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SUMMARY: The emergence of digital twin technology presents tremendous opportunities for several industry
sectors. A digital twin is defined as the virtual representation of a physical asset that collects and sends real-time
information. A digital twin collects data from the physical asset in real-time and uses this data to create a virtual
model of the physical object. Its functionality depends on the bi-directional coordination of data between the
physical and virtual models. This is likened to cyber-physical systems, which seek to provide bi-directional
coordination between the physical and virtual worlds. While digital twins have found applications in the various
industrial sectors such as aerospace, manufacturing, and industrial engineering, their applications in the
construction industry are relatively limited. Although some level of progress has been made in the construction
industry with the application of a digital twin, it still lags in other sectors. Virtual models of constructed facilities
are developed and used to plan and construct the actual facility, with changes in the physical facility being
automatically reflected in the virtual model based on real-time data and vice-versa. The digital twin shows
promising possibilities in the design, construction, operation, and maintenance of a facility. This paper reviews
the development and implementation of digital twin technology in the construction industry and compares its use
with other industries while assessing the benefits of DT to the construction industry. A systematic literature review
including a thematic analysis was employed to address the purpose of this study. Limitations associated with the
existing and emerging applications are also identified. It concludes by highlighting the importance of DT
applications in the construction sector.
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1. INTRODUCTION

Technology is a dynamic concept that improves with time-based on the accumulated information in an
environment. It is continually developing with the aid of bits and atoms, which has led to the harmonization of
work and play such that much is achieved with little effort (Negroponte, 1995). Advancements in virtual modeling
and data acquisition technology have enabled the development of the concept of digital twins. Digital Twin (DT)
technology involves the development of a living digital model of the physical asset, which has the characteristics
of continually adapting to changes in the physical environment or operations and delivering the best result (Parris
et al, 2016). The DT can improve based on its adaptations to the environment, which is achieved through the
effective simulation of data obtained using embedded sensors. A DT is created by first developing a virtual model
of the physical object by using and analyzing the physical object’s data and having a synchronized link with the
physical object, which allows for easy monitoring (GAVS, 2017).

DT provides the possibility of monitoring and controlling the state of the physical objects through the virtual
model. It has the capability of improving the efficiency and lifespan and reducing the operational cost of a physical
entity by providing a platform that enables a proactive and predictive maintenance cycle (Liu et al, 2018). DT uses
tools and technologies to map the stored data of the physical object (Palit & Datta, 2017), which helps to produce
up-to-date information on the physical object. It operates based on the synchronized real-time information
coordination between the hardware (physical object) and software (virtual object) as in cyber-physical systems.
DT is yet at the nascent stage but has shown diverse applicability in the various industrial sectors. This study
reviews the applications of DT in various sectors, including the construction sector. Unfortunately, the construction
industry is yet to fully embrace the implementation of DT, which can be attributed to the complex nature of the
industry and the slow receptiveness of the stakeholders. Additionally, publications on DT application in the
construction industry have been observed to be very low. This could be attributed to the low implementation of
DT in the construction industry.

Previous literature has shown a huge gap in the implementation of DT between the industrial sectors and the
construction industry. Hence, the purpose of this paper is to systematically review DT applications, identify the
various themes of some of the literature employed by this study using thematic analysis approach, investigate the
extent of DT implementation in the construction industry, and identify recommendations from the other industries
where DT has been successfully implemented. This study starts with an introduction to DT and an identification
of its key features. It highlights the systematic method and thematic analysis used to analyze the literature reviewed
for this study. It goes further to describe DT applications in several industries. This is followed by a review of DT
applications in the construction industry. Finally, the importance and benefits of DT applications in the
construction industry are outlined in the concluding part of the paper.

2. DIGITAL TWINS — KEY CONCEPTS
2.1 History

Within the context of DT, the earliest mention of a ‘twin’ is in the field of aerospace and can be traced back to
NASA Technology Roadmaps - NASA’s Apollo project in the 1960s (Shafto et al. 2010; Negri et al. 2017;
Boschert et al, 2018). The NASA project entailed the creation of two space vehicles with one on earth as ‘the twin’
that mirrored the space vehicle performing the mission (Boschert et al, 2018; Zhuang et al, 2018). Rosen et al.
(2015) identified the twin as a prototype that reflected the operations of the space vehicle in real-time. However,
the ‘twin’ was a physical system during this period (Zhuang et al, 2018). The digital aspect was not at this time
included in the title ‘twin’. Consequently, the term ‘Digital Twin’ was first mentioned by Michael Grieves in 2003
when he introduced the concept in his course on product lifecycle management (PLM) (Grieves, 2014). PLM
combines various business activities that deal with the creation, modification, and use of data to support all product
lifecycle phases from design and production through use and maintenance to recycling and disposal (Schroeder et
al, 2016). Kritzinger et al. (2018) explained more on PLM, which referred to an industry presentation describing
DT as a digital informational construct of a physical system created as an entity on its own but linked to the
physical system. Subsequent definitions and applications of DT have followed this line of thought for creating a
digital model linked to the physical entity with the aid of smart devices and updating the digital model in real-time
using a viable communication network. To ensure that the DT optimally represents the physical system, Grieves
and Vickers (2017) state that the DT must include all information about the physical system asset obtained through
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diligent inspection of the real world. Figure 1 shows a summary of the milestone progress made in the development
of the DT concept.

) First DT . Beihang \ DT application \
Grieves . NASA \ R University \ in healthcare
proposed \ defined DT | was published proposed DT | process delivery \
DT (2003) (2010) 2014) @2017) system (2019)
Differentiation of NASAand US. Siemens applied Beihang University Publications on DT
three subtypes of Air Force listed DT DT to Industry 4.0 proposed 5-D DT application in
mirrored spaces as key technology (2016) model (2018) construction (2020)
model (2003) (2012)

FIG 1: The milestone of DT development (Adapted from Qi et al, 2019).
2.2 Definition of Digital Twin

The first step in understanding the concept of DT is through a well-articulated definition. Various definitions have
been coined by different authors to explain what DT technologies mean. Michael Grieves coined the first DT
definition as an information mirroring model in his product lifecycle management course (Grieves, 2005).
Although, this definition does not provide a detailed concept of DT. Subsequent DT definitions have been
developed by several authors. Rosen et al. (2015) defined DT as a combination of both physical and virtual spaces
which mirror each other to evaluate the lifecycle operations of the physical component. This definition briefly
explains the purpose of the DT and the components involved. Shortly thereafter, a more concise definition was
coined by Boschert and Rosen (2016) that DT encompasses all the physical and functional data useful from a
product or system. This definition focused more on the data exchange and algorithms that control the behavior of
the physical and virtual models. Although concise, this definition focused only on the DT data, neglecting its
components and purpose. Grieves and Vickers (2017) further defined DT in the context of product lifecycle
management as a set of virtual information constructs that provide a true representation of a potential or actual
physical manufactured product from its atomic level to the macro geometrical level. It is the virtual representation
of what has been manufactured. The intention was to compare a DT to its engineering design (physical object) to
better understand the quality of the end-product to the digital design, thereby, narrowing loopholes between design
and execution (Grieves and Vickers, 2017). Compared to the earliest definition of Grieve (2005), this definition
provides an elaborate detail on DT but focuses more on product lifecycle management.

