespective of the repetition of the 

experiment or operating cycle. However, that is not the case in the actual scenario. The structure changes with 

every operation either due to the addition of modules or the changes in supporting conditions during lifting and 

lowering. Hence the vibration patterns corresponding to these operations will show variations (Fig. 6).  

 

FIG. 6: Accelerometer reading (unit: g) from AM_02 for one set of the experiment involving three construction 

stages (CS0, CS1 and CS2). Major operations and states are coloured according to classification level 2. 
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This makes the identification problem far more complex than it appears. For example, the acceleration patterns of 

operations at support number 1 for two construction stages (CS1 and CS2) can be studied in Fig. 6. The operations, 

lowering of support and lifting of support are entirely automated. However, the patterns in the data for these 

operations do not appear to be similar in the corresponding regions of CS1 and CS2. This dissimilarity in patterns 

can be observed in other operations as well. In the case of connection of modules, the pattern of measurement and 

duration of the operation is likely to change in every repetition of the experiment and operation cycle. Even though 

these are highly dependent on the labourer involved in the operation, a general trend can be observed. Among the 

operations, some of them have similar patterns. As the classification becomes finer, the complexity of 

identification increases. 

5.3. Feature extraction 

The pre-processing of the raw data, feature extraction and machine learning classifications are carried out in 

MATLAB. Features that represent important characteristics of raw data have to be extracted to get good results in 

supervised learning. Features should have good discriminatory power in separating model classes. Based on a 

preliminary assessment of the raw data and previous studies (Figo et al., 2010; Joshua and Varghese, 2011; 

Akhavian and Behzadan, 2015; Hyunsoo Kim et al., 2018) on activity recognition from accelerometer data, ten 

features have been identified for the current study. Peak, mean, interquartile range, variance and root mean square 

error are the time-domain features. Besides, signal energy and the period of the signal are extracted using 

autocorrelation. Finally, the first three prominent frequencies from the spectral analysis are also used. These ten 

features are extracted from acceleration data measured at eight different locations of the structure. Thus, 80 features 

are extracted from the whole data set. The data set were not divided into small overlapping windows as described 

in previous studies. The capability of the features to represent the whole dataset is tested here. The whole feature 

space is used for supervised learning.  With the current processing speed of the computer (Processor: Intel(R) Core 

(TM) i7-8700T CPU @ 2.40 GHz, installed memory (RAM): 16GB), computing cost and time are not too high 

for this feature space. The long-term goal of this research is to develop an automated monitoring system. The 

monitoring system will be implemented on a computer with similar computing power. After the training phase, 

there is no need to do the feature extraction, which might reduce the requirements on computational power. Hence 

using the whole feature space will not affect the monitoring time, and advanced feature selection methods for 

dimensionality reduction were not attempted here. 

5.4. Machine learning classification and operation identification 

5.4.1. Selection of machine learning classifier 

Machine learning techniques are widely used for solving activity recognition problems using sensor data. 

Supervised learning methods have been shown to deliver better results compared to unsupervised learning methods 

for activity identification problems (Golparvar-Fard et al., 2013). According to Akhavian and Behzadan, 

unsupervised learning methods tend to cause overfitting during classification with imbalanced equipment activity 

classes (Akhavian and Behzadan, 2015). The classification of automated construction operations is similar to that 

of construction equipment activity identification in imbalanced activity classes. Hence supervised learning 

methods are adopted for this study. Deep learning methods show promising results for equipment activity 

identification. However, these methods demand large datasets for training. The automated construction 

experiments are costly and time-consuming. It is not practical to generate large datasets by experiments. 

Augmentation of data also requires expert knowledge, and the generated datasets should capture the possible 

working conditions of automated construction. The evaluation of deep learning techniques for this task is in 

progress. The current paper explores the possibility of using a well-established machine learning technique for 

identification of automated construction operations. It is essential to evaluate the attributes of the classifier for 

precise identification of automated construction operations. Given the limited experimental data, the classifier 

should have good generalisability without overfitting. The acceleration patterns measured are a complex 

combination of the vibration from the structure and the ACS during construction. The classifier should be able to 

learn the nonlinear relationship between the acceleration measurements from different locations of the structure 

and the automated construction operations. The classifier should have clear parameters to indicate the confidence 

for the predicted results so that necessary control actions can be taken during construction monitoring. Based on 

the above requirements, Artificial Neural Network (Feed-forward classification network) is selected as the 

classifier for identification of automated construction operations. A separate study was carried out to determine 

the best learning algorithm for operation recognition. It was identified that ANN delivers the best performance at 
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all classification levels. Therefore, further studies to validate the identification framework was performed using 

ANN. The study conducted to identify the best learning algorithm is not included in this paper. This is because the 

focus of this paper is the use of domain knowledge in the formulation of the identification problem to ensure high 

accuracy. However, a summary of the study results is included in appendix A. ANN is the classifier adopted for 

both hierarchical identification framework as well as conventional identification approach. 

5.4.2. Frameworks for operation identification 

Our long-term goal is to develop an automated monitoring system. Unlike other scenarios of operation recognition 

for progress monitoring, cycle time estimation or productivity calculation, the identification accuracy and level of 

detail are of prime importance. Automated construction will be faster than conventional construction. Hence, it 

demands an automated monitoring system that provides accurate and detailed information about the ongoing 

construction. This information should be easily comprehensible by the operator of the ACS to take appropriate 

actions in time. The status of the operations and ACS from macro-level to micro-level should be readily accessible 

at any instant. If the operation is going well, the operator needs only general information like the major class of 

operation (classification level 2). If there is a fault in operation, the operator should know the details like the 

subclass of the operation (classification level 3) and stage of construction (classification level 4). The main 

operations, sub-operations and construction stages vary with the ACSs. Presently, the identification framework is 

applied to an automated top-down construction system. Hence the descriptions include the operations specific to 

this construction method. However, the operation identification framework proposed in this study is applicable to 

other construction methods as well. 

