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SUMMARY: The increasing complexity in construction projects necessitates advancements in the precision and 

efficiency of inspection processes. In response to this challenge, the present study explores the feasibility of a 

framework for autonomous inspection using Mixed Reality (MR), Building Information Modelling (BIM) and 

Artificial Intelligence (AI).The proposed framework encompasses techniques for: object detection in images taken 

through an MR headset; matching to the object instance in the digital twin; and visualisation of detection results 

in the MR headset to enable real-time human-in-the-loop decision making, thereby optimising the inspection 

workflow. The framework's efficacy is evaluated with two datasets representing diverse construction settings, 

including residential and office environments, focusing on the checking of the presence of ubiquitous elements like 

electrical sockets and switches. These tests illustrate the practical applicability and limitations of the proposed 

method. 
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1. INTRODUCTION 

In modern construction projects, ensuring that built or installed components comply with design specifications, 

safety standards, and functional requirements is critical. Historically, on-site inspections have relied heavily on 

paper-based drawings and the subjective expertise of inspectors, making the process time-consuming and prone to 

human error (Kim et al., 2015). Subtle deviations from the design can go unnoticed in the early stages, potentially 

leading to costly rework or compromised building performance. 

To enhance efficiency and reliability, the construction industry has steadily embraced advanced digital approaches. 

Building Information Modeling (BIM) facilitates the generation of semantically rich and interconnected project 

data, enabling streamlined design and construction management. Meanwhile, Mixed Reality (MR) supports 

visualization and interactions by integrating virtual elements into real-world environments, thus enhancing the 

inspection process (Milgram et al., 1994). MR exists within the Reality-Virtuality continuum, and its application 

varies depending on the specific use case. 

Additionally, recent breakthroughs in computer vision—a branch of artificial intelligence dedicated to enabling 

machines to interpret and understand visual data—have further propelled the digital transformation of construction. 

Tasks such as object detection, classification, and anomaly detection can be automated or significantly simplified, 

offering new opportunities for proactive quality control and issue identification (Chow et al., 2020; De Filippo et 

al., 2023). 

Despite these advancements, many existing inspection approaches utilizing BIM, MR, or computer vision still 

require significant manual intervention, limiting their potential for holistic and continuous on-site inspections. 

Typically, inspectors must manually trigger scans or request data analysis, restricting efficiency and increasing the 

risk of human oversight. The development of fully integrated and autonomous solutions capable of continuously 

verifying on-site components without manual input could significantly enhance inspection performance. 

This paper explores the feasibility of a system that integrates BIM data, MR visualization, and computer vision 

algorithms for autonomous, in-situ construction inspections. The envisioned system involves an inspector wearing 

MR glasses who can freely navigate the site while the system autonomously detects and verifies building 

components in the user’s vicinity. It then highlights discrepancies or missing elements in real time, thereby 

providing immediate visual feedback and facilitating quicker, more informed decision-making. This approach 

focuses on three core inspection tasks: verifying the existence of components, validating positional accuracy, and 

ensuring compliance with design criteria. 

Building on preliminary results reported by Tao et al. (2024), this study extends the approach by leveraging depth 

imagery for the simultaneous evaluation of multiple targets. Moreover, a comprehensive performance assessment 

is conducted in two distinct construction settings—residential and office—to demonstrate the robustness and 

practicality of the proposed solution. 

The rest of this paper is organized as follows. Section 2 discusses relevant work in BIM, MR, and computer vision 

for construction inspection, elaborating on the specific gaps this paper aims to address. Section 3 details the design 

of the proposed system and explains how these three components are integrated to achieve proactive site 

inspection. Section 4 presents results of real-world experiments, and Section 5 offers a discussion of the findings, 

limitations, and future directions. Finally, Section 6 concludes the paper with a summary of key insights and 

contributions. 

2. LITERATURE REVIEW 

2.1 BIM-based Construction Inspection 

BIM provides semantically rich and structured digital representations of facilities, encompassing architectural, 

structural, and MEP components. Its strengths include enabling clash detection (Ma et al., 2021; Chahrour et al., 

2021), structural analysis (Tang et al., 2020), performance simulations (Asl et al., 2015), and other preventive 

quality assurance measures before or during construction. By offering a central, data-rich model, BIM facilitates 

comparison of on-site conditions with as-planned specifications. For instance, Chen et al. (2014) demonstrate how 

BIM-based workflows can detect geometric discrepancies early, thereby reducing the need for costly rework. 
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In addition, Digital Twins (DTs) build on BIM's foundations by dynamically coupling the as-planned model with 

real-time as-built data. DTs enhance visualization, enable predictive maintenance, and improve decision-making 

to reduce operational costs (Herrera et al., 2021; Megahed et al., 2022). Despite these potential benefits, the full 

integration of BIM and DTs in inspection workflows remains underutilized, in large part due to the continued 

reliance on manual data acquisition and interpretation. Many inspectors still rely on 2D drawings or navigate 3D 

models on handheld devices, rather than employing a fully integrated, hands-free verification process. 

2.2 MR for Construction Inspection 

MR merges virtual and physical environments in real time, allowing users to visualize digital models—such as 

BIM data—overlaid onto actual construction sites (Dunston & Wang, 2005). Wearable MR devices such as 

Microsoft HoloLens enable inspectors to reduce reliance on paper plans (Chalhoub & Ayer, 2018) and facilitate 

immediate cross-referencing of the design intent with built conditions. Nguyen et al. (2022) and Feng & Chen 

(2019) show that MR promotes faster detection of discrepancies, since as-planned and as-built elements can be 

directly compared in situ. 

Beyond these direct comparisons, MR supports training and self-inspection. Workers can follow step-by-step 

instructions or confirm component installations by visually matching digital references with the physical 

environment (Riexinger et al., 2018). Moreover, MR can overlay real-time data—such as thermal or acoustic 

measurements—to identify performance deviations or defects (Riexinger et al., 2018; Holzwarth et al., 2021). This 

integration can significantly improve both the efficiency and accuracy of construction processes by providing 

instant feedback on potential problems. 