Lui et al. (2018) further defined DT as a living model which represents a physical asset or system that continually
adapts to changes in operations based on online data and information collected and can predict the future of the
corresponding physical counterpart. This definition is more elaborate compared to the previous DT definitions.
Essentially, a DT uses tools, technologies, and a communication system (internet) to collect data from physical
objects to simulate their virtual models. Madni et al (2019) defined DT, not as a virtual prototype but rather a
virtual instance of a physical system’s (twin) performance, maintenance, and health status data, which is
continually updated throughout the life cycle of the physical system. The definitions by Lui et al (2018) and Madni
et al. (2019) focused on the ability of DT to improve over time based on the level of information update collected
from the physical asset and used to monitor the performance of the physical asset. These definitions are most
inclusive and appropriate for the construction sector because they address the purpose of DT in this industry —
real-time monitoring of construction projects and predictive maintenance. Furthermore, a DT shows the live update
of the status of the physical object and provides predictable models based on the amount of accumulated
information.

Following the previous DT definitions, this study defines DT as the virtual representation of a physical asset using
the DT-enabling technologies such as sensors, communication networks, and 3D models to obtain real-time
updates and effect bi-directional coordination such that the virtual model represents a replica of the physical asset.
This definition identified DT by identifying the enabling technologies, DT features, and purpose. Following the
DT definitions, DT has several possibilities of being applied in different fields to meet the purpose of creation.

ITcon Vol. 27 (2022), Madubuike et al., pg. 147



2.3 Key Features

The emergence of DT has created new platforms and paths to enable functionalities and services to be carried out
in the easiest of ways. DT has been identified as one of the most promising state-of-the-art digital platforms which
creates digital/virtual twins of physical assets (Martinez et al., 2018). DT functions are based on the principle of
the interaction between the physical and virtual worlds, which enables the analysis of data and monitoring of
systems (GAVS, 2017). The interaction between the physical entity and virtual model is fostered by highly
effective communication platforms using real-time updates. The Internet of Things (10T) has been identified as a
viable communication platform that functions on the combination of sensors, cloud computing, and big data
analytics (Lui et al, 2018). The data and information transmitted between both ends are the brain box behind the
functionality of DT. It enables continuous information flow between a physical and virtual asset throughout the
product lifecycle of the asset (Abramovici et al, 2015; Rosen, 2016). This enables a DT to imitate a physical asset
by continuously adapting to operational changes based on the information and online data collection and in turn
providing future predictions as it affects the physical asset. This causes maintenance strategies to move from being
reactive to predictive by forecasting what maintenance measures would be needed by the physical asset.

DT involves a systems-of-systems integration of the different sources of data that include embedded sensors,
wireless sensor networks, digitized building life-cycle data and systems, and integration with other cloud services
and data providers (Haag & Anderl, 2018). The data are collected based on real-time information, which provides
a DT with the characteristics of continually adapting to changes in the environment or operations and delivering
the best outcomes. This is easily achieved using sensors to properly synchronize the DT to the physical asset with
the aid of the internet. The sensors receive data in real-time and continually update the virtual model (Lui et al,
2018). Consequently, DT consists of three parts, which include the physical product, virtual product, and the
communication platform between them (Glaessgen & Stargel 2012). An essential part of a DT is the
communication (linkage) between the physical and virtual products, which involves analytics at every step. Madni
et al. (2019) identified several features of DT to include:

o A DT reflects the specific instance of a physical structure, its performance, maintenance, repair history,
health status, and other characteristics.

e It uses historical data of the physical structure to determine schedules for preventive maintenance.

e It uses the virtual model to monitor and understand the performance of the physical asset and predict
future performance and maintenance patterns.

o Developers/facility managers can monitor the performance of the system and make possible adjustments
to meet expected requirements.

e There are possibilities of tracing life cycle phases of physical assets through the provided connectivity by
the digital threads.

o Future system performance can be predicted following the refinement of assumptions using predictive
analytics data obtained from the physical structure.

e There is a possibility of performing remote maintenance by troubleshooting malfunctioning remote
equipment.

e It optimizes and improves services and operations by combining data from the 10T with data from the
physical asset.

e A DT can simulate operational and maintenance data of the physical system to reflect the age of the
physical system.

2.4 Steps to Implementing Digital Twin Technology

DT is based on the foundation of the Internet of Things (loT) for its operations (Palit & Datta, 2017). Its
implementation depends on the level of information needed to create and continuously feed the model (Deloitte,
2017), and the level of IoT employed. The purpose of the DT application determines the amount of information
(Level of Detail - LoD) uploaded in the virtual model. To implement DT technology, a process is needed to identify
the appropriate level of detail and complexity. The following is a six-step process for implementing DT technology
(Deloitte, 2017): (a) imagination of opportunities: the possible opportunities are imagined and assessed at this
stage based on the pre-defined characteristics to identify suitable scenario; (b) identification of a suitable process:
identifying the DT configuration with the highest possible value and best chance of being successful based on
factors such as operational, business, and organizational change management; (c) pilot the DT: a pilot program in
repetitive and agile cycles are carried out to accelerate learning, proactively manage risk, and ensure return on

ITcon Vol. 27 (2022), Madubuike et al., pg. 148



initial investment is maximized; (d) industrialize the process: the piloted DT scenario is industrialized using
established tools, techniques, and playbooks to ensure that the developed scenario is applicable in the fields
required; (e) scale the twin: values obtained during the piloting together with tools, techniques, and playbooks are
communicated with the larger enterprise and stakeholders to ensure improvement and that developed DT scenario
meets the needs of the enterprise; and (f) monitor and measure: to ensure that the results obtained are of optimum
value, the solutions arrived at are monitored to accurately measure the values obtained from the DT.

2.5 System Architecture

To address the system architecture, an adequate understanding of the dynamics required in the functionality of DT
is essential. These dynamics, which also define the system architecture of DT, depend on CAD and other related
engineering information such as product specifications, geometry models, material properties, validation results,
10T sensor readings, and associated simulation information (Padmanabhan, 2018). The intended use of the DT
determines what model needs to be used to create it. If properly implemented, it will influence how the design,
build, and operation of the physical system is constructed and works in a single life cycle. DT involves three major
parts which include the physical system, virtual system, and the communication linkage between both systems
(Glaessgen & Stargel 2012). These parts are comprised of DT-enabling technologies including cyber-physical
systems, sensors, communication networks, and mobile devices. The cyber-physical systems ensure seamless
integration between the virtual and physical models (Akanmu et al, 2012; Akanmu et al, 2013; Akanmu and
Anumba, 2015). The sensors are attached to the physical system to obtain relevant data needed for simulation with
the virtual model to describe the behavior of the physical object and provide relevant solutions where needed
(Boschert et al, 2018). The generated information by the attached sensors is updated in the cloud through the loT
and this information is updated along with the virtual system to provide the most recent information about the
physical system.