This study evaluates two different problem formulations for the identification of automated construction 

operations. The first one is the conventional methodology adopted in previous studies (Fig. 7), and the second one 

is the hierarchical framework developed here (Fig. 8). Both frameworks are evaluated for their ability to identify 

operations at four classification levels. Even though all the classes are input as a flat list in the conventional 

framework, to test the performance of the two frameworks, operations are separated into four levels. From top 

level to bottom level, operations are classified into finer subclasses. Classification level 1 consists of the operation 

states of the ACS, viz. idle and operations. The idle state indicates that the automation system is turned on, but no 

operations are being performed. The data corresponding to this state is primarily due to ambient vibrations. 

Classification level 2 further divides the operations into four major classes. Classification level 3 contains the 

subclasses of operations. It divides two operations (lifting and lowering) into subclasses based on which lifting 

machine is in operation. The ‘connection of column module’ operation is divided based on which column is being 

constructed at that time. All operations are subdivided at classification level 4 based on the stage of construction 

at which the operation was performed. 

 

FIG. 7: Conventional framework for identification of operations or states. A flat list of classes is used by a 

classifier to identify operations. Four classifiers are used to compare with the proposed hierarchical identification 

framework. 
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The conventional framework containing a flat list of classes is shown in Fig. 7. Here, there is one identification 

task (classification problem) per classification level. A machine learning classifier in the current context is a 

predictive model developed and trained to solve a classification problem. There is one machine learning classifier 

per classification level in the conventional framework, as shown in Fig. 7 (Classifier 1, Classifier 2, …, Classifier 

4). The yellow boxes represent the classification levels. The grey boxes represent machine learning classifiers at 

a classification level. The white boxes are the operations classified by a particular machine learning classifier. 

Most previous studies have adopted this problem formulation for operation identification [58,60,61]. It does not 

use any prior information from the previous classification level. As the classification level increases, the 

complexity of the learning task also increases. Classification level 1 has only two operations, while classification 

level 4 has 41 operations. This conventional framework of identification seems to give good performance only 

when the number of operation classes is small. As the number of similar operation classes increase, performance 

appears to be consistently declining. To verify the suitability of the conventional framework for identifying a large 

number of classes to develop a monitoring system, the initial classification was performed using that framework.  

The hierarchical framework for identification proposed in this study formulates the identification problem into a 

hierarchy of learning tasks (Fig. 8). Each classification level in this identification framework uses prior information 

from the previous classification level to simplify the identification task. There can be more than one identification 

task per classification level. Accordingly, there is a hierarchy of machine learning classifiers, each assigned to 

solve an identification task. There are 25 machine learning classifiers numbered systematically as ‘Classifier L.N’ 

where L represents the classification level, and N represents the number of the classifier at classification level L. 

Each machine learning classifier will classify similar operations at a particular level. 

 

FIG. 8: Hierarchical framework for identification of operations or states. Instead of a flat list of classes, the classes 

representing the operations are arranged in a hierarchy.  

The identification tasks for the hierarchical framework are formulated based on the logical flow of information 

required in an automated monitoring system. Consider this example for the flow of information and measured data 

among classification levels: A particular operation is going on in the automated construction. The monitoring 

system identifies the status of the ACS as ‘Operations’ at classification level 1 (Classifier 1.1). Now, the main 
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operation needs to be identified in the next classification level. The class ‘Idle’ can be removed from the further 

identification tasks to simplify the problem (Classifier 2.1). If the main operation is identified as “Lifting Support” 

in classification level 2, only the sub-classes of “Lifting Support” need to be investigated for further classification. 

This means that there should be specific identification tasks for each subclass of the main operation. The sensing 

data will be redirected to a particular identification task based on the prior information from the previous 

classification level. In this way, there are three simple machine learning classifiers (Classifier 3.1, Classifier 3.2, 

Classifier 3.3) in the hierarchical framework instead of one complex machine learning classifier (Classifier 3) in 

the conventional framework at classification level 3. Each of these classifiers solves an identification task with six 

classes instead of one classifier that solves an identification task with 20 classes. In the previous classification 

level, the operation is identified as “Lifting Support”. Now, the sensing data will be redirected to classifier 3.3 for 

further classification. If the operation is identified as “LiftSupNo6” at classification level 3, the next classifier in 

classification level 4 will be classifier 4.20. This classifier will identify the operation based on the construction 

stage (LiftSupNo6_CS1 or LiftSupNo6_CS2). 

The first two classification levels have only one machine learning classifier, each in the hierarchical identification 

framework. Classifier 1 (conventional framework) and classifier 1.1 (hierarchical framework) are essentially the 

same. Classifier 2 is slightly different from classifier 2.1 since it also included 'idle' in classification along with the 

operations. Classifier 3 is replaced by classifier 3.1 to classifier 3.3 (3 classifiers), and classifier 4 is replaced by 

classifiers 4.1 to classifier 4.20 (20 classifiers) in the hierarchical framework. The purpose of designing this 

complex framework is to develop robust machine learning classifiers for each classification level. The overall 

objective of this operation identification is to develop an automated monitoring system. Ensuring high accuracy 

in operation identification will reduce the possibility of false alarms during monitoring and decrease the chances 

of not reporting any faulty operation. This will eventually reduce workplace accidents. 

5.4.3. Evaluation of performance 

The performance of each classifier is evaluated through k-fold cross-validation to avoid dependency on a particular 

dataset or overfitting. In k-fold cross-validation, data is arbitrarily split into k folds. Then, one fold is reserved for 

validation (used as unseen data) and the others are used for training. Next, another fold is used for validation, while 

the remaining folds are used for training. This process is repeated k times until all the folds are used for validation 

once. Each performance parameter of the cross-validated classifier is computed as an average of that parameter 

from all the folds. The classifiers in the first three levels of classification are 10-fold cross-validated. The classifiers 

in classification level 4 are 5- fold cross-validated since the number of data points is less. 