Some researchers have focused on applying MR for bridge inspection and multisource data integration. Riedlinger 

et al. (2022) demonstrate that the combination of BIM and MR increases the precision of damage location and 

saves time in damage recording. El Ammari & Hammad (2019) advance this concept by merging multisource 

facility data, BIM models, and feature-based tracking to improve collaboration between field personnel and 

managers. Similarly, Jin et al. (2020) develop an MR-based system for bridge inspection and maintenance that 

superimposes relevant data on the bridge structure itself; inspectors can then view and assess maintenance needs 

or anomalies on site. 

Despite these advances, MR technology in construction inspection often serves as an enhanced viewing platform 

rather than an autonomous verification system. Existing MR solutions generally require inspectors to select areas 

for inspection or initiate scans themselves. Other persistent challenges include hardware constraints, safety 

considerations, interoperability with various data formats, and the high cost of generating suitable virtual content 

(Dai et al., 2021; Prabhakaran et al., 2022). Addressing these obstacles is essential for fully harnessing MR's 

potential across construction workflows. 

2.3 Computer Vision for Automated Inspection 

Computer vision, particularly through machine learning and deep learning, has become a pivotal tool in 

construction inspection, enabling the automated analysis of visual and spatial data (e.g., images and point clouds). 

By detecting elements, classifying defects, monitoring progress, and verifying compliance with design plans, 

computer vision can reduce the reliance on manual checks. For example, De Filippo et al. (2023) combine UAV-

acquired visual and thermal images with computer vision algorithms for automatic defect detection, while Chow 

et al. (2020) develop a vision-based pipeline that performs both anomaly detection and classification in concrete 

structures. 

In some cases, researchers apply computer vision to interpret not just 2D images, but 3D data. Kim & Kim (2020) 

propose a deep learning approach that inspects and classifies point-cloud representations of bridge components, 

including abutments, piers, and girders, by comparing these segmented data against design models or historical 

scans to identify damage or deterioration. Khan et al. (2023) examine the use of deep learning-based computer 

vision to monitor construction safety compliance, highlighting how scaffolds can be checked for missing guardrails 

and how waste management can be tracked at regular intervals. 

When integrated with MR, computer vision can further automate inspection workflows. Karaaslan et al. (2022) 

and Zakaria et al. (2023) describe AI systems that operate in real-time, continuously searching for defects in images 

captured by MR devices, specifically targeting concrete infrastructures. These systems integrate real-time machine 
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learning models for defect localization and quantification, displaying results dynamically within the MR interface. 

Through the MR interface, inspectors can fine-tune the defect detection process by adjusting confidence 

thresholds, verifying and correcting predictions, and modifying bounding boxes to ensure accurate and reliable 

results. Naticchia et al. (2019) use a YOLO network within an MR setup to identify and locate critical building 

assets such as fire extinguishers in real time, eliminating the need for manual labeling and data entry. These 

examples underscore how computer vision improves inspection efficiency, reduces human error, and enables faster 

resolution of identified issues. 

Nevertheless, several challenges must be addressed before computer vision can be deployed in a comprehensive 

way in construction. Paneru & Jeelani (2021) point out that data privacy concerns, the need for high-quality and 

labeled datasets, and the requirement for model retraining or adaptation are among the most pressing issues. 

Technical and environmental factors, including fluctuating lighting and occlusions, can degrade detection 

accuracy, while the dynamic nature of construction sites poses additional hurdles for consistent tracking and 

alignment. 

 

Figure 1: Real time workflow of the system. 

2.4 Research Gap and Contribution 

Despite the availability of digital tools—from semantically rich BIM models and digital twins to automated 

computer vision algorithms—construction inspections often still rely on user-driven interactions. Most MR-based 

inspection solutions act as enhanced viewers, with inspectors required to decide when to collect data, which can 

invite human error and allow small deviations to accumulate into costly issues. In particular, the inspection of 

Mechanical, Electrical, and Plumbing (MEP) installations is susceptible to errors due to the large quantity and 

dispersed nature of components. In such contexts, a solution is needed that integrates BIM data, MR visualization, 

and continuous computer vision analysis so that inspection can be achieved in an autonomous manner. 

To address this research gap, we examine whether MR-based inspection might be made more autonomous by 

integrating BIM data with computer vision algorithms for real-time continuous identification and verification of 

MEP elements without the need for user-triggered data acquisition. By performing data acquisition and analysis in 

real-time without user involvement, the user could then simply navigate the site, and their attention is only 
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requested to make decisions and act on detected issues. Such a solution would support two main use cases: 

construction progress and quality control, and facilities management. 

To do this, we build a prototype system and explore its capability at three levels. First, we explore the solution's 

capability to autonomously control whether each element of interest is actually installed, i.e., detecting any missing 

elements. Second, we explore the solution's capability to assess the positional accuracy of installed items by 

comparing their actual locations against the spatial arrangements defined in the BIM model. Collectively, these 

evaluations provide insights into how future systems might automate not only object detection—including the 

identification of missing elements—but also installation quality, thereby supporting robust and speedy inspections. 

3. METHOD 

3.1 Method overview 

Our proposed system architecture encompasses two primary components: MR device, specifically chosen as the 

Hololens2 (HL2), and a Computation Centre (CC), which can be either a local computer or a cloud-based platform. 

The real-time workflow of our proposed framework is then depicted in Figure 1. 