DT takes advantage of the benefits of 10T to enable information flow from raw sensory data to high-level
knowledge (Lui et al., 2018). This process requires some knowledge in simulation, artificial intelligence (Al), and
machine learning (ML). The processing of the data and information obtained by the various attached sensors is
responsible for all real-time updates in the virtual model. The data mining and processing phase is termed the
interaction and convergence characteristics of the DT (Tao et al, 2018). These characteristics of the DT entail data
mining from the physical system and synchronizing both the historical and real-time data to ensure a smooth
connection channel between both spaces (Tao et al, 2018).
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FIG 2: DT Enabling Technologies (Adapted from Tao et al, 2018).
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In a summarized context, Castaldini (2019) identified the four key components of a DT to include data (such as
building systems, external data, and blueprint data), reasoning (such as AI/ML models or non-linear rules), key
performance indicators (such as efficiency, emissions, net operating income and safety indicators), and context
(such as occupant behavior, system/device behavior and workflows). These four key components define the system
architecture and functionality of a DT. Tao et al., (2018) further broke down these four key components into six:
virtual product, analysis, integration, and visualization of data, behavior simulation, behavior control,
communication with the virtual product, and data measurement. These key components encompass the enabling
technologies of DT. The DT enabling technologies are relevant in designing any DT system architecture. Figure
2 shows the enabling technologies of DT, highlighting the six parts as identified by Tao et al. (2018).

3. METHODOLOGY

The following main research and sub-research questions are presented to address the research gaps identified by
this study. The main research question includes:

RQ: What is the extent of DT application in the construction industry and what prospects are there?
To properly address the main research question, the following sub-research questions are posed:

RQ1: What themes exist to identify DT publications in the various industrial sectors or fields?

RQ2: What percentage of DT publications are related to the construction industry?

RQ3: How has DT been applied in other industry sectors and what lessons are there for the construction
industry?

To address the following research questions, this study employed a detailed literature review, which involved a
systematic selection and analysis of relevant literature to investigate the extent to which DT was implemented in
the other industries while drawing more focus on the construction industry. The systematic literature review
adopted a “Thematic Analysis approach to analyze the literature used for this study. Thematic Analysis is a type
of qualitative analysis used to classify and present themes dealing with different subjects (Boyatzis, 1998;
Alhojailan, 2012). The Thematic Analysis approach was adopted to identify and compare different kinds of
literature on digital twin by identifying their themes with regards to the field or industry their address. This is to
better understand the level of DT application and DT literature publication while comparing the various identified
industries and fields. The Thematic Analysis was subjected to further analysis to identify the mean and percentage
values of DT publications based on their themes.

In undertaking the literature review, relevant articles were sourced from Web of Science (managed by Clarivate
Analytics) and Google Scholar (managed by Google). These two literature databases were combined to search for
articles extensively because the concept proposed by this study is still gaining ground and as such, one single
database could not provide all relevant and needed articles. While searching for DT articles in Scopus using Title
(T1), it gave a ‘0’ result which means that there are no DT articles in Scopus. On Web of Science, the first basic
search with “digital twin” as the search input using “topic” retrieved 1,557 results between 1900 - 2020, including
irrelevant articles which only mentioned the search input but had no basic support literature on it. The date range
was to ensure that no publication on DT applications was ignored. A second advanced search was carried out using
the input (Title = TI): T1 = "digital twin" with all other settings remaining the same, this retrieved 413 results in
which the term digital twin was mentioned. A third advanced search using input T1 = "digital twin" was repeated
and still retrieved a total of 413 results where the term digital twin was mentioned. Further advanced searches
(fourth and fifth) were done using search inputs T1 = "digital twin(s)" and TI = "Digital" which still retrieved the
same results of 413. To ensure that more relevant literature was obtained for this study, a final search using the
input: TI="Digital Twin and Construction” was repeated as this is the core focus of this study. The results obtained
for this final search are as shown in Tables 1 and 2. The followings are the summary of the search inputs used in
the search for DT related topics in Web of Science:

Topic = (“digital twin”)

TI = (“digital twin”)

TI = (“digital twin”)

TI = (“digital twins”)

TI = (“Digital”)

TI = (“Digital Twin and Construction™)

ocoupwdE
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Table 1: Result summary of TI = “Digital Twin and Construction” publications in years.

Year Frequency Percentage
2021 17 70.83
2020 5 20.83
2019 2 8.33

Total 24 100.00

According to Table 1, it can be observed that publications on “Digital Twin and Construction” have been low
between 2019 and 2020. However, the publications increased in 2021 to reach 70.83% of the total between 2019
and 2021. This is still low when compared to other industrial sectors like the manufacturing industry, which has
benefited more from the implementation of DT. Furthermore, Web of Science categorized these publications into
various applicable fields based on their contents. Table 2 shows the results of the categorization.

Table 2: Web of Science categories on TI = “Digital Twin and Construction” publications.

Categories Frequency Percentage
Engineering Manufacturing 7 11.67
Engineering Civil 6 10.00
Construction Building Technology 5 8.33
Computer Science Interdisciplinary Applications 4 6.67
Engineering Multidisciplinary 4 6.67
Chemistry Multidisciplinary 3 5.00
Computer Science Information Systems 3 5.00
Materials Science Multidisciplinary 3 5.00
Physics Applied 3 5.00
Automation Control Systems 2 3.33
Engineering Electrical Electronic 2 3.33
Engineering Industrial 2 3.33
Operations Research Management Science 2 3.33
Robotics 2 333
Telecommunication 2 3.33
Architecture 1 1.67
Computer Science Atrtificial Intelligence 1 1.67
Environmental Sciences 1 1.67
Environmental Studies 1 1.67
Geography Physical 1 1.67
Green Sustainable Science Technology 1 1.67
Management 1 1.67
Remote Sensing 1 1.67
Transportation Science Technology 1 1.67
Water Resources 1 1.67
Total 60 100.00

Although the search input “TI” was for “Digital Twin and Construction”, several of the publications under this
heading were more about “Engineering Manufacturing” and “Engineering Civil”, followed by “Construction
Building Technology as shown under the ‘Theme” in Table 3. The categorization of the publications by Web of
Science deals with identifying the various fields a publication is affiliated with based on its contents.

Based on the review of the abstracts, the relevant articles were selected for the full study. Table 3 shows a summary
of some of the reviewed articles. Following the reviewed articles, more focus was on the manufacturing industry,
healthcare sector, and articles on the general DT concept. This also supports the stance on the lack of adequate
publications and implementation of DT technology in the construction industry.
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4. DIGITAL TWIN APPLICATIONS IN OTHER INDUSTRIES

DT applications have made their way into various industrial sectors and have shown large benefits to them. An
example is within the manufacturing industry where DT is yielding powerful and compelling applications leading
to improved results (Deloitte, 2017). It provides a virtual replica, which shows what is happening on the factory
floor in real-time and aids in the monitoring and control of the processes. This research identified several industries
where DT was applied, which are: aerospace, automotive, energy, healthcare, telecommunications, and
manufacturing. This section discusses these applications of DT within the various industries and the recorded
success. This is used to contrast its application to that in the construction industry and obtain recommendations
from the other industries.

4.1 Aerospace

The application of DT can be seen at the Structural Sciences Center at the US Air Force Research Laboratory.
This application focused on building a realistic high-fidelity flight model which combines both virtual model data
with physical data to create an accurate fatigue life prediction (Tao et al, 2017). Before this, Tuegel et al. (2011)
identified DT as a system used to predict the reengineering of the structural life of an aircraft. A study by Domone
(2018) on aircraft identified that aircraft structures are designed to be weight efficient and as such are required to
avoid fatigue failures. To address this, fatigue analysis results, which depend on the molecular level of aircraft
geometry, were needed to define the operational lives of aircraft. Currently, it is impossible to cross-examine the
molecular structures of an aircraft without first destroying it. There is an ongoing project within the European
Union (EU) Clean Sky 2 research program, titled Advanced Landing Gear Sensing & Monitoring (ALGeSMo)
which is being led by Airbus and targeted at providing appropriate sensors for this purpose.