Accuracy, precision, recall and F1 score are the parameters used to assess the performance of a classifier. Accuracy 

is the percentage of data points correctly identified out of the total number of data points (equation 1). Identification 

accuracy is an overall estimate of the performance of a classifier. Precision and recall are computed to investigate 

the relevance of the information retrieved by a classifier. Precision is also known as Positive Predictive Value 

(PPV). It is the percentage of the identifications which are relevant out of all the identification results (equation 

2). The recall is also called the true positive rate. In other words, it is the percentage of the relevant operation 

classes correctly identified by the classifier (equation 3). F1 score is the harmonic mean of these two parameters 

(equation 4). 

  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡𝑠
 𝑥 100 % (1) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 
 𝑥 100 % (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 
 𝑥 100 % (3) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 
 (4) 
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6. RESULTS AND DISCUSSION 

6.1. Performance of identification frameworks  

The performance of the hierarchical framework of identification is compared with the conventional framework at 

different classification levels. The overall identification accuracy per classification level of both frameworks is 

shown in Fig. 9. Precision, recall, F1 score and accuracy of classifiers and overall accuracy of the identification 

framework per classification level are displayed in tabular form (Table 4 and Table 5). 

TABLE. 4: Performance parameters of conventional identification framework 

Classification level Classifier Precision (%) Recall (%) F1 Score (%) Accuracy (%) 

1 Classifier 1 95.00 94.79 94.89 99.58 

2 Classifier 2 99.46 98.75 99.09 99.18 

3 Classifier 3 95.75 94.50 95.11 95.92 

4 Classifier 4 84.63 79.84 82.12 84.56 

 

FIG. 9: Performance comparison of conventional and hierarchical identification frameworks  

TABLE. 5: Performance parameters of hierarchical identification framework 

Level of 

Classification 
 Classifier Precision (%) Recall (%) F1 Score (%) Accuracy (%) 

Overall Accuracy 

per Classification 

Level (%) 

1 Classifier 1.1 95.00 94.79 94.89 99.58 99.58 

2 Classifier 2.1 100.00 100.00 100.00 100.00 100.00 

3 

Classifier 3.1 97.50 98.33 97.89 98.57 

99.07  Classifier 3.2 100.00 100.00 100.00 100.00 

Classifier 3.3 99.17 99.17 99.17 98.75 

4 

Classifier 4.1 100.00 100.00 100.00 100.00 

99.19  

Classifier 4.2 100.00 100.00 100.00 100.00 

Classifier 4.3 100.00 100.00 100.00 100.00 

Classifier 4.4 100.00 100.00 100.00 100.00 

Classifier 4.5 100.00 100.00 100.00 100.00 

Classifier 4.6 100.00 100.00 100.00 100.00 

Classifier 4.7 100.00 100.00 100.00 100.00 

Classifier 4.8 90.00 86.67 88.00 93.33 

Classifier 4.9 100.00 100.00 100.00 100.00 

Classifier 4.10 100.00 100.00 100.00 100.00 

Classifier 4.11 100.00 100.00 100.00 100.00 

Classifier 4.12 100.00 100.00 100.00 100.00 

Classifier 4.13 100.00 100.00 100.00 100.00 

Classifier 4.14 95.00 95.00 95.00 93.33 

Classifier 4.15 100.00 100.00 100.00 100.00 

Classifier 4.16 100.00 100.00 100.00 100.00 

Classifier 4.17 100.00 100.00 100.00 100.00 

Classifier 4.18 100.00 100.00 100.00 100.00 

Classifier 4.19 100.00 100.00 100.00 100.00 

Classifier 4.20 100.00 100.00 100.00 100.00 



 

 

 
ITcon Vol. 26 (2021), Harichandran et al., pg. 609 

In the conventional identification framework, the prediction accuracy is constantly decreasing with an increase in 

classification level. Hence, the finest level of classification has the least accuracy. This is due to the problem 

formulation in the conventional identification framework. There is only one machine learning classifier per 

classification level. The number of classes in identification tasks from classification level 1 to 4 are 2, 5, 20 and 

41. As the complexity of the identification task increases, the accuracy decreases. These results confirm the 

observations from previous studies (Akhavian and Behzadan, 2015). Other performance parameters such as 

precision, recall and F1 score show similar trends. Even though classifier 2 shows slightly better performance than 

classifier 1, the downward trend continues with a higher number of classes. There is only a marginal difference 

between classifier 1 and 2 in terms of the number of classes. While the difference is substantially higher for other 

classification levels 3 and 4. Hence declining performance becomes evident for these classification levels. The 

results show that the conventional framework of machine learning classifiers is not suitable for developing an 

automated monitoring system. 

The performance of the hierarchical framework of identification is independent of the classification level. It 

depends mainly on the complexity of the identification task. The performance of the two identification frameworks 

was comparable in the initial classification levels. However, at the finer levels of classification, the hierarchical 

framework outperforms the conventional one with a significantly high level of accuracy. Hence, the hierarchical 

framework is promising in delivering the high accuracy of identification required for an automated monitoring 

system. The following part of this section will discuss the performance of the classifiers in the hierarchical 

framework in detail. 

The classifiers in the hierarchical framework are consistently giving the best prediction results close to 100% 

accuracy, except for two classifiers in classification level 4. The classifiers are composed of simple neural network 

architecture with one hidden layer, and the number of neurons in the hidden layer in most of the classifiers is less 

than 10. There are no studies on the identification of automated construction operations. However, the results can 

be compared with that of construction equipment activity identification. Kim et al. (J. Kim et al., 2018)used vision-

based activity identification methods incorporating the interactions between excavators and dump trucks to 

identify their activity with an accuracy of 91.27%. Cheng et al. (Cheng et al., 2017) used audio signals and SVM 

classifiers to identify construction equipment activities and obtained the best identification accuracy of over 90%. 