In operation, the user equipped with HL2 navigates the construction site. The HL2 (red rectangle) maintains real-

time communication with the CC, continuously transmitting spatial data regarding the user’s position and 

orientation. Upon receiving this spatial data, the CC initiates a series of processes. Key stages include: 

1. Real-Time Pose Tracking. The CC conducts an analysis of real-time data pertaining to the orientation and 

position of the camera, as transmitted by the HL2. Initially, the CC detects and decodes a QR code, which 

serves to establish the initial pose (i.e. location and orientation) of the HL2. Following this, the CC 

continuously updates the camera’s pose, from the spatial input stream provided by the HL2. This dynamic 

adjustment is detailed in Section 3.3. 

2. Detection Zone Activation. The Central Controller (CC) evaluates whether the user’s position intersects 

with spatially predefined detection zones associated with the objects of interest. The creation of those 

detection zones, designed to encompass one or more elements in the BIM model, is elaborated upon in 

Section 3.4. Upon verification of the user’s presence within a detection zone, the CC dispatches an 

activation command to the HL2, initiating the real-time capture of video and depth frames. These frames, 

along with associated frame information (such as camera intrinsic parameters) are then transmitted to the 

CC for processing. When the user exits the detection zone, the frame capturing function is deactivated. 

Upon re-entry into a detection zone, the activation process of the video capturing function is re-initiated. 

3. Object Detection. The CC loads the AI model and performs object detection on the received RGB camera 

frame, identifying any of the expected target objects within the detection zone. The outcome is the set of 

bounding boxes around detected objects. Detailed information on the detector is presented in Section 3.5. 

4. DigitalTwin-to-Image Projection and Object Matching. This process involves projection of the known 

3D positions of target BIM model objects within the detection zone onto 2D image coordinates. 

Subsequently, these 2D projections are matched with the bounding boxes obtained from the object detection 

step and the closest matches found. Details of this step are provided in Section 3.6. 

5. Detection Validation. This step validates the detected objects by comparing their 3D projected positions 

with the known positions of the target objects in the digital twin. The validation criteria include checking 

the spatial distance between the detected and target objects’ centroids, as well as considering the confidence 

scores provided by the detection model. This step is detailed in Section 3.7. 

6. Visual Feedback. The detection results are visually indicated on the HL2 frame using colour-coded 

bounding boxes. Green bounding boxes denote valid detections that accurately match the known positions 

of objects, while red bounding boxes highlight detections that deviate from the expected positions. 

Additionally, new detections, which do not correspond to any known objects, are marked with yellow 

bounding boxes. Details of this step are provided in Section 3.8. 

As indicated, the main steps of the above process are detailed in the following sub-sections: Section 3.2 to Section 

3.8. 
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3.2 BIM-Based Digital Twin 

The BIM-based Digital Twin is currently implemented as a Python-based program within the Computing Centre 

(CC). Its status is continuously updated with the status of “checked” components. 

Since this digital twinning only includes a one-way dataflow from reality to virtuality, it may in fact be better 

described as a Digital Shadow (Sepasgozar, 2021). 

3.3 Real-Time Pose Tracking 

In the HoloLens 2 (HL2) system, image and video streams undergo distortion correction within the image-

processing framework prior to being made accessible to applications. This correction ensures that the transmitted 

image frames adhere to a perfect pinhole camera model, free from distortion. Consequently, the system satisfies 

the perspective projection equation (Zhang, 1999):  

 𝑝𝑖 = 𝐾[𝐑|𝐭]𝑃𝑖 (1) 

where 𝑝𝑖 represents the 2D coordinates of the image point, 𝐾 is the intrinsic camera matrix, [𝐑|𝐭] is the extrinsic 

matrix, and 𝑃𝑖 denotes the 3D coordinates of the world point. 

The intrinsic camera matrix 𝐾, which encapsulates the camera’s focal length and the principal point offset, is 

computed in real-time by the HL2’s autofocus system and communicated to the CC. The extrinsic matrix [𝐑|𝐭] 
combines the rotation matrix 𝐑 and the translation vector 𝐭. This matrix describes the camera’s pose relative to the 

world coordinates, capturing both its orientation (via 𝐑) and its location (via 𝐭). The extrinsic parameters are 

continuously updated in real-time to reflect changes in the camera’s position and orientation as the user moves 

through the environment. 

3.3.1 Initialisation 

The camera’s initial pose 𝐄𝟎 = [𝐑0|𝐭0] can be established through various methods, such as QR code scanning 

(Kim et al, 2021), or visual analysis of identifiable structures or features (Sarlin et al, 2021). In this study, the 

initialisation is accomplished by scanning a QR code strategically affixed to a predetermined location (a wall in 

the experiments reported below). 

The QR code is detected, and the coordinates of its corners are extracted, denoted as 𝑞𝑖 in the image coordinates. 

The corresponding 3D coordinates in a local world coordinate system, designated as 𝑄𝑖, are known from the pose 

of the matching twin QR code in the BIM model. 

Using the 2D-3D point correspondences between 𝑞𝑖 and 𝑄𝑖, the camera’s initial extrinsic parameters (𝐑𝟎 and 𝐭𝟎) 

relative to the world coordinates are calculated. This computation is based on the principles outlined in 

equ:projection, which relates the 3D coordinates of points in the world to their 2D projections in the image, given 

the camera’s intrinsic parameters. 

3.3.2 Real-time updating 

HL2 transmits real-time orientation (Δ𝐑) and position (Δ𝐓) changes relative to the initial pose. This data is used 

to update the camera’s extrinsic matrix. 

Rotation update: The new orientation matrix 𝐑new is computed by multiplying the initial orientation 𝐑0 with the 

change in orientation Δ𝐑:  

 𝐑new = 𝐑0 ⋅ Δ𝐑 (2) 

Location update: The new position vector 𝐏new is updated by applying the change in position Δ𝐓 relative to the 

initial orientation 𝐑0, and adding it to the initial position 𝐏0:  

 𝐏new = 𝐑0 ⋅ Δ𝐓 + 𝐏0 (3) 

Extrinsic matrix update: The extrinsic matrix 𝐄new of the camera, which transforms points from the world 

coordinates to the camera coordinates, is updated using the new orientation and position:  

 𝐄new = [𝐑new | −𝐑new ⋅ 𝐏new] (4) 
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3.4 Detection Zone Activation 

3.4.1 Design of Detection Zone 

The detection zones are created to reduce computational demand, by focusing on specific areas that need inspection 

or monitoring, within which the categories of the objects of interest are known. Each detection zone stores: the 

precise locations and categories of target elements and relevant geometrical data, such as targets’ surface normal 

lines. 