Test-Fuchs is another leading manufacturing company in test systems and components for aerospace and defense
organizations that have successfully implemented a dedicated DT approach for ground support assets and test
equipment (Aerospace Manufacturing, 2020). DT has also been applied in other areas such as the Department of
Defense’s (DoD’s) Digital Engineering initiative which aims to connect systems and operations using
interconnected and smart physical devices (West & Pyster, 2015). It was also proposed and used in
product/equipment prognostics and health management (PHM) (Tao et al, 2018).

A damage characterization method based on DT for aircraft structural health management was proposed by
Seshadri and Krishnamurthy (2017) to show significant progress in forecasting the location of damage, size, and
orientation. Another application of DT is on Airframe Digital Twin (ADT) used to assess flight state which helps
determine damages in real-time (Gockel et al., 2012). DT was successfully implemented by Bielefeldt et al. (2015)
to monitor damage in aircraft and was achieved using the wings of the aircraft. Currently, DT is also primarily
applied in the field of aeronautics and astronautics to predict failure in the product service and maintenance phase.
The implementation of DT in the Aerospace industry is seen with some growth, and this is an encouragement for
the construction industry to adopt DT.

4.2 Automotive Industry

The automotive industry is one of the many disruptive industries that has various car makes, models, and designs
equipped with enhanced functionalities that make driving easy. The designs of cars have moved from basic manual
cars to automatic vehicles with automated control systems. Some examples of these automated systems include a
lane monitoring system, free-hand driving, and proximity sensors that either raise an alarm or switch off the car
once the sensor senses the car is close to an object. Tesla is a good example of a car model with an advanced
automation system. Tesla also adopts a DT approach by using technologies such as the Internet of Things (IoT),
Artificial Intelligence (Al), Machine Learning (ML), predictive analysis, and simulation tools to model and design
their cars (Lahoti, 2021). DT has also been identified as a major key in the long-term success of autonomous
vehicles in the future (Watts, 2018). The digital model of a vehicle is first designed and using data from real-life
driving scenarios, the model is analyzed through simulations to help engineers determine how the vehicle will
perform before design. The vehicle data required for simulation purposes include data on aerodynamics, motor,
suspension, body design, and materials (Watts, 2018). This can also be applied in the construction industry using
BIM to produce the digital model which would be simulated using the DT approach to analyze the feasibility of
the model.
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Tesla is currently implementing a DT approach in the design of their cars, particularly the Model S series which
is the new series designed as bespoke and tailored to consumers’ demands. The Tesla S series are designed with
mobile applications which monitor and control some of the cars’ features such as the charging process, the status
and temperature control, real-time location of the car, and using the lights/horn to identify the parking location
(Capgemini, 2014). Furthermore, the Tesla cars are connected to a remote center which obtains data from the cars
to improve safety parameters and add new features (Value Walk, 2014). In 2013, three Tesla Model S series
encountered burnouts, and updates were released by the company to improve the vehicles’ settings (Capgemini,
2014). Another study by Damjanovic-Behrendt (2018) designed a DT -based privacy enhancement method and a
system to capture privacy-related behaviors and anomalies during smart car operational driving lifestyle. This was
achieved using Machine Learning (ML) to analyze behavior and forecast smart car operational processes and
check for compliance with General Data Protection Regulation (GDPR). Figure 4 shows the process of
implementing DT-based privacy enhancement on smart cars.

Initial phase
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FIG 4: DT smart car scenario (Adapted from Damjanovic-Behrendt, 2018).

Damjanovic-Behrendt (2018) explained the processes implemented in Figure 3 to address DT-based privacy
enhancement on smart cars to include:

1. Data of the smart car such as the model of the vehicle, embedded sensors, tire/surface modeling data, and
data from the steering wheel.

2. Data on driver’s perception such as cues on inertia (orientation), driving skills, and environmental cues
(optical and acoustic systems).

3. External systems connectivity data such as manufacturer, importer, retailer, insurance, and third-party
networks.

4. Integrating newly collected sensor data with historical data and developing Key Performance Indicators
(KPIs) for their analysis and security as well as safety and real-time performance decisions.

5. Using DT to make decisions based on prediction and analyses.

6. Decisions sent to end-users and manufacturers.

4.3 Energy (Wind Turbines)

The use of offshore wind turbines to generate electricity is increasing as offshore wind energy is becoming reliable
for its energy production (Sivalingam et al., 2018). The Remaining Useful Life (RUL) and maintenance of offshore
wind turbines used for energy generation also require effective systems to oversee their performances and RUL.
Grid-connected offshore wind power has generated more than 12.631GW of power in the European Union as of
2016 (European Wind Energy Association, 2016). In addition, Operations and Maintenance (O&M) of offshore
or remotely located turbines have consumed about 25% of the Levelized Cost of Energy (LCoE) due to
accessibility affected by weather conditions such as wind, waves, water levels, or temperature (van Bussel, 2001;
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Sivalingam et al., 2018). Sivalingam et al. (2018) identified that the factors that increased the cost of offshore
power generation leading to increased O&M include failed transfer of technicians onto turbines, abandonment of
technicians at the turbines due to unfavorable weather conditions, and failure of technicians to perform
maintenance due to seasickness. Due to these shortcomings, condition-based maintenance that adopted the DT
approach was preferred to the outdated time-based preventive maintenance.

Condition-Based Maintenance (CBM) focuses on predicting the abnormalities in a system or product. CBM is the
most preferable approach as it helps to diagnose equipment’s health status and identify possible solutions. This
preventive maintenance type integrates with DT to ensure real-time monitoring and management. In Europe, a
CBM DT approach is used to obtain information on the condition and performance of the turbines, a network-
integrated Supervisory Control and Data Acquisition (SCADA) platform were employed to obtain information
used in creating the DT (Sivalingam et al., 2018). The idea of the CBM study was to implement effective
maintenance in the perspective of DT which would reduce the cost of O&M and in turn LCoE. Condition
monitoring in the perspective of DT was employed for prognostics as it made it easy to predict damage
accumulation and RUL. Condition-Based Maintenance using a DT approach for facilities management would help
improve the performance of constructed projects by monitoring and controlling their health status in real-time.

Currently, General Electric (GE) is developing a software platform called Predix which contains the virtual
versions of GE’s wind, gas, and steam turbines (GE, 2021). This concept is termed the “digital twin farm” which
uses a DT to monitor and improve the functionalities of the turbines (Harvard Business Review, 2015). These
turbines are created in the cloud and supplied with the necessary data which helps determine the performance of
the physical turbines based on the strength of the wind and temperature of the turbines’ motors. Sensors were
attached to the turbines which are represented virtually on the digital twin-turbine to obtain temperature
information and then an application was developed to monitor and estimate the turbine’s temperature (GE, 2021).
The GE DT concept has two major key parts: a modular, 2-megawatt wind turbine customized for specific
locations and the software that monitors and optimizes performance (Harvard Business Review, 2015). Harvard
Business Review (2015) further identified that GE proposes to boost wind farm energy production by 20% and
generate about $100 million as extra value over the lifespan of a 100-megawatt farm.