Golparvar-Fard et al. (Golparvar-Fard et al., 2013) used spatio-temporal features and SVM classifiers to identify 

activities of excavator and dump truck with 86.33% and 98.33% of accuracy, respectively. Akhavian and Behzadan 

(Akhavian and Behzadan, 2015) reported the highest accuracy of predicting the operations of a front-end loader 

using the neural network as 98.59%. However, the prediction performance in that study decreases with finer levels 

of classification. The hierarchical framework in the current research ensured consistently high performance even 

at the finest classification level. This was possible using a simple artificial neural network architecture, and no 

overfitting was observed, as indicated by the high prediction accuracy with unseen data. It is acknowledged that 

such high accuracy may not be achieved in real-world site conditions. However, the hierarchical framework is still 

expected to have higher performance than the conventional approach because it takes advantage of the domain 

knowledge available in the form of decomposition of operations. The latest studies show reasonable identification 

performance with deep learning methods. It is frequently claimed that the major advantage of these methods is 

avoiding feature extraction. But the great challenge in implementing those methods include the generation of large 

datasets and high computational time. This study follows a different approach to improve the performance of the 

existing methods, that is, with appropriate problem formulation making use of domain knowledge. 

There are 246 instances of idle and normal operation classes. Except for the first two classification levels, all other 

classifiers have classes with an equal number of data points. Hence the identification tasks at a particular 

classification level in the hierarchical framework have relatively similar complexity in terms of class size 

distribution. Fig. 10 and Fig. 11 show confusion matrices for selected classifiers. All these classifiers belong to the 

hierarchical framework. In the confusion matrix, actual class (target class) is represented by columns, whereas 

rows represent the predicted class (output class). The correctly classified data points are located on the matrix's 

main diagonal, and misclassifications are on the off-diagonal positions. Each cell shows the fraction of data points 

that belong to that particular cell. In k-fold cross-validation, each fold generates a confusion matrix. The entries of 

each cell in the displayed confusion matrices are the average of corresponding values of all folds.  
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FIG. 10: Confusion matrix for Classifier 3.1 (1: LowerSupNo.1, 2: LowerSupNo.2, 3: LowerSupNo.3, 4: 

LowerSupNo.4, 5: LowerSupNo.5, 6: LowerSupNo.6) 

 

FIG. 11: Confusion matrix for Classifier 3.3 (1: LiftSupNo.1, 2: LiftSupNo.2, 3: LiftSupNo.3, 4: LiftSupNo.4, 5: 

LiftSupNo.5, 6: LiftSupNo.6) 

In classification level 1, classifier 1.1 delivered good performance even with unbalanced data sets (Table 5). This 

confirms the ability of supervised learning classifiers to handle unbalanced data. However, the performance seems 

to be better with balanced classes. This justifies the superior performance of other classifiers compared to classifier 

1.1. At classification level 3, classifiers 3.1 and classifier 3.3 have a minor dip in their performances. The confusion 

matrices show that (Fig. 10 and Fig. 11) this is caused by occasional misidentification of lowering or lifting 

operations at support three since these are similar to the operations at support 1. At classification level 4, 

identification becomes more complex since the classifier has to identify subtle changes in the patterns to identify 

which stage of construction the operation happens. In this case, also, classifiers identified all instances accurately 

except for classifiers 4.8 and classifier 4.14. These classifiers are for the identification of operations ‘Lowering 

support no.6’ and ‘Connection of column module step6’ into two classes based on the stage of construction (CS1 

and CS2). Since the number of instances is less in classification level 4, one misclassification itself reduces the 

accuracy considerably. The classifiers in classification level 4 are 5-fold cross-validated due to the limited number 

of instances. This raises the question of the robustness of the classifiers. The next section discusses this issue in 

detail. 

6.2. Noise tolerance of the classifiers 

The data for the current study is acquired through controlled laboratory experiments. Data from the actual 

construction site may contain higher levels of noise. Once trained, the machine learning classifiers should identify 

the operations correctly even if the collected data contains noise. The generalisability and noise tolerance of the 

classifiers are tested by inputting all the classifiers with data containing noise. The raw acceleration signals are 

introduced with random noise whose maximum value ranges from 5% to 50% of the root mean square (RMS) of 

the signal. Totally six different sets of augmented data were created, and features were extracted from the data as 

described in Section 5.3. This data was supplied to all the trained neural network classifiers in the hierarchical 

framework. The prediction results are given in Table 6 and 7. 
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TABLE. 6: Prediction results for noisy data at classification level 1 to 3 

Noise content (%) 
Prediction accuracy (%) 

Classifier 1.1 Classifier 2.1 Classifier 3.1 Classifier 3.2 Classifier 3.3 

5 99.60 100.00 100.00 100.00 100.00 

10 99.20 100.00 100.00 100.00 95.80 

20 97.60 99.10 100.00 100.00 97.20 

30 95.90 97.00 95.80 97.20 95.80 

40 95.50 88.90 88.90 93.10 93.10 

50 95.10 76.10 76.40 86.10 90.30 

TABLE. 7: Prediction results for noisy data at classification level 4 

Noise 

content 
(%) 

Prediction accuracy (%)  

Classifier 
4.1 

Classifier 
4.2 

Classifier 
4.3 

Classifier 
4.4 

Classifier 
4.5 

Classifier 
4.6 

Classifier 
4.7 

Classifier 
4.8 

Classifier 
4.9 

Classifier 
4.10 

5 100.00 100.00 100.00 100.00 100.00 100.00 100.00 91.70 100.00 100.00 

10 100.00 100.00 100.00 100.00 100.00 100.00 91.70 91.70 100.00 100.00 

20 91.70 88.90 100.00 100.00 83.30 91.70 83.30 91.70 100.00 100.00 

30 58.30 72.20 91.70 100.00 75.00 83.30 58.30 91.70 100.00 100.00 

40 58.30 66.70 75.00 100.00 66.70 83.30 58.30 91.70 91.70 100.00 

50 58.30 61.10 50.00 58.30 50.00 83.30 50.00 83.30 100.00 100.00 

5 Classifier 

4.11 

Classifier 

4.12 

Classifier 

4.13 

Classifier 

4.14 

Classifier 

4.15 

Classifier 

4.16 

Classifier 

4.17 

Classifier 

4.18 

Classifier 

4.19 

Classifier 

4.20 

10 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

20 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 83.30 

30 100.00 100.00 100.00 91.70 100.00 100.00 100.00 100.00 100.00 91.70 

40 100.00 91.70 100.00 100.00 100.00 91.70 100.00 91.70 100.00 83.30 

50 100.00 100.00 100.00 75.00 100.00 58.30 91.70 100.00 91.70 83.30 

Classifier 1.1 has a high tolerance for noisy data. Even with 50% of noise in the signal, the prediction accuracy is 