3.4.2 Camera activation and data acquisition 

The system monitors the user’s location within the environment from the spatial data from the HL2 device. The 

system compares these location coordinates with the boundaries of the predefined detection zones to identify which 

zone the user is currently in. 

When the user enters a detection zone, CC sends a command to HL2 triggering camera activation and data 

acquisition. This involves capturing from various data streams, including the personal video (PV) stream and depth 

stream. The PV stream provides RGB images of the environment, and the depth stream supplies depth information 

from the environment. The system ensures that the latest data is used for processing by acquiring the most recent 

frames from these streams, often synchronising the frames to align the timestamps as closely as possible. 

Following data acquisition, the captured frames undergo pre-processing to prepare them for further analysis. This 

pre-processing includes several tasks such as undistorting and normalising the depth data. Undistortion corrects 

any optical distortions in the depth images caused by the camera lens, ensuring geometric accuracy and 

consistency. Normalisation adjusts the depth values to a standard scale, making it easier to integrate depth 

information with other data types. Additionally, the PV frames are aligned with the depth data to create a coherent 

and integrated dataset. This alignment involves mapping the 2D RGB images from the PV stream onto the 3D 

depth information, providing a comprehensive view of the environment. 

3.4.3 Data transmission 

Zaccardi et al (2023) provide insights into using Unity’s Barracuda on HoloLens 2 for real-time medical AR 

systems. They found that simpler models like Lenet5 can achieve over 30 fps. In contrast, more complex models 

like EfficientNetB0 result in a much lower frame rate, highlighting the difficult balance between model complexity 

and performance. Therefore, in theory, the computational capabilities of current MR hardware are sufficient to 

support the execution of deep learning models, including the projection of 3D objects. However, for more effective 

communication with digital twins and to assess the framework’s performance more accurately, we perform both 

the detection and projection processes in CC. 

Dibene and Dunn (2022) propose a HL2 server application to facilitate the real-time streaming of sensor data over 

TCP (Transmission Control Protocol). This protocol ensures reliable, ordered, and error-checked delivery of a 

stream of bytes between applications running on hosts communicating via an IP network. In this project, we 

implement a multiprocessing approach to efficiently direct the streams of front camera, depth camera and spatial 

input data towards a centralised computational hub. This approach facilitates the concurrent processing of diverse 

data inputs, enhancing the overall efficiency and throughput of the system. 

3.5 Object Detection 

In this study, the overall system is illustrated using the inspection of sockets and switches as an example. But, the 

method is naturally adaptable to other objects (e.g. fire safety equipment (Corneli et al, 2020)). To detect sockets 

and switches in images captured by the HL2 camera, a deep learning model is developed, based on YOLOv5m 

(Jocher et al, 2020), noted for its rapid and precise performance. The pre-trained YOLOv5m model is then retrained 

(with transfer learning) using a dataset comprising 2,026 indoor images featuring sockets and switches, enhanced 

through various augmentation techniques such as rotation, shearing, and mosaic effects to mimic lens distortion 

and complex indoor scenarios. The evaluation of the system involved the analysis of 73 images, incorporating 163 

instances, and yielded a precision rate of 95% and a recall rate of 86.6%. The system has an inference time of 8.4 

milliseconds, and a Non-Maximum Suppression (NMS) time of 2.5 milliseconds per image for an image dimension 

of (32, 3, 640, 640). This processing speed is particularly advantageous for real-time applications in construction 

inspection, highlighting the system’s capability in both accuracy and efficiency in object detection tasks. 
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3.6 DigitalTwin-to-Image plane Projection and Matching 

The system calculates the camera-to-object incidence angle, camera-to-object alignment angle, and camera-to-

object distance for each object in the detection zone based on the user’s position and orientation. Only if these 

measurements are less than the predefined thresholds 𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑐𝑒max, 𝐴𝑙𝑖𝑔𝑛max, and 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒max, respectively, 
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is the object considered a possible target object. These thresholds are necessary to ensure that the object is within 

an optimal viewing range, minimising errors in projections and improving the system’s overall detection accuracy. 

Using equ:projection, the system then projects the three-dimensional locations of each of these target objects in 

the digital twin, denoted as 𝑃𝑖, from the world coordinate system onto the HL2 video image plane, represented as 

𝑝𝑖. 

Subsequently, for each detection, the system matches the centroid 𝑝𝑐𝑖 of each projected target object with the 

detected object bounding box 𝑏𝑏𝑜𝑥𝑖 . For each 𝑝𝑐𝑖 , a bounding box 𝑏𝑏𝑜𝑥𝑖  of the same category, with a high 

confidence score (0.8), is assigned based on the smallest Euclidean distance between the centre of 𝑏𝑏𝑜𝑥𝑖  and 𝑝𝑐𝑖. 
For each matching pair, if the Euclidean distance is within a predefined threshold 𝑑max (half the image width), the 

detected bounding box is considered a valid detection. 

Considering the estimation errors inherent in the pinhole model, as well as inaccuracies in the external and intrinsic 

matrices caused by sensor errors, a threshold 𝑑max of half the image width has been found to be appropriate based 

on empirical evidence. These valid boxes 𝑏𝑏𝑜𝑥𝑣𝑎𝑙𝑖𝑑𝑖 are then used for further processing. The entire process is 

depicted in Algorithm 1. 