4.4 Healthcare

Several DT applications were identified for the healthcare sector. For example, Laaki et al. (2019) developed an
application for remote surgery by prototyping a DT for real-time remote control using mobile networks. The
developed system is made up of a robotic arm linked to an HTC Vive virtual reality (VR) system using a 4G
mobile network. The remote surgery was chosen to test DT applications because the operation requires near-zero
latency and high security and reliability levels (Zhang et al., 2018). The DT platform used for remote robotic arm
surgery includes Unity 3D and an Open virtual reality system (Laaki et al., 2019). Healthcare is inclining towards
remote surgeries, which require bi-directional coordination (DT). The idea to perform remote surgeries did not
just surface as a remote surgery (cholecystectomy — surgical removal of gall bladder) was carried out in 2001 over
a distance of 6230km between the patient and the surgeon (Marescaux et al., 2001). However, the limitation in
this design was that connection was strictly set up for a single operation and thus would require separate set-ups
for other operations (Laaki et al., 2019). This design would waste time for set-ups and limit appropriate feedback
for the surgeon. A study by Croatti et al. (2020) focused on integrating agents and DT for trauma management in
healthcare. The focus was to improve the documentation involved in trauma cases and assist the healthcare
professionals in carrying out their duties even before the arrival of the trauma patients.

Another DT application in healthcare involved improving healthcare supply chain productivity through Robotic
Process Automation (RPA) (Liu et al., 2020). This DT application was developed to improve the logistic system
using Greenfield hospital in Singapore as a case study. Anderson and McDaniel Jr. (2000) identified the need to
improve efficiency in operations and workflows to treat more patients without cost increase and complexities. The
DT solution for the logistics system involved designing an effective supply chain system, developing a strong RPA
solution, and reducing the disruption of automation introduction (Bhattacharjee & Ray, 2014). The Greenfield
hospital is a large hospital with 1,800 beds, 8 medical towers of 7 levels each integrated with a common ground
floor and two basements (Liu et al., 2020). The key components of the DT framework for this design include the
RPA solution development, 3D building information, the hospital’s activities schedule, flow simulation and
optimization, and scenario analyses (Liu et al., 2020). The platforms used to achieve the DT application were
Robotic Process Automation (RPA) and SIMIO ver.9.0. The study by Liu et al. (2020) reported that optimization
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was met in the hospital supply chain system and thus cutting building operational costs, operational uncertainties,
and tight budgetary constraints.

4.5 Telecommunications

DT has been applied in different industries including telecommunication. Telecommunications, in this respect,
refers to the communication networks and signals concerning the Internet of Things (IoT) employed in any
technological setting. Advances in 10T have improved the significance of Information Technology (IT) employed
in modern industries by upgrading IT from solely providing surveillance-centric functions to building a
comprehensive information framework of the industrial process (He et al., 2018). Several connected devices are
offering smart services such as building surveillance, assisted living, traffic control, and environmental monitoring
(Middleton et al., 2018). However, communication between the smart devices and systems still experienced issues
such as delay in network transmission, expensive limited bandwidth, and privacy. Additionally, cloud-based
solutions for large-scale videos for industrial purposes are infeasible due to the cost of high-performance cloud
servers (He et al., 2017). To address these issues, DT was employed to improve communication between smart
connected devices with industrial 10T by employing a Cross-Technology Communication platform was
implemented which operates in real-time deep learning directly on end devices. CTC enables heterogeneous
devices to exchange information thus meeting the industrial 10T requirements quickly and directly (He et al.,
2017). Figure 5 shows the architecture of the CTC platform.
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FIG 5: The Architecture of CTC (Adapted from He et al., 2018).

Another DT application in telecommunications is the possibility of medical operations supported by mobile
networks (Laaki et al., 2019). One application could be to focus on the communication system that would ensure
effective robotic surgery (Laaki et al., 2019). This entails using DT to enable communication between surgery
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robotic hands and systems in real-time and more so, automatically. The study by Laaki et al. (2019) employed
both hardware and software integrated with virtual reality to implement robot hand surgery. The Universal Robots
UR3, which is a compact collaborative robot, was employed for the robot hand as it met major safety requirements.
Furthermore, the study also employed Unity 3D and Open VR which is a Software Development Kit (SDK). Unity
3D was used to create virtual reality while Open VR was used to create the contents of the virtual reality. The
hardware and software were set up to create a VR which resembles a medical setting. Subsequently, the
communications within the system were developed to complete the DT setup. Figure 6 shows a schematic of the
network setup diagram of the prototype system.
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FIG 6: Schematic of the network setup (Source: Laaki et al., 2019).
4.6 Manufacturing

With the advent of the internet, the internet of things, big data, cloud computing, and artificial intelligence, the
manufacturing industry has been employing smart technologies for production processes. It was predicted that
over 20 billion devices (mostly from the manufacturing industry) would be connected to the internet by 2020
(Mourtzis et al, 2016). Consequently, this would lead to the generation of huge amounts of data of over 40
zettabytes (ZB) by 2020 (Gantz & Reinsel, 2012), including structured, semi-structured, and unstructured data (Qi
& Tao, 2018).

Before the stage of huge data management, the manufacturing industry has undergone various stages seeking
improvements. Roy et al. (2020) provided a summary of the various stages of the manufacturing industry from
Industry 1.0 to the current Industry 4.0 following the industrial revolution. Industry 1.0 saw the use of the steam
engine, which although seemed like an improvement, lacked efficiency, and consumed time. Industry 2.0 brought
about the assembly line concept and led to reduced manufacturing lead time. Industry 3.0 embraced computer-
integrated manufacturing to replace labor. The current stage, industry 4.0, has integrated digitization which
combines the physical world to the virtual world (Digital Twin).

DT provides further advancement on smart manufacturing by managing these data by providing relevant
information in real-time. The digitalization of the manufacturing industry has led to more opportunities in smart
manufacturing that require an automatic and real-time collection of manufacturing data using 10T (Tao et al, 2014).
Tao and Zhang (2017) identified that the scope, degree, functions of the cyber world of manufacturing, and the
integration with the physical world have been strengthened by the advent of DT. Figure 7 shows a DT in
manufacturing with a close loop and optimization of the product design, manufacturing, and smart maintenance,
repair, and overhaul (MRO).
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FIG 7: DT in manufacturing (Source: Tao et al, 2017).

Qi and Tao (2018) identified that the digitalization of the manufacturing sector helps to identify bottlenecks in the
manufacturing process and proffer effective solutions, thereby making manufacturing leaner and more
competitive. Some applications of DT in the manufacturing industry include DT for the manufacturing shop floor
(Roy et al., 2020). This concept used DT to improve supply chain efficiency, optimize tasks and energy
consumption on the shop floor, improve product assembly, and geometry assurance. The successful
implementation of DT is also seen in the field of geometry assurance (Wé&rmefjord et al., 2017; Soderberg et al.,
2017). In this field, the developed DT for geometry assurance is linked to the inspection database and includes the
geometry interpretation of the assembly line, kinematic relations, properties of materials, and simulation. DT was
applied in the design stage to design exceptional products and improve tolerance. It was also applied at the
production stage to monitor and control the products by feeding its virtual model with data on the geometry.