95.1%. It is interesting to note that the 10-fold cross-validation accuracy for this classifier was 99.58%. A high 

percentage of error in the signal reduces the performance of the classifier only slightly. Classifier 2.1 has a fairly 

high noise tolerance up to 20% of noise in the signal. However, the performance of this classifier reduces 

considerably from 30% noise onwards. A similar trend can be observed for classifier 3.1 and classifier 3.2. But 

the noise threshold for the drastic reduction in performance for these classifiers varies. Classifier 3.3 shows a 

consistent reduction in performance with an increase in noise. Classifier 3.1 and classifier 3.3 had 10-fold cross-

validation accuracy of 98.57% and 98.75% respectively. Nevertheless, these classifiers could identify operations 

with high accuracy up to a certain percentage of noise. This shows the generalizability of the classifiers. The 

classifiers in classification level 4 show relatively high noise tolerance compared to all other classifiers. Some of 

the classifiers identified all operations correctly, even with 50% of noise. The robustness of these classifiers can 

be observed here. The noise threshold and variation in performance with an increasing percentage of noise changes 

in each classifier.  

7. ILLUSTRATION OF THE GENERALITY OF THE PROPOSED FRAMEWORK  

The hierarchical identification framework proposed in this study is generic and can be potentially applied to several 

operation recognition tasks in construction. This section illustrates the generality of the proposed framework by 

applying it to the example of operation recognition in the operation of an excavator. This example is adapted from 

(Akhavian and Behzadan, 2015). An excavator is a commonly used equipment for digging and moving soil and 
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other material on construction sites. The core idea of the hierarchical framework is to identify a specialized 

operation with more details by exploring the subclasses of a previously identified operation class. Hence, the first 

step is to develop a schema containing the equipment states, operations and their hierarchical relationships. This 

step helps to determine the maximum classification levels for the particular equipment. A possible operation 

decomposition for excavator operations is shown in Fig. 12. In this example, all operations of an excavator can be 

identified within four classification levels if we include the states ‘Engine off’ and ‘Engine on’ in the hierarchy. 

Development of the schema helps to enumerate the operation classes to be identified. In Fig. 12, white boxes 

represent the operation classes or states, and yellow boxes represent the classification levels.  

 

FIG. 12: Hierarchical framework for identification of operations or states of an excavator 

The next step is to identify the purpose and level of details required for operation recognition. If the purpose is to 

estimate the cycle time for simulation input modelling, a high level of operation details is required (Akhavian and 

Behzadan, 2015). This means that the operations have to be identified up to classification level 4, in which all sub-

operations are recognised. If the purpose is to identify the overall productivity of the equipment, information up 

to classification level 3 is sufficient to recognise major operation classes (Kim and Chi, 2019). Classification level 

2 is sufficient for estimating the emission rate for sustainability analysis. How much time the engine is turned on 

in the idle condition gives an estimate of wasteful emission. Fuel consumption can be estimated from classification 

level 1 itself. 

The next step is to identify the machine learning classifiers that are needed to separate the operation classes. In 

general, at each level in the hierarchy, one classifier is chosen for each operation (or state) that needs to be separated 

further. This is the fundamental difference between the hierarchical framework and the conventional approach. In 

the conventional approach, a single machine learning classifier separates the data into all the operation classes. 

For example, in (Akhavian and Behzadan, 2015), one machine learning classifier is used to separate operation into 

five classes which are represented as a flat list of output nodes of a neural network.  In contrast, in the hierarchical 

framework, multiple classifiers are trained to separate the classes one after the other in a cascading network. In 

Fig. 12, the classifiers are represented by grey boxes which contain the operation classes identified by them. These 

classifiers are named as shown in the grey ovals next to them. For example, at classification level 1, classifier 1.1 

is assigned to identify ‘Engine off’ and ‘Engine on’ states. If the engine is turned off, there is no need for further 

classification. If the engine is turned on, further classification is needed to identify the subclasses of that state. 

Similarly, at subsequent classification levels, subclasses of a previously identified operation will be further 

separated, and classifiers will be assigned accordingly. Unlike ACS, the excavator has a fairly simple hierarchy of 

operations. Only at classification level 4 there is more than one classifier. In the ACS, the number of combinations 

of operations and states is large, and the classification problem is extremely complex. As discussed in the previous 

section, the current identification framework presents a novel problem formulation for simplifying the problem 

and enhancing the robustness of identification. Activity recognition in automated construction is a novel and 

challenging application that has not been discussed in the published literature. Activity recognition with high 
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accuracy and a high level of details is essential for monitoring the ACS. Hence, a new framework is developed for 

meeting these requirements. With four classification levels, we can obtain sufficient details that are necessary to 

take corrective actions. However, based on the complexity level of operations to be identified in a piece of 

construction equipment, the number of classification levels could vary. 

Since the primary application area of this research is automated construction, a more detailed discussion of the 

application of the framework to other construction operations is not attempted here. The case of the excavator is 

presented purely for illustrating the generality of the approach. The particular hierarchical representation of the 

excavator operations is provided as an example. The sub-operations could be modified based on the purpose of 

identification.  

8. CONCLUSIONS 

The main contribution of this research is the development of a hierarchical machine learning framework for 

achieving high accuracy in operation identification. The conventional approach adopted in all the previous 

operation recognition studies uses a single machine learning classifier that separates all the operations classes. The 

performance of these approach drops with the increase in complexity of the identification problem. The newly 

developed hierarchical framework does not use a flat list of classes like the conventional methodology. Instead, it 

utilises the hierarchical relationship between operations to decompose them into various classification levels. 