3.7 Detection Validation 

3.7.1 Image to Digital Twin Projection 

The centres of all bounding boxes 𝑏𝑏𝑜𝑥𝑖  from the video frames are projected into 3D space. This transformation 

entails several critical computations. Initially, the centre coordinates (𝑢, 𝑣) of bbox𝑖  are converted into normalised 

camera coordinates (𝑥′, 𝑦′, 𝑧′) via the intrinsic matrix 𝐊. This transformation is expressed by the equation: 

 𝐊−1 [
𝑢
𝑣
1
] = [

𝑥′
𝑦′

𝑧′

] 

where 𝐊 represents the intrinsic matrix, and (𝑢, 𝑣) denote the image coordinates. Subsequently, these normalised 

coordinates are scaled using the depth values 𝑑 obtained from the depth frames, as follows: 

 𝐂 = 𝑑 [
𝑥′
𝑦′

𝑧′

] 

where 𝑑 is the depth value. 

Finally, these scaled coordinates 𝐂 are transformed into world coordinates (𝑋, 𝑌, 𝑍) utilising the extrinsic matrix 

𝐄, described by the equation: 

 𝐄−1 [

𝑥′
𝑦′

𝑧′
1

] = [

𝑋
𝑌
𝑍
1

] 

where 𝐄 encompasses both rotation and translation parameters. 

In Section 3.5, the procedure involves projecting target elements onto the image frame and aligning them with the 

corresponding bounding boxes. Subsequently, these bounding boxes are projected back onto the digital twin to 

observe deviations within the 3D environment. However, bounding boxes that lack correspondence with any pre-

identified elements suggest the presence of either newly detected entities or superfluous data (detection errors). 

Should these bounding boxes represent elements that are absent from the as-planned digital twin, their inclusion 

is nevertheless crucial for visualisation within the digital twin framework. These elements provide essential data 

for inspection to analyse, thereby enriching the accuracy and functionality of the digital twin model. Consequently, 

these two scenarios will be addressed separately in the subsequent section. 

3.7.2 Detection Validation of Matching Bounding Boxes 

For those bounding boxes 𝑏𝑏𝑜𝑥𝑣𝑎𝑙𝑖𝑑𝑖 that correspond to target elements, after transferring the image frame to the 

world coordinate system, the system compares the centroid of the projected 3D coordinates (𝑋, 𝑌, 𝑍) of bbox𝑖  with 
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𝑝𝑐𝑖 to ascertain the deviation of the detection by computing the Euclidean distance between them. Given that the 

frame rate is set at 30 fps, image frames captured over 1 second (yielding 30 distance values) are collected, and 

the mean distance 𝑑mean is calculated as the reliable deviation. 

The mean distance 𝑑mean is subsequently compared with the threshold distance 𝑑threshold to make a final 

determination regarding whether the detected position corresponds to the intended design position. If 𝑑mean is 

greater than 𝑑threshold, the object is detected but does not correspond to the as-designed plan. Conversely, if 𝑑mean 

is less than or equal to 𝑑threshold, the object is detected and corresponds to the as-designed plan. Upon making this 

determination, the object in the digital twin is marked as "checked". If the object is already marked as "checked," 

it will not undergo the detection validation process again. This process is summarised in Algorithm 2. 
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3.7.3 Detection Validation of Non-Matching Bounding Boxes 

In scenarios where bounding boxes derived from 2D object detections do not find corresponding matches within 

the as-planned digital twin, these bounding boxes are hypothesised to represent either a new object or a false 

positive. To assess this, the centroids of the unmatched bounding boxes are projected into the 3D space using the 

camera’s intrinsic and extrinsic parameters, alongside depth data. Then the system tracks the projected points over 

successive video frames to validate the hypothesis. For each subsequent frame, the bounding box detection 

algorithm attempts to detect the same object by projecting the centroids of newly detected bounding boxes into 3D 

space. If the projected 3D point of a bounding box in a new frame lies within a 0.1m tolerance radius of a 

previously hypothesised 3D position, the system regards this as a re-detection of the same object. 
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Each successful re-detection increments a detection count for the hypothesised object. If the accumulated count 

for a given 3D position reaches a threshold of 30 successful re-detections over time, the object is confirmed as a 

valid, newly detected entity. The threshold is designed to ensure robustness, minimising the likelihood of falsely 

confirming objects that might be generated due to noise or transient detection errors. Upon confirmation, the object 

is formally incorporated into the digital twin representation of the environment and is visually presented to the 

user. 

In instances where a projected 3D point fails to meet the detection threshold within a specified inactive threshold, 

the system treats the projection as a false positive, likely caused by noise or transient errors in detection. To prevent 

such erroneous data from accumulating within the system, an adaptive removal mechanism is employed. This 

mechanism assigns an inactivity counter to each hypothesised 3D point. The inactivity counter increments with 

each frame in which the point is not re-detected. If the inactivity counter for a given point exceeds a predefined 

inactivity threshold, the system removes the point from the tracking process and adds it to a set of discarded 

points, preventing its reintroduction. 

The full implementation of this process is detailed in Algorithm 3. 

3.8 Visual Feedback 

Visual feedback is provided in two ways: within the HL2 image frame and in the digital twin representation. 

3.8.1 Visual Feedback in HL2 Image Frame 

In the HL2 image frame, bounding boxes are drawn around each detected object within the video frame. These 

bounding boxes are colour-coded according as follows: 

• Green: This category is assigned when a bounding box corresponds to a targeted element (𝑏𝑏𝑜𝑥𝑣𝑎𝑙𝑖𝑑𝑖) and the 

deviation of its projection into the 3D environment is within the specified threshold distance (𝑑threshold). This 

indicates that the detected object’s position and characteristics are consistent with those of a corresponding target 

element in the digital twin. 