Other DT applications in the manufacturing industry include a multi-objective optimization algorithm DT model
with a computational system and a simulation platform to monitor hollow gas pipeline (process monitoring)
(Zhang et al., 2017) and a DT monitoring of machines using a Finite Element (FE) model of a Computer Numerical
Control (CNC) machine (Scaglioni et al., 2018). There is a variety of DT applications in the manufacturing
industry, and they have similarities in purpose. These applications can be categorized under four headings as
discussed below (Qi & Tao, 2018):

4.6.1 Digital Twin Based Product Design

Gero and Kannengiesser (2004) identified that the product design phase involves the forward and backward
interactions between the expected, interpreted, and physical worlds. This phase entails designing the product as a
virtual model based on the designer’s expectations and the practical constraints in the physical world (Qi & Tao,
2018). A DT provides a platform to develop optimized and personalized designs that meet the designers’ or
consumers’ intent before the production phase. In addition, it could save time and cost by identifying defects,
verifying, and forecasting product functions, behavior, structures, and manufacturability in the virtual world before
production (Tao et al, 2017).

4.6.2 Smart Manufacturing in Digital Twin Workshop/Factory

The approved product design is inputted into the smart factory or workshop where the manufacturing of the design
from the raw materials to the output product is managed and optimized by DT through the virtual workshop or
factory (Rosen et al, 2015). Tao et al. (2017) identified that the virtual workshop or factory contains the geometrical
and physical models of the operator(s), materials, environment, equipment, and tools as well as the behaviors,
rules, and dynamic models. Before manufacturing, the resources and capabilities are assigned in the virtual world
with devised production plans that automate and guide the manufacturing process (Qi & Tao, 2018). DT enables
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the virtual workshop or factory to evaluate and simulate different manufacturing processes and planning until a
viable and satisfactory manufacturing process and a plan is confirmed. The manufacturing process is also
monitored and controlled by the virtual model based on real-time data exchange with the physical model being
created.

4.6.3 Product Digital Twin for Usage Monitoring

DT goes beyond designing a product in a virtual world and automating the manufacturing process. It also provides
a platform to virtually monitor and exert some level of control over the physical artifact. Implementing DT at the
product design and manufacturing phase enables effective monitoring of the product while in use and thus ensures
value-added services during usage (Zhuang et al, 2017). These value-added services include real-time monitoring
of the physical systems while updating multi-source product data (such as product usage status data, environment
data, and operating parameters), simulating the operational conditions of products in different environments, and
using real-time data from physical product and historical data to accurately predict product remaining life, faults,
and proffer solutions (Tuegel et al, 2014).

4.6.4 Digital Twin as an Enabler for Smart Maintenance, Repair, and Overhaul (MRO)

DT serves as an enabler for smart MRO by ensuring that proactive maintenance for products is carried out to avert
downtime due to unforeseen breakdowns (Qi & Tao, 2018). Proactive maintenance is implemented by monitoring
the health condition, remaining life, and faults of the product in real-time. Furthermore, at the instance of fault
occurrence, the ultra-high-fidelity virtual models created via DT can diagnose and analyze faults and make these
faults known to users and servicemen (Gockel et al, 2012). Currently, General Electric is working on using DT to
forecast product health in the product life cycle to enhance the accuracy of its operations and maintenance (Tao et
al, 2018). Table 4 provides a summary of the diverse applications of DT within various industries but is not
exhaustive of all DT applications mentioned.

Table 4: Applications of DT in various Industry Sectors

INDUSTRY USE CASE

An aircraft engine can be viewed in-flight including its temperature and stresses on its parts. The DT

Aerospace model can be used to identify safety risks and act accordingly.

Behavioral and operational data of a connected vehicle helps in analyzing the overall vehicle

Automotive - . - .
performance to deliver a truly personalized/customized service for the customers.

An example is the use of DT to improve the efficiency of offshore wind turbines through-Conditioned
Energy Based Maintenance (CBM), increasing efficiency up to 20% and generating about $100 million over in
the windfarm’s lifespan.

Prototyping a DT for real-time remote control over mobile networks: application of remote surgery and

Healthcare .
healthcare supply chain system.

Improving onsite interaction with a product (tower, switches) using Augmented Reality (AR), service

Telecom data, simulation analysis and results from big data analytics.

Simulating products using a DT, before actual manufacturing, can help companies eliminate future

Manufacturin . . . o - .
g processing errors and improve their fabrication throughputs such as for semiconductor production.

5. DIGITAL TWIN APPLICATIONS IN THE CONSTRUCTION INDUSTRY

This section reviews the current state of DT application in the construction industry and its main features, which
are real-time updates and bi-directional coordination. Even with the rise of smart buildings embedded with smart
automated systems, the adoption of DT in the construction industry has been low compared to the other industries.
However, the rise in the construction of smart and intelligent buildings provides a good basis for the adoption of
DT. The potential of DT in the construction industry goes beyond buildings with embedded automated systems to
the synchronization of the systems such that there is tight coordination between the physical buildings and cyber
worlds (Cyber-Physical systems). The introduction of cyber-physical systems into building design and
construction offers a path to more sophisticated and intelligent buildings (Anumba et al, 2010; Akanmu et al,
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2011). These buildings are embedded with automated sensors, actuators, and other technologies that serve as a
bridge to monitor and control the physical assets. This serves as a basis for DT implementation.

DT operates on the principle of real-time updates and bi-directional coordination (Palit & Datta, 2017). DT in
technology provides a dynamic model, which is better created at the inception stage before the actual product is
constructed (Grieves & Vickers, 2016). However, the creation of DT depends on the sensory data obtained from
the physical model. This enables necessary data of the physical assets to be uploaded into the virtual model, which
in turn allows for easy control and monitoring of the product. The virtual model created can also be viewed by
project managers or analysts on their mobile devices (Palit & Datta, 2017). Therefore, creating a DT at the nascent
stage of a project would ensure tight synchronization and effective performance of the building.

Building operations and life-cycle management can be optimized over time and this depends on the level of
accumulated information by DT technology. The accumulated information and data generated by the sensors
embedded in the physical systems are responsible for the outcome of the DT. When it comes to the design and the
built environment, Keen (2019) identified that DT includes features such as Building Information Modeling (BIM)
and 3D models, 2D models, schedules, contracts, construction documents (submittals, change orders, RFls, etc.),
operational data collected by the embedded sensors, and data from Al and machine learning technology. The
synchronization of these features enables smart building operators to have access, control, detect faults, and make
smart decisions over the various systems, workspaces, and their ensembles within an asset.

The application of DT in the built environment has already been implemented in Singapore’s Frasers Tower, which
provides a connected workplace for DT purposes (BIM News, 2020). Bentley Systems and Schneider Electric
worked on this project where they collected data using a mix of 179 Bluetooth beacons in meeting rooms and 900
sensors for lighting, air quality, and temperature. The platform uses embedded sensors and telemetry to generate
about 2,100 data points connected to the cloud using Microsoft Azure to create enabling holistic management of
the environment. Even with the case of Singapore, the current adoption of DT solutions in the construction industry
is still low when compared to the other industries. A study by Bughin et al. (2016) shows that the adoption rate of
digitization in the construction industry is still low at 1.4% as against the Information and Communications
Technology industry, which has the highest digitization adoption rate of 4.6%. However, the study was carried out
between the periods of 2005 — 2014, so the digitization adoption in the construction industry may have increased
since then. As confirmed by Brilakis et al. (2019), DT is yet to fully gain grounds in the built environment with
the potential it has to offer to the associated stakeholders.