Multiple hierarchically organized machine learning classifiers address the identification problem at each 

classification level. These two frameworks are tested for their efficiency in identifying the operations of an 

automated construction system prototype.  

The performances of the two identification frameworks were comparable at the initial classification levels. 

However, at finer classification levels, the hierarchical framework outperformed the conventional one with 3 – 

15 % higher accuracy. This study emphasises the significance of problem formulation for operation identification. 

The hierarchical organization of classes incorporates domain knowledge that helps the machine learning algorithm 

to separate the operations more efficiently.  

The neural network classifiers with a simple architecture consistently delivered a high performance at all 

classification levels of the hierarchical framework. This study also confirms the efficiency of neural network 

classifiers for equipment operation identification from sensor data. The generalisability and noise tolerance of 

these classifiers demonstrate the prospect of using them for an automated construction monitoring system 

development. 

There are several studies on equipment activity recognition from sensor data using machine learning classifiers. 

However, a hierarchical operation identification framework applicable for general construction equipment has 

been introduced for the first time through this research.  Most of the previous studies were for estimating the 

production cycles of earthmoving equipment. This is the first study that uses a systematic and robust method for 

recognising automated construction operations.  Another significant contribution is the incorporation of domain 

knowledge for operation recognition problems. Besides, the studies were performed on one of the first full-scale 

prototypes of automated construction systems for low-rise buildings. 

9. LIMITATIONS AND FUTURE WORK 

The current research was conducted using a laboratory prototype of an ACS. The experiments were conducted in 

a controlled environment. A commercial automated construction will have a much more complex system and 

stronger ambient disturbances. Collecting sensor data from the structure is still possible in that scenario through 

wireless sensors. However, the sensitivity requirements of the sensors should be evaluated carefully. The proposed 

framework works best when we use continuous time-series data as raw input. The data can be either the data from 

the structure as in the present study or data from various parts of construction equipment from the previous studies. 

Multiple types of sensor data from the same location will not pose any problem. In those cases, the raw input data 

supplied to the framework will have additional dimensions. The only requirement is the data provided should have 

enough information about the ongoing construction activities. Use of visual data has not been tested in the present 

identification framework. Future studies involve the identification of complex failure case scenarios in automated 

top-down construction. Advanced deep learning methods and model-based system identification methods are 

being explored for this research. 
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APPENDIX A 

DETERMINATION OF THE BEST LEARNING ALGORITHM FOR OPERATION 
RECOGNITION 

There are 25 machine learning classifiers in the hierarchical identification framework, each corresponding to an 

identification task. The classifiers were tested with six different machine learning algorithms to determine the best 

performing algorithm. The best identification results of each learning algorithm are presented in this section. The 

results of operation recognition for identification level 1 are summarized in Table 1 and illustrated in Fig. 1. 

Classifier 1.1 identifies the idle and operating states in automated construction. All the learning algorithms have 

identification accuracy above 95%. Even though slightly lower, the F1 score also follows a similar trend of 

accuracy except for DA. The ANN has the best overall performance in terms of accuracy and relevance of 

information retrieval. SVM seems to have high accuracy (95.528%) even though it is slightly lower compared to 

other learning algorithms. But the precision and recall are considerably lower than those of the other algorithms. 

This is the first identification task in this identification framework. The performance of the classifier in this task 

highly influences the performance of the overall framework.  

TABLE. 1: Results of operation identification for identification level 1 (Classifier 1.1) 

Learning algorithm  Accuracy (%) Precision (%) Recall (%) F1 Score (%) 

kNN 97.561 82.906 89.153 85.916 

DT 97.967 91.026 88.032 89.504 

SVM 95.528 66.026 76.898 71.048 

DA 96.341 90.171 78.975 84.202 

NB 97.154 78.739 87.834 83.038 

ANN 99.583 95.000 94.792 94.894 

 

FIG. 1: Accuracy of prediction for identification level 1 

The operation recognition results of identification level 2 are given in Table 2 and Fig. 2. Classifier 2.1 

distinguishes the major operation category of the given input data. The ANN identifies the operations with 100% 

accuracy and an F1 score. This classifier has a simple network architecture: 11 neurons and one hidden layer. All 

the performance indices demonstrate a similar trend in performance for all learning algorithms. SVM and DA 

show comparable performance for this identification task. They have the next to best performance compared to 

other learning algorithms, contrary to the results in identification level 1. The interesting observation is that both 

SVM and DA follow discriminant or boundary-based classification strategy. However, for the current 

identification task, SVM used a polynomial kernel function. DA used a linear discriminant. All other learning 

algorithms show less than 95% accuracy and F1 score for this identification task. Compared to the results in 

identification level 1, all classifiers improved their F1 score. Even though accuracy is reduced, the relevant 

information retrieval improved. 
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TABLE. 2: Results of operation identification for identification level 2 (Classifier 2.1) 

Learning algorithm  Accuracy (%) Precision (%) Recall (%) F1 Score (%) 

kNN 92.735 94.097 94.335 94.216 

DT 94.872 94.792 94.781 94.787 

SVM 97.863 98.264 97.305 97.782 

DA 96.581 97.222 97.406 97.314 

NB 92.735 92.014 94.231 93.109 

ANN 100.000 100.000 100.000 100.000 

 

FIG. 2: Accuracy of prediction for identification level 2 

Identification level 3 has three classifiers; each one is assigned to identify the sub-operation categories. Each of 

these identification tasks contains six categories, each having an equal number of instances. Hence the classifier 

need not handle the problem of an unbalanced dataset. From this identification level onwards, the stark difference 

in the performance of ANN from other learning algorithms is evident (Table 3 and Fig. 3). The ANN delivers close 

to 100% accuracy and F1 score for all classifiers. Except for Classifier 3.2 using kNN, all other algorithms 

demonstrate a considerable decline in identification performance. The similarity among sub-operation classes is 

much higher than previous identifications tasks. As the complexity of identification increases, all learning 

algorithms except ANN fail to achieve the necessary performance required for this identification task. 