• Red: This category is applied when a bounding box corresponds to a targeted element (𝑏𝑏𝑜𝑥𝑣𝑎𝑙𝑖𝑑𝑖) but the 

deviation from the 3D projection exceeds the threshold distance (𝑑threshold). This discrepancy between the 

detected object’s position and the pre-defined object location highlights potential errors in detection or 

inconsistencies in the data. 

• Yellow: This category is used for bounding boxes that do not correspond to any targeted elements (𝑏𝑏𝑜𝑥𝑛𝑖) 
but are detected within the same location range (𝑑tolerance) across multiple frames. These are considered newly 

identified objects, requiring further validation to confirm their existence and relevance.  

4.  EXPERIMENTAL RESULT 

4.1 Performance Analysis of Pose Initialisation 

Using scanning QR codes for determining camera position and orientation is a cost-effective and accessible 

method. However, this approach has its limitations. The accuracy can be significantly affected by factors such as 

poor lighting, low camera resolution, and environmental interference. To enhance the accuracy of the initialisation 

of the camera’s position and orientation, the QR code is continuously scanned for a duration of 5 seconds while 

the user remains stationary. The mean values of the position and orientation collected during this period are then 

calculated, so that transient errors caused by sudden changes in the environment or by the initial positioning of the 

camera are averaged out. 

In our experiment, a comparative evaluation is conducted between the computed camera position derived from the 

pin hole model and the position obtained through manual measurements. This comparison revealed that the average 

position deviation in this initialisation step is approximately 3.49. This discrepancy can be attributed to two 

significant factors. Firstly, lens distortion, particularly in the form of radial and tangential distortions, can alter the 

perceived geometry of the scanned QR code, leading to inaccuracies in the calculation of the camera’s position 

and orientation. Secondly, due to the user’s breathing, subtle body movements occur that generate slight but 

impactful shift in the camera’s position. 
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4.2 Parameter Optimisation on Real-time projection 

In Section 3.5 and 3.6, the projection steps involve transforming coordinates between the image frame and the 3D 

world system, and vice versa. The accuracy of this projection process is influenced by several factors, including: 

[noitemsep]  

• Camera-to-object incidence angle 𝜃𝑖: the angle between the camera’s optical axis and the normal to the object’s 

surface.  

• Camera-to-object alignment angle 𝜃𝑎: the angle between the camera’s optical axis and the line connecting the 

camera to the object.  

• Camera-to-object distance 𝑑𝑐𝑜: the direct line distance between the camera and the object.  

These factors illustrated in Figure 2. 

  

Figure 2: Visulisation of parameters. (The black item represents HL2, and the red dot indicates the target socket 

in a digital twin environment). 

To explore the correlation between these factors and projection errors, we conducted an experimental study using 

a single socket target. The experiment is initialised by scanning the QR code and then detection and projection are 

performed at varying angles and distances with a socket located right next to the QR code (to reduce the impact of 

localisation drift). 

We define deviation as the spatial distance calculated from the centre point of the ’as-designed’ socket to the 

centroid of the 3D projected bounding box. In total 2,488 data points are acquired for analysis. In the analysis, the 

controlled variable method is utilised to ensure rigour and accuracy in the interpretation of the data. 
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Figure 3: Relationship between the camera-to-object alignment angle 𝜃𝑎 and 3D projection deviation. 

Initially, we fix the 𝜃𝑖 less than 10, given that the majority of the data falls within this range. This angle is also 

chosen due to its minimal distortion impact on the projection, ensuring it did not significantly affect the analysis 

of other parameters. Subsequently, we set the 𝑑𝑐𝑜 less than 1.5. This moderate distance is selected to avoid any 

undue influence on the results. These constraints on 𝜃𝑖 and 𝑑𝑐𝑜 results in a data subset (607 data) that is analysed 

to evaluate any relationship between the 𝜃𝑎 and the observed deviations. The results are summarised in the 3D 

scatter plot shown in Figure 3. We can see that once 𝜃𝑎 is larger than 12, the deviations become unstable and peak 

at higher values. This can be attributed to two possible reasons: (1) the image distortion becomes more pronounced 

at larger angles; and (2) the IMU sensor measurement inside HL2 is not accurate and stable, accumulating errors 

over time. 

 

Figure 4: Relationship between the camera-to-object distance 𝑑𝑐𝑜 and 3D projection deviation. 
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Subsequently, we set 𝜃𝑖 less than 10 and 𝜃𝑎 less than 12 to construct another data subset comprising 901 data 

points and that is utilised to examine the relationship between 𝑑𝑐𝑜 and the 3D projection deviation. The results are 

reported in Figure 4. Our findings indicate that within a range of less than 1.5, the deviation remains consistently 

low and stable (< 0.4). Beyond that, the deviation increases significantly and becomes more erratic. This 

phenomenon can be attributed primarily to two factors: (1) the amplification of errors in preceding stages, such as 

sensor measurement or QR code initialisation, due to longer distances; and (2) the inherent limitations of the 

camera’s capabilities adversely affecting detection at extended ranges. 

Setting 𝜃𝑎 less than 0-12 and 𝑑𝑐𝑜 less than 1.5 results in minimal and stable deviation, as evidenced by prior 

findings. Using these settings, a third data subset comprising 414 data points is created, that is used to investigate 

the relationship between camera-to-object incidence angle 𝜃𝑖 and the 3D projection deviation. The results are 

reported in Figure 5. The analysis reveals an increase in deviation corresponding to an increase in 𝜃𝑖, particularly 

when the angle exceeds 10. This trend is attributed to factors similar to those affecting 𝜃𝑎, such as image distortion 

at larger angles and sensor measurement inconsistencies. 

 

Figure 5: Relationship between the camera-to-object incidence angle 𝜃𝑖 and 3D projection deviation. 