When developing a DT, it is essential to define the purpose for which the DT is being developed. The purpose of
the DT determines what physical asset to digitize and the Level of Detail (LoD) that is needed for the DT creation
(Brilakis et al., 2019). This is because a DT involves complex analytics and is a concept applicable to any field.
In the construction industry, DT can be defined to address a particular purpose of the industry or project. Braun et
al. (2018), defined the purpose of a DT to be a monitor for construction work progress. Another DT application in
the construction industry defined the purpose of the DT for monitoring the state of a bridge (Sacks et al., 2018).
Figure 8 shows a geometric digital model of a bridge developed through an automatic process of generating 3D
models from point clouds captured by laser scanners (Sacks et al, 2018). A geometric DT is referred to as a
geometric digital model enhanced with semantic information and serves as a starting point for creating a
comprehensive DT (Brilakis et al., 2019). Creating a geometric digital model is the first step in creating a DT
because the digital model will be linked with the physical component on which the DT application will be based.

FIG 8: Geometric digital model of a bridge (Source: Sacks et al, 2018).
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The generation of the 3D models needed in creating the digital model can be obtained using Building Information
Models (BIM), which is an essential tool in the design, construction, and operation of a facility (Brilakis et al,
2019). BIM provides an important input (including geometrical inputs) for DT, particularly for new projects. Laser
scanning or photogrammetry are useful in the automated data acquisition process for geometric DT when dealing
with existing structures without digital models (Brilakis et al, 2019). It is observed that although these processes
are automated, they are still time-consuming when compared to employing digital models generated using BIM.
This was determined by Agapaki et al. (2018) who identified that the man-hours spent in modeling 53,834 pipes
were around 5,200 labor hours, which can be employed in other productive areas if the digital models of the
facilities are available. However, efforts are being made to automate the modeling process of existing structures
with the aid of Artificial Intelligence (Al). Qi et al. (2017) used point cloud semantic segmentation using deep
learning to automate the modeling process of office spaces. The output model is like the input model with all
geometry except for the final color output.

Brilakis et al. (2019) identified that geometric models are generated based on two categories: bottom-up and top-
down approaches. The bottom-up method identifies geometric primitives in terms of lines, planes, and cuboids in
a point cloud, then groups and categorizes them into a higher-level geometry, followed by identifying the spatial
and functional relationships of the object and finally creating a geometric model. The Top-Down method creates
geometric models by identifying that objects in the models are uniquely distinguished through their pose and
relation to other objects within the built environment such as building-to-floors-to-rooms. This method relies on
the context of the asset and is effective on structures that follow standardized contextual rules such as rectangular-
style buildings and highway overpasses. The above explains the methods for generating geometric models from
existing structures without digital models needed to create the required DT platform.

Developing the digital model for the DT is followed by linking it up with the physical system. To attain a real-
time update on the status of the bridge, sensors are attached to obtain relevant data which are simulated in the loT
cloud platform to produce the expected real-time updates. The data obtained from the physical asset is simulated
in the 10T cloud and this is possible with the aid of Artificial Intelligence (Al) and Machine Learning (ML). DT
requires a high level of data analytics conducted in the 10T cloud to ensure real-time updates and bi-directional
coordination. The data analytics is based on the developed functional specifications of the DT platform which is
defined by the purpose of the proposed DT platform. To continuously update the virtual model based on the state
of the physical asset, the sensors continually obtain information about the physical asset which is sent to the loT
platform via the communication network and the data simulation is carried out in the 10T platform, and feedback
is implemented back on the physical asset through the sensors.

5.1 Benefits of Digital Twin in Construction

DT is at its nascent stage in the construction industry and possesses promising benefits and rewards in its
applications. The authors have identified various benefits associated with the implementation of DT technology.
One major benefit of DT is observed during a facility’s performance and operations based on a cost-benefit
analysis that can be applied. Although a DT can require a great upfront investment, it can provide significant
investment return in the long-run operation of a system (Madni et al, 2019). DT provides significant benefits, some
of which include effective data management, anomaly detection for effective maintenance, and access control and
management. A report by Deloitte (2017) identified the following benefits: quality, warranty cost and services,
operational costs, record retention and serialization, new product introduction cost and lead-time, and revenue
growth opportunities. Another report by Johnson Controls (2019) identified the benefits of applying DT in the
built environment to be visibility of the physical asset’s operations in the virtual model, prediction of the future
state of buildings, possibilities of simulating various conditions to determine ‘what-if analysis’, documentation,
and communication to understand and explain behaviors and connect disparate systems such as backend business
application to achieve business outcomes.

Conclusively, the benefits of DT application in construction can be summarized to include: automated progress
monitoring, updated as-built drawings/models, resource planning and logistics, safety monitoring, quality
assessment, optimization of equipment usage, monitoring and tracking of workers, monitoring of a facility,
facilities management and operations, decision making and sustainable development (Brilakis et al, 2019). General
Electric’s implementation of a DT to boost wind farm energy increased energy production by 20% and generated
about $100 million as additional profit over the lifespan of a 100-megawatt farm (Harvard Business Review, 2015).
Additionally, the other industries have benefited from DT implementation as studies have shown progress with
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industry 4.0 due to DT implementation. The construction industry has not fully harnessed the potential of DT but
is slowly working towards that goal. There is hope for the growth of DT implementation in the construction
industry given the current increase in construction of smart buildings and emerging big data. Siemens (2018)
identified four key elements (as shown in Figure 9) driving digitization of buildings which could serve as a basis
for DT applications.

Digital Twin

FIG 9: Four key elements driving digitization in building transformation (Adapted from Siemens, 2018).
5.2 Limitations of Digital Twins in Construction

The application of DT in other industries has shown considerable progress and benefits within those industries.
However, the adoption of DT in construction is still low when compared to the manufacturing industry.
Additionally, the process involved in setting up an effective DT requires highly technical and complex steps. The
information management system needed to manage the model and data required in setting up a DT involves
complex and multifaceted processes (Tune, 2020). Identity Management Institute (2020) identified certain security
protocols as challenges to implementing DT, including data encryption, access privileges that include a clear
definition of user roles and principle of least privilege, addressing known device vulnerabilities, and routine
security audits. These are all applicable to the construction industry and may be compounded by the lower level
of technology adoption in the industry. Furthermore, DT requires massive amounts of data to be collected and
used that are drawn from numerous endpoints, each representing a potential area of weakness. Lack of interest by
the workers for fear of losing their jobs is another limitation that might affect the construction industry. The
difficulty in integrating the various stakeholders in the construction industry to work as a single team is another
limitation to the adoption of DT in the construction industry (Siemens, 2018).