TABLE. 3: Results of operation identification for identification level 3 

Learning 
algorithm 

Accuracy (%) Precision (%) Recall (%) F1Score (%) 

Classifi

er 3.1 

Classifi

er 3.2 

Classifi

er 3.3 

Classifi

er 3.1 

Classifi

er 3.2 

Classifi

er 3.3 

Classifi

er 3.1 

Classifi

er 3.2 

Classifi

er 3.3 

Classifi

er 3.1 

Classifi

er 3.2 

Classifi

er 3.3 

kNN 83.333 97.222 88.889 83.333 97.222 88.889 86.387 97.436 89.698 84.833 97.329 89.292 

DT 66.667 68.056 72.222 66.667 68.056 72.222 68.775 69.354 72.283 67.705 68.699 72.253 

SVM 77.778 93.056 86.111 77.778 93.056 86.111 80.299 94.040 87.143 79.018 93.545 86.624 

DA 77.778 90.278 87.500 77.778 90.278 87.500 80.839 90.926 88.572 79.279 90.601 88.033 

NB 77.778 91.667 84.722 77.778 91.667 84.722 83.862 92.262 86.115 80.706 91.963 85.413 

ANN 98.571 100.00 98.750 98.333 100.00 99.167 97.500 100.00 99.167 97.895 100.00 99.167 
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FIG. 3: Accuracy of prediction for identification level 3 

Consider the operation identification results of identification level 4 (Table 4 to Table 7 and Fig. 4). For 

convenience, the performance parameters are displayed in separate tables. The summarised results can be seen in 

Fig. 4. There are 20 classifiers (Classifier 4.1 to Classifier 4.20) in this identification level. For clarity, only the 

best, the worst and the median results are included in the figures. At this final identification level, the classifiers 

need to identify the construction stage at which the operation happens. The operations to be classified are 

essentially the same except for a minor difference in the stage of construction. This makes the identification tasks 

at this level extremely difficult. Achieving high performance seems to be highly challenging. However, ANN 

classifiers perform consistently well here. Except for Classifier 4.8 and Classifier 4.14, all other classifiers deliver 

accuracy and F1 score 100%. The operations classified by these classifiers are observed to be related to support 6. 

This shows the dependency of the results on the data collected from that particular support. Considering the 

complexity of the identification problem, the accuracy is good enough and meets the purpose of identification. All 

other performance indices exhibit a similar pattern. kNN is observed to be the second-best learning algorithm 

based on overall performance. However, only 7 out of 20 classifiers delivered 100% accuracy. The accuracy of 

the worst-performing classifier using kNN (Classifier 4.14 and Classifier 4.20) is as low as 75%. Prediction results 

of other classifiers are not comparable. These results emphasize the significance of selecting the correct machine 

learning algorithm for operation identification.  

TABLE. 4: Accuracy of identification for identification level 4 

Learning 

algorithm 

Accuracy (%) 

Classifie
r 4.1 

Classifie
r 4.2 

Classifier 
4.3 

Classifier 
4.4 

Classifier 
4.5 

Classifier 
4.6 

Classifier 
4.7 

Classifier 
4.8 

Classifier 
4.9 

Classifier 
4.10 

kNN 100.00 94.444 91.667 91.667 91.667 91.667 83.333 91.667 100.00 100.00 

DT 75.000 55.556 58.333 58.333 58.333 50.000 66.667 66.667 41.667 41.667 

SVM 91.667 94.444 75.000 83.333 83.333 83.333 66.667 83.333 83.333 100.00 

DA 91.667 94.444 75.000 83.333 91.667 75.000 75.000 75.000 91.667 91.667 

NB 75.000 72.222 58.333 83.333 75.000 66.667 66.667 66.667 75.000 83.333 

ANN 100.00 100.00 100.00 100.00 100.00 100.00 100.00 93.333 100.00 100.00 

Learning 

algorithm 

Classifie

r 4.11 

Classifie

r 4.12 

Classifier 

4.13 

Classifier 

4.14 

Classifier 

4.15 

Classifier 

4.16 

Classifier 

4.17 

Classifier 

4.18 

Classifier 

4.19 

Classifier 

4.20 

kNN 100.00 91.667 91.667 75.000 83.333 100.00 100.00 100.00 91.667 75.000 

DT 58.333 75.000 66.667 41.667 66.667 58.333 75.000 41.667 75.000 75.000 

SVM 100.00 91.667 75.000 75.000 91.667 83.333 91.667 91.667 75.000 83.333 

DA 100.00 91.667 100.00 75.000 100.00 83.333 100.00 83.333 91.667 83.333 

NB 83.333 58.333 75.000 83.333 75.000 83.333 75.000 58.333 50.000 50.000 

ANN 100.00 100.00 100.00 93.333 100.00 100.00 100.00 100.00 100.00 100.00 
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TABLE. 5: Precision for identification level 4 

Learning 

algorithm 

Precision (%) 