4.3 Result Analysis and visualisation 

Based on the results presented in Section 4.2, the optimal parameter for detection with the lowest error is found to 

be when 𝜃𝑎 is less than 12, 𝑑𝑐𝑜 is less than 1.5, and 𝜃𝑖 is less than 10. Under these conditions (which will be 

discussed further in Section 5), an experiment was conducted on-site to detect elements in two different scenes. 

The videos documenting these experimental tests are accessible online: the first experiment, conducted in a 

residential living room, can be viewed at [https://youtu.be/WAE5rRlHDfk], while the second experiment, 

conducted in an office environment, is divided into two parts: Part 1, focusing on optimised seated inspection, is 

available at [https://youtu.be/GjM4ImMmjME], and Part 2, which addresses natural standing inspection, can be 

found at [https://youtu.be/vINaBHCHjmk]. 

4.4 First Experiment in a Residential Living Room 

The first scene involves a large living space (see in Figure 6). A 1:1 BIM model was created to serve as a Digital 

Twin of the physical space. The user’s movements are updated in real-time within CC. In Figure 6a, the Digital 

Twin of the room is shown in grey, while four differently coloured squares indicate the designated detection zones. 

https://youtu.be/WAE5rRlHDfk
https://youtu.be/GjM4ImMmjME
https://youtu.be/vINaBHCHjmk
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The current pose of the HL2 device, updated in real-time, is shown in black.The HL2 screen interface, illustrated 

in Figure 6c, displays the detection bounding box to the user during the inspection process. They are shown in 

green indicating that those two detections correspond to two matching objects in the Digital Twin. This result is 

also shown in the Digital Twin in Figure 6a, where two green spheres can be seen on the wall adjacent to the blue 

detection zone, indicating the two detected target objects. 

   

Figure 6a: Screenshot of the Digital Twin.   Figure 6b: User wearing the HL2 in operation. 

 

Figure 6c: HL2 video frame. 

Figure 6: First Experiment in a Residential Living Room. 

To evaluate the detection accuracy, the threshold distance (𝑑threshold) was set at 1. Errors from each detection were 

recorded for analysis, with the results reported in Figure 10. The results show a mean deviation was 0.37, with a 

standard deviation of 0.156. 

The sockets (Socket1 to Socket6) were scanned sequentially, following the order depicted in Figure 7, with 

traversal distances increasing progressively. The proximity of the first two sockets, located around 2 from the 

initial scanning position, resulted in relatively low deviations, with an average error of approximately 0.185. In 

contrast, a significant increase in deviation was observed beyond Socket4, where traversal distances ranged 

between 10 and 15. This deviation can be attributed to the lower positioning of Sockets 4, 5, and 6, which 

necessitated adjustments in the user’s stance to maintain a camera-to-object incidence angle (𝜃𝑖) below 10. These 

positional adjustments introduced additional sensor drift in the HoloLens 2 (HL2) system, adversely affecting 

detection accuracy. 

 

Figure 7: Assessment of Detection Deviations Across Elements in Experiment 1. 
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4.5 Second Experiment in an Office Environment 

The second experiment is conducted in an office environment (see Figure 8a). The configuration comprises two 

office rooms and one corridor. In this experiment, each room designated as a detection zone: Zone A and Zone B. 

Initially, the user’s position is in Zone A. Zone A contains ten objects (Switches 1-2 and Sockets 3-10) located 

within a relatively compact area. The total distance required to detect objects in this zone ranges from 

approximately 1 to 4.8. After completing the detection in Zone A, the user transitions to Zone B via the corridor, 

which contains the remaining ten objects (Switches 11-12 and Sockets 13-20). Zone B covers a larger area, with 

the user needing to travel between 10.6 meters and 15.3 meters to detect the objects in this zone. 

Given that all the elements within this environment are positioned on the lower part of the walls (as indicated in 

Figure 8b), the user conducted the experiment on a moving seat to ensure that the angle 𝜃𝑖 remained below 10. 

   

Figure 8a: Screenshot of the Digital Twin.   Figure 8b: User wearing the HL2 in operation. 

 

Figure 8c: HL2 video frame. 

Figure 8: Second Experiment in an Office Environment. 

The detections and deviations for a total of 20 elements were recorded. The results are presented in Figure 9. The 

first 10 elements, marked in sky blue, are located in Zone A, while those in dark blue are in Zone B. The mean 

deviation was 0.161, with a standard deviation of 0.073. Notably, all deviations are stable and maintained below 

0.3, which was likely helped by the lack of vertical motion of the user on the moving seat, which minimised errors 

from the HL2 sensor. 

The detection process was repeated under the condition that the user stands and walks normally, disregarding the 

requirement that camera-to-object incidence angle (𝜃𝑖) be less than 10. This adjustment was made to assess the 

significance of the incidence angle in the detection process. The deviation measurements were updated for the 

same 20 elements, as shown in Figure 10. The first 10 elements, marked in light blue, correspond to Zone A, while 

the remaining 10 elements, shown in dark blue, belong to Zone B. Unlike the first set of results, the deviations 

(Figure 11) show greater variance across both zones, with several elements exceeding the initial 0.3 threshold. The 

mean deviation increased significantly to 0.515, with a standard deviation of 0.216. The elements in Zone B exhibit 

notably higher deviations. This suggests that the observed errors can be attributed to the accumulation of errors 

resulting from user movement, as well as variations in head orientation as the user adjusts their gaze to inspect 

different elements. 
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Figure 9: Assessment of Detection Deviations Across Elements in Experiment 2. 

 

Figure 10a: Screenshot of the Digital Twin.   Figure 10b: User wearing the HL2 in operation. 

 

Figure 10c: HL2 video frame. 

Figure 10: Third Experiment in an Office Environment with the user in a standing position. 
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Figure 11: Assessment of Detection Deviations Across Elements in Experiment 3. 

