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SUMMARY: Construction sites face inherent risks from overlapping activities in confined spaces and require 

advanced solutions to manage spatial-temporal conflicts. Surpassing previously developed static BIM tools, this 

study introduces an automated approach that revolutionizes job site safety planning by dynamically assessing 

conflict risks between evolving workspaces. The method integrates empirical workspace geometry with machine 

learning—using Support Vector Machine regression to predict worker presence—and BIM-driven dynamic conflict 

analysis, which reflects real-time changes in workspace sizes and team movements. By generating safety score 

matrices through pairwise risk assessments, it quantifies conflict types (physical impacts, proximity risks, workflow 

disruptions) and enables real-time scenario comparisons via Python-based evaluation. Adjustable parameters 

allow customization for team sizes, workspace allocations, and pandemic-specific adaptations such as social 

distancing. Case studies show that the system effectively identifies high-risk periods, compares different work 

sequences, and makes schedules without sacrificing productivity. Unlike earlier clash detection methods that only 

compared static models, this framework provides actionable safety metrics to proactively respond to conflict risks. 

Designed for scalability, the presented method manages computational demands in complex projects. This 

advancement represents a paradigm shift in construction safety, blending predictive analytics with practical 

adaptability to protect workers and streamline operations. 
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1. INTRODUCTION 

Despite technological advances in Occupational Health and Safety (OHS), the construction industry has remained 

a high-risk industry with high injury and fatality rates (Tixier et al., 2017; Ghodrati et al., 2018; Alkaissy et al., 

2020). As a construction project progresses, constant changes in the physical environment and the turnover of 

crews and machinery result in different risk levels (Rozenfeld et al., 2009). Construction workers are exposed to 

hazards from the technology (including tools and machinery necessary to perform the task), physical and 

environmental conditions, and surrounding activities (Mitropoulos et al., 2005). Safety hazards of different 

construction activities and the role of the environment have been previously studied (Benjaoran & Bhokha, 2010; 

Esmaeili et al., 2015; Zhang et al., 2015a; Tixier et al., 2017; Choe & Leite, 2017b). This paper focuses solely on 

detecting and analyzing hazards that stem from the execution of simultaneous activities. 

Spatial-temporal conflicts occur when the allocated workspace of an activity interferes with other simultaneous 

activities. Task overlaps in construction projects are prevalent due to the time pressure, and multiple concurrent 

tasks competing for a limited workspace (Zhang et al., 2015b). Securing work safety and productivity is difficult 

in the presence of workspace interference (Igwe et al., 2020; Moon et al., 2014b). Multiple studies tried to address 

the spatial-temporal conflicts by providing frameworks to detect, analyze and reduce the collision among 

workspaces in construction projects. More recently, BIM has been integrated into safety planning and workspace 

management due to its ability to visualize workspaces, conduct safety rule-checking algorithms, and analyze and 

resolve workspace conflicts. BIM facilitates sharing of sites’ safety-related data and supports collaboration 

(Martínez-Aires et al., 2018). 

The BIM-based method presented in this paper consists of five main components; construction workspaces 2D 

graph, BIM model, Support Vector Machine regression, safety score matrices, and scenario evaluation code. The 

presented method classifies and generates activity-specific workspaces based on empirical data first. Subsequently, 

construction workspaces 2D graph, SVM regression, and BIM model are used to conduct pair-wise conflict 

detection and analysis. The outputs of this process are safety score matrices regarding conflicts of different 

activities such as post-installation/post-installation or post-installation/blockwork, etc. The Phyton code uses the 

matrices to carry out scenario evaluation. The final outputs of this method are the safety scores for each scenario 

(at each time unit and cumulatively). The calculated safety scores could be used as criteria to compare different 

scenarios, identify high-risk periods, and warn safety managers to proactively respond to risks or to alert 

contractors to adjust the work sequences.  

Support Vector Machine Regression (SVM) is a non-probabilistic binary linear classifier that was used to anticipate 

the number of blockwork laborers’ visits to each workspace module based on training examples. Although other 

machine learning algorithms such as Neural Network and Random Forests could be used for this purpose, SVM 

regression with a radial basis function kernel (RBF) was used to map the input into high-dimensional feature 

spaces, making them more separable with reasonable computational complexity. Moreover, hyperparameters such 

as the regularization parameter (C) and kernel parameters were carefully tuned to avoid overfitting and underfitting 

(mean squared error of 0.9589 in all data). 

Blockwork and post-installation activities in a healthcare facility construction project were used to validate the 

method. The activity-specific information about these activities, including the required workspace and the evolving 

workspace geometries (dynamic evolution) of the allocated workspaces, was missing in the literature. This gap 

was filled by collecting data through field observation, manual data entry, sample simulation and analysis in 

Grasshopper®, and processing the data through Support Vector Machine (SVM) regression (Kluyver et al., 2016). 

Compared to traditional safety management practices, which relied on a safety expert to identify hazards based on 

static information (e.g., two-dimensional drawings and paper regulations), the method presented in this paper takes 

the dynamic nature of the construction phase into consideration and addresses site-specific information. 