Classifie

r 4.1 

Classifie

r 4.2 

Classifier 

4.3 

Classifier 

4.4 

Classifier 

4.5 

Classifier 

4.6 

Classifier 

4.7 

Classifier 

4.8 

Classifier 

4.9 

Classifier 

4.10 

kNN 100.00 94.444 91.667 91.667 91.667 91.667 83.333 91.667 100.00 100.00 

DT 75.000 55.556 58.333 58.333 58.333 50.000 66.667 66.667 41.667 41.667 

SVM 91.667 94.444 75.000 83.333 83.333 83.333 66.667 83.333 83.333 100.00 

DA 91.667 94.444 75.000 83.333 91.667 75.000 75.000 75.000 91.667 91.667 

NB 75.000 72.222 58.333 83.333 75.000 66.667 66.667 66.667 75.000 83.333 

ANN 100.00 100.00 100.00 100.00 100.00 100.00 100.00 90.000 100.00 100.00 

Learning 

algorithm 

Classifie

r 4.11 

Classifie

r 4.12 

Classifier 

4.13 

Classifier 

4.14 

Classifier 

4.15 

Classifier 

4.16 

Classifier 

4.17 

Classifier 

4.18 

Classifier 

4.19 

Classifier 

4.20 

kNN 100.00 91.667 91.667 75.000 83.333 100.00 100.00 100.00 91.667 75.000 

DT 58.333 75.000 66.667 41.667 66.667 58.333 75.000 41.667 75.000 75.000 

SVM 100.00 91.667 75.000 75.000 91.667 83.333 91.667 91.667 75.000 83.333 

DA 100.00 91.667 100.00 75.000 100.00 83.333 100.00 83.333 91.667 83.333 

NB 83.333 58.333 75.000 83.333 75.000 83.333 75.000 58.333 50.000 50.000 

ANN 100.00 100.00 100.00 95.000 100.00 100.00 100.00 100.00 100.00 100.00 

TABLE. 6: Recall for identification level 4 

Learning 

algorithm 

Recall (%) 

Classifi
er 4.1 

Classifi
er 4.2 

Classifi
er 4.3 

Classifi
er 4.4 

Classifi
er 4.5 

Classifie
r 4.6 

Classifier 
4.7 

Classifier 
4.8 

Classifier 
4.9 

Classifier 
4.10 

kNN 100.00 95.238 92.857 92.857 92.857 92.857 83.333 92.857 100.00 100.00 

DT 83.333 52.778 61.111 58.571 77.273 50.000 68.750 80.000 38.889 38.889 

SVM 92.857 95.238 75.714 83.333 83.333 83.333 66.667 87.500 83.333 100.00 

DA 92.857 95.238 75.714 83.333 92.857 75.714 75.714 75.714 92.857 92.857 

NB 75.714 73.611 58.571 83.333 83.333 68.750 66.667 68.750 75.714 87.500 

ANN 100.00 100.00 100.00 100.00 100.00 100.00 100.00 86.667 100.00 100.00 

Learning 

algorithm 

Classifi

er 4.11 

Classifi

er 4.12 

Classifi

er 4.13 

Classifi

er 4.14 

Classifi

er 4.15 

Classifie

r 4.16 

Classifier 

4.17 

Classifier 

4.18 

Classifier 

4.19 

Classifier 

4.20 

kNN 100.00 92.857 92.857 75.714 87.500 100.00 100.00 100.00 92.857 75.714 

DT 61.111 83.333 80.000 38.889 80.000 61.111 83.333 41.429 83.333 83.333 

SVM 100.00 92.857 75.714 83.333 92.857 83.333 92.857 92.857 83.333 87.500 

DA 100.00 92.857 100.00 75.714 100.00 87.500 100.00 83.333 92.857 87.500 

NB 83.333 58.571 75.714 83.333 75.714 83.333 83.333 58.571 50.000 50.000 

ANN 100.00 100.00 100.00 95.000 100.00 100.00 100.00 100.00 100.00 100.00 
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FIG. 4: Accuracy of prediction for identification level 4 

TABLE. 7: F1 Score for identification level 4 

Learning 

algorithm 

F1 Score (%)  

Classifier 
4.1 

Classifier 
4.2 

Classifier 
4.3 

Classifier 
4.4 

Classifier 
4.5 

Classifier 
4.6 

Classifier 
4.7 

Classifier 
4.8 

Classifie
r 4.9 

Classifi
er 4.10 

kNN 100.00 94.840 92.258 92.258 92.258 92.258 83.333 92.258 100.00 100.00 

DT 78.947 54.131 59.690 58.452 66.480 50.000 67.692 72.727 40.230 40.230 

SVM 92.258 94.840 75.355 83.333 83.333 83.333 66.667 85.366 83.333 100.00 

DA 92.258 94.840 75.355 83.333 92.258 75.355 75.355 75.355 92.258 92.258 

NB 75.355 72.910 58.452 83.333 78.947 67.692 66.667 67.692 75.355 85.366 

ANN 100.00 100.00 100.00 100.00 100.00 100.00 100.00 88.000 100.00 100.00 

Learning 

algorithm 

Classifier 

4.11 

Classifier 

4.12 

Classifier 

4.13 

Classifier 

4.14 

Classifier 

4.15 

Classifier 

4.16 

Classifier 

4.17 

Classifier 

4.18 

Classifie

r 4.19 

Classifi

er 4.20 

kNN 100.00 92.258 92.258 75.355 85.366 100.00 100.00 100.00 92.258 75.355 

DT 59.690 78.947 72.727 40.230 72.727 59.690 78.947 41.547 78.947 78.947 

SVM 100.00 92.258 75.355 78.947 92.258 83.333 92.258 92.258 78.947 85.366 

DA 100.00 92.258 100.00 75.355 100.00 85.366 100.00 83.333 92.258 85.366 

NB 83.333 58.452 75.355 83.333 75.355 83.333 78.947 58.452 50.000 50.000 

ANN 100.00 100.00 100.00 95.000 100.00 100.00 100.00 100.00 100.00 100.00 

In summary, ANN classifiers deliver the best performance in operation recognition at all identification levels. This 

shows that ANN can model the complex non-linear decision boundary that separates different operation classes. 

Other machine learning algorithms cannot easily model this relationship, or their learning strategies are not 

efficient enough to learn the correct relationship. Another interesting observation is that all ANN classifiers have 

simple network architecture. All classifiers possess only one hidden layer and, in most cases, the number of 

neurons is less than 10. Even for the most complex identification task, ANN has high accuracy. The accuracy 

obtained here is higher than what is reported in other operation recognition studies which used complex deep 

learning methods (Chen et al., 2020; Kim and Chi, 2019; Rashid and Louis, 2019; Roberts and Golparvar-Fard, 

2019; Slaton et al., 2020). Irrespective of the complexity of the identification problem, conventional machine 

learning methods outperform complex identification methods with the right set of features, identification 

framework and learning algorithm. 