5. DISCUSSION 

5.1 Performance Analysis 

In light of the experimental findings, it can be deduced that optimal system performance is attained when 𝜃𝑎 is 

less than 12, 𝑑𝑐𝑜 is less than 1.5, and 𝜃𝑖 is less than 10. Under these specific conditions, the system demonstrates 

enhanced efficacy, as evidenced by a mean deviation of approximately 16.1. This conclusion aligns with findings 

reported in (Hubner et al, 2020), where optimal performance is also shown to depend on maintaining low angles 

of incidence and short distances. Specifically, the HoloLens depth sensor, as evaluated in their work, exhibits 

minimal noise when the angle of incidence is kept below 20, similar to the our study’s recommendation of 𝜃𝑖 less 

than 10. Furthermore, both studies highlight the importance of proximity, with performance degradation occurring 

beyond 2.5 in the HoloLens study, echoing the results of this experiment, which found 𝑑𝑐𝑜 should remain below 

1.5 for optimal accuracy. 

As a result, it appears that using the current prototype system based on state-of-the-art MR technology (Hololens), 

construction positioning conformance can only be confirmed within 16 cm, under very constraining conditions 

(short distance and low incidence angle). In fact, to further evaluate the impact of the incidence angle, an additional 

experiment was conducted with the user standing and tilting their head downward to observe the elements, which 

would likely occur in practice. In this scenario, the observed deviation further increased to 50 cm. Unfortunately, 

this significantly limits the range of possible use cases. While the current prototype may still be useful to detect 

and match some elements, it cannot be reliably used for positioning conformance control. 

The reported rapid degradations in performance can be ascribed to the following factors: 

− Pose tracking inaccuracies result from two types of errors. There is an inherent error in the process of 

initializing the camera's location and orientation using QR code scanning. As discussed earlier, this error 

results in a positional deviation of approximately 3.5 cm. More critically, errors from devices like inertial 

measurement units (IMUs) introduce further pose tracking errors, especially during quick motions. 

− Errors in camera intrinsic parameter estimation (e.g., perspective and lens distortions) influence the 

perceived sizes and shapes within an image, potentially introducing errors during the projection process 

between two-dimensional and three-dimensional environments. 

− Environmental conditions also impact the results.The way lighting and shadows appear in the image 

affects how accurately objects are detected and represented. 

− For a system like the one proposed here to achieve a level of performance that is sufficient for all 

envisioned use cases, the following enhancements should be pursued: 
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− To improve the accuracy of camera pose tracking, more robust IMUs could be considered. Alternatively, 

additional sensors (e.g., beacon-based location tracking) can be integrated to enhance both pose 

initialization and pose tracking. In fact, this is the strategy already favored by current commercial AR 

solutions for construction applications. For indoor use, vGIS (vGIS Incorporated, 2024) or XYZ Reality 

(World Intellectual Property Organization, 2021) employ beacons for assistance, while for outdoor use, 

high-accuracy AR systems integrate GNSS and RTK to achieve precision levels up to 1 cm. 

− Accurately identifying complex elements like multi-functional media sockets is challenging due to their 

diverse designs and the need to distinguish their specific types and orientations. Sophisticated object 

detection technologies, trained on an extensive array of socket designs and configurations, must be 

developed to enable broad and robust applicability in practice. Notwithstanding, the proposed detection 

zone-based approach, and more generally utilizing any prior information contained in the BIM model (or 

Digital Twin), are important strategies to reduce the need for solutions that must be overly general (and 

thus difficult to train). 

5.2 Role of Users and System Implications 

The proposed system is designed to augment human inspectors by automating routine construction inspection tasks 

while preserving the critical role of human expertise in complex scenarios. By leveraging Mixed Reality (MR), 

the system minimizes user intervention during routine inspections. Users are alerted only when non-compliance is 

detected, as indicated by red-colored marks on the display, allowing them to focus on other tasks until their 

attention is needed. This hands-free approach enhances task efficiency and minimizes disruptions to the user’s 

workflow. 

The system operates in real-time or near-real-time, ensuring seamless interaction during inspections. While this 

study focuses on the system’s design and functionality, future work should include comprehensive user experience 

testing to evaluate usability, task efficiency, and overall performance. These studies will guide further refinements 

to ensure the system aligns with the practical needs of construction professionals. 

While robotic systems equipped with cameras and sensors could theoretically replicate some inspection tasks, they 

lack the adaptability and contextual reasoning required in dynamic construction environments. Construction sites 

often present unique and unforeseen challenges, such as temporary obstructions, changing environmental 

conditions, or project-specific nuances, which are still best handled by human judgment. Human inspectors, 

supported by the proposed system, can interpret site-specific complexities, prioritize tasks, and interact with 

stakeholders to make informed decisions. This hybrid, light human-in-the-loop approach balances the precision of 

automated detection with the flexibility and problem-solving abilities unique to humans, ensuring the system 

remains practical and effective for real-world applications. 

6. CONCLUSION 

This paper explored the feasibility of employing a novel MR-based construction inspection framework that 

integrates AI-based object detection with 2D-to-3D projection techniques and matching against the facility's 

Digital Twin (DT) information to enable more autonomous inspection workflows than current approaches. The 

system is facilitated by a robust communication mechanism between the MR device and the Computation Centre. 

Inspection results are stored in the DT and reported to the MR user on-site in real-time, enabling prompt decision-

making. 

The practicality and effectiveness of the framework were evaluated in two real-life indoor environments, 

demonstrating the system's feasibility in real-world inspection processes. However, the results also highlighted 

limitations in tracking accuracy and detection quality, pointing to areas requiring further research. In particular, 

future work could focus on enhancing the accuracy of camera pose tracking through the integration of external 

sensors, which would improve both initialization and continuous pose tracking. Additionally, object detection 

systems could be expanded to recognize more complex elements through training on diverse datasets. These 

technical enhancements would not only refine the system’s performance but also unlock broader applications, such 

as monitoring compliance with safety regulations on construction sites. 
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