This method uses parametrically generated occupancy grids based on empirical data to represent workspace usage 

over time and conduct conflict detection and analysis. The approach is superior to the methods that used variants 

of the Bounding Box concept (e.g., Bounding Spheres (BS), Axis-Aligned Bounding Box (AABB), and Oriented 

Bounding Boxes (OBB)) (Chavada et al., 2012; Moon et al., 2014a; Kim & Teizer, 2014; Kim et al., 2016; Mirzaei 

et al., 2018; Dashti et al., 2021; Wang et al., 2019). It is because by considering workspace usage during the 

construction time of each activity, unrealistic conflict detection is avoided. Also, compared to expert opinion 

approaches and other non-empirical methods subject to cognitive bias, quantifying conflict risks could be done 
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more accurately. Furthermore, although some commercial 3D modeling systems such as Autodesk® Navisworks® 

and SYNCHRO Pro® could detect collisions between design elements and workspaces, these models cannot 

quantify the risk of conflict. In this novel method, conflict detection and analysis are carried out by automatically 

cross-checking the work sequence of different activities using the Python code, discussed in section 3.7.  

2. LITERATURE REVIEW 

Although digital technologies have entered the construction industry for several decades, making use of them in 

occupational health and safety (H&S) has been lower compared to other construction fields (Cortés-Pérez et al., 

2020). In recent years, researchers have started applying BIM (i.e., Building Information Modeling) to enhance 

safety planning and site monitoring. However, tailoring BIM to suit construction management tasks such as 

workspace planning has remained a challenge (Igwe et al., 2020).  

The following subsections detail the main highlights from different research studies on BIM-based safety 

management, safety risk analysis, and workspace management. 

2.1 BIM-Based Safety Management 

Traditional safety management practices have been argued to be time-consuming, done separately from the design 

and planning phase, highly dependent on traditional resources such as two-dimensional drawings and paper 

regulations, inconsiderate of the dynamic nature of the construction phase, and reliant on a safety expert to identify 

hazards and determine safety equipment based on experience (Zhang et al., 2015a; Choe & Leite, 2017b; Guo et 

al., 2021). Reliance on static information and tacit knowledge in traditional safety planning approaches results in 

not addressing site-specific dynamic information, temporal (e.g., when and who will be exposed to potential 

hazards), and spatial (e.g., location of dangerous zones) information (Choe and Leite, 2017b). Due to the 

Inefficiency of traditional safety management in identifying and analyzing hazards, approaches based on 

information technology such as building information modeling (BIM), geographic information system (GIS) 

(Bansal, 2011), augmented reality (AR) and virtual reality (VR), and Sensing and Warning Technologies have been 

considered in recent years. 

As the most flourishing technology in the construction industry, BIM has the potential to contribute to safety 

management e.g. through scheduling, clash detection, construction progress tracking, design consistency and 

visualization, data integration, cost estimations, implementation of lean construction, or improved team member 

collaboration, etc. (Martínez-Aires et al., 2018). Since an optimal way to improve safety performance is thorough 

accident prevention (Alkaissy et al., 2020), researchers have applied BIM to identify potential safety hazards 

through 1-visualization or 2-automatic rule-based algorithms and adopting corresponding prevention methods. 

Visual technologies such as BIM could be used to facilitate identifying job hazard areas (JHAs) during safety 

meetings and aid safety training (Zaman et al. 2024). Although taking advantage of BIM, this approach to safety 

risk identification is still an experience-dependent manual process. Benjaoran and Bhokha (2010) integrated a 4D 

CAD model (Flores and Mourgues, 2024) and a rule-based system to automate the working-at-height hazard 

identification process and suggest proper safety measures, including safety activities or requirements. A similar 

approach was adopted by Zhang et al. (2015a) to identify the risks of fall from height at the early stages of planning 

and raise workers' safety awareness by using three-dimensional visualization of potential hazards. Kim et al. (2016) 

focused on scaffolding construction and used rule-checking algorithms to identify and prevent hazards arising 

from the sequence of activities and temporary structures. 

2.2 Safety Risk Analysis 

Most safety risk studies decompose construction processes into smaller parts to overcome the technological and 

organizational complexity of construction process (Tixier et al., 2017). This decomposition could assist researchers 

in analyzing safety for specific tasks or activities (Benjaoran & Bhokha, 2010), for different trades or occupations 

(Choe & Leite, 2017b), based on model elements (Cortés-Pérez et al., 2020), or for specific hazards such as fall 

from height (Zhang et al., 2015a).  

The main limitation of the above-stated segmented approaches is that identifying all safety risks of each trade, 

activity or task is impractical, especially in large-scale and sophisticated projects (Tixier et al., 2017; Ghodrati et 

al., 2018). To address this limitation, context-free measurable and predictable attributes of the work environment 
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could be identified through content analysis of safety reports to assess safety risks for a worker, group, activity, 

profession, or site as a whole. This approach was first adopted by Esmaeili et al. (2015) and further developed by