The slow adoption of digitization in the construction industry can also be attributed to the complex nature of the
construction industry. The complexities involved in developing a DT model and the volatile nature of the
construction industry make adopting DT in the construction industry a difficult task (Brilakis et al., 2019). This is
obvious as no two projects within the construction industry are identical. The lack of a standard in the development
of a DT platform in the industry also contributes to this setback in adoption. For example, unlike in construction,
the adoption of DT in the design and development of the Tesla Model S cars would require a single standard for
all the cars. This is also applicable in manufacturing and other industries, which would require easy replications
for all the products manufactured. However, the construction industry would require different DT standards for
different construction projects. Considering the complexities involved in developing a DT platform and the
complexities of the construction industry, it would be more difficult to convince stakeholders of DT’s feasibility
especially due to the lower sample size and data that exist on DT implementation in the construction industry. A
study by Siemens (2018) revealed that another limitation to the adoption of DT in the construction industry is
because “digital” planning and simulation are not included in the budget or the project fee schedules.
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6. DISCUSSION

DT is a powerful tool that is making marks in various industry sectors and is gaining attention among both domestic
and international scholars and companies. It is defined as the virtual representation of the physical asset and all
the instances using real-time information. The virtual models of the physical assets requiring DT are first created
and then linked to their physical components using sensors and other smart devices (controllers and actuators),
digital platforms, and communication networks. The sensors obtain the required data from the physical
components and transfer this information via the networks to the digital platforms. Furthermore, the functionality
and effectiveness of DT models depends on the level of information and data about the physical asset accumulated
over time. The accumulated data and information obtained require adequate analytics to ensure the automation of
the DT concerning the physical system (Buddoo, 2020). The data analytics fully define the feature of real-time
update and virtual control of the physical components. Unfortunately, the features of DT are more applied in the
other industry sectors than the construction industry.

The Thematic Analysis employed in this study identified various themes on DT publications with regards to
various fields and industry sectors. The Thematic Analysis which addresses some of the research questions
revealed that more of the publications on DT focused on the manufacturing industry, healthcare sector (service
delivery-related), and general DT proof of concept (see Table 3). Further analysis of the themes to identify the
mean and percentage value of DT publications with regards to various fields identified that there are DT
publications under the category construction building technology’ with about 8.33 percent (see Table 2). Relating
the percentage value to the total number of DT and construction publications shows a total of 24 publications
between 2019 -2021. However, these publications are more of DT concepts rather than applications as having been
applied in the other industries. Consequently, it can be concluded that the extent of DT application in the
construction industry is still low given the low volume of publications. Additionally, there is no literature on DT
addressing facilities management as a whole or any specific area of facilities management. This is a viable prospect
for DT application in the construction industry. Other prospects are identified under DT future works. The
Thematic Analysis of the DT publications highlighted by this study provides a holistic view of the extent of DT
literature with regards to various fields and industries. However, the themes on DT literature show that DT is
applicable in various industries including the construction industry.

The adaptability of DT is responsible for its advancement and applicability in different industries. The
manufacturing industry is profiting from the potential benefits of DT such as manufacturing with a closed-loop
and optimization of the product design, manufacturing, and smart maintenance, repair, and overhaul (MRO) (Tao
et al., 2017). The application of DT in the manufacturing industry is classified under four headings: DT-based
product design, smart manufacturing in DT workshop/factory, product DT for usage monitoring, and DT enabler
for smart MRO. DT applications in the manufacturing industry ensure that production bottlenecks are identified
and corrected, thereby ensuring that manufactured products meet the users’ demands with little waste in both
resources and time.

In the construction industry, building design and construction have upgraded from the usual traditional design and
construction to automated buildings (smart buildings) embedded with many smart devices. These smart devices
are embedded to improve the performance of the buildings and ensure comfortability for the users. There have
been some attempts to implement DT in construction such as in monitoring construction work progress (Braun et
al., 2018) and generating the digital model of a bridge using a geometrical model for DT application (Brilakis et
al, 2019). These applications present some potential benefits to further DT applications in construction and
properly understand its importance.

DT also provides some potential benefits in the construction industry in terms of analyzing the feasibility of a
design before construction. It is an essential tool in the planning and coordination of multi-disciplinary solutions
with the early verification and validation of early design choices to optimize building performance (Siemens,
2018). DT potential benefits in the design stage span across the lifecycle of a project/product. Ongoing
construction projects can be monitored in real-time and compared to the established design to check standards. DT
solutions can also be applied to completed construction projects to monitor building performance and exert virtual
(bi-directional coordination) where necessary.

Parris et al (2016) categorized the importance of DT into three areas: early warnings, predictions, and optimization.
DT can predict a system’s response to safety in cases of critical events and can reveal imminent issues before they
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become critical by comparing actual responses to predicted ones (Madni et al, 2019). This is possible as DT
simulates past and present data of a physical object collected over time to predict and possibly warn of any pending
or critical events. In addition, possible optimization options to improve performance or take preventive or
corrective maintenance methods of physical objects can be provided by DT technologies.

DT can monitor a physical asset’s current operational status and performance for scheduling preventive and
predictive maintenance activities including calibration and tooling management to be analyzed (Turbide, 2017). It
can also be used to manage inventories of repair parts to provide details of the needed parts at the right place and
time before maintenance implementation by the service technicians. This could be an application of the just-in-
time method to reduce inventory during the construction or operation of a facility. Buildings could be designed
with intelligent systems (sensors, actuators, controls, and more) which operate on the principle of cyber-physical
systems — bi-directional coordination between the building’s components and the cyber world (Anumba et al,
2020; Anumba and Roofigari-Esfahan, 2020).

7. CONCLUSIONS

This paper presented a review of DT technologies in various industries with a focus on construction. DT was found
to have several uses in the design, construction, operation, and maintenance of a facility/asset. Using DT
technologies in construction, information on an asset and its components can be collected over time to provide
relevant knowledge of an asset and its components. This can be used to monitor and control assets and optimize
processes throughout their operational lifecycle. The importance of DT technology in constructed facilities also
includes predicting the life cycle performance of a facility and creating economic value by optimizing possible
future scenarios. This lifecycle prediction allows the implementation of a Condition-Based Maintenance (CBM)
regime — the use of real-time data to prioritize and optimize maintenance resources. Although DT adoption has
spread to many sectors including construction, its potential has not been fully realized. This paper provided a
useful review for academics and practitioners on the state of DT in various industries, with a focus on the
construction sector.

The dynamic nature of DT makes its application flexible in different industries and fields once its purpose is
defined. The advent of some smart technologies such as Building Information Modelling (BIM), point cloud
segmentation, augmented reality, artificial intelligence, machine learning, data analytics, and sensors make DT
implementation in the construction industry more feasible. With the complexities in the construction industry,
there is a need to implement DT applications to address prevailing issues in the construction industry. DT can be
implemented in the design phase to analyze the feasibility of a design before construction. Once implemented at
the design phase, it can help monitor work progress and identify deviations from plans. The operations and
maintenance stage of a building also needs DT to monitor the building’s performance as well as its systems and
equipment. Facilities managers can have access to digital models of their facilities operating in real-time and
enabling bi-directional coordination to improve decision-making for the building’s optimum performance.

Following the DT implementation in other industries, this paper identified examples where DT has been
implemented. This study highlighted the shortcomings of the construction industry concerning DT
implementation. It also identified how the other sectors have successfully implemented DT and how the
construction industry can learn from them. The construction industry needs to adopt DT technology as it proffers
numerous benefits. Several countries have embarked on a DT initiative for the built environment and, while they
are laudable, these efforts must be established to address critical problems and deliver tangible value. This will
require a partnership between industry, policymakers, technology providers, and academic researchers.

Future work on DT and the construction industry can focus on the development of a DT application to monitor
construction work progress, construction workers’ performance, and healthcare facilities management. Projections
show that hospitals, airports, hotels, and other similar projects will experience growth in the adoption of DT
because they employ more smart systems for their performance (Siemens, 2018). Furthermore, the more these
buildings are technologically enhanced, the more readily digitalization of the facilities management function can
be undertaken with considerable benefits for building owners, operators, and occupants.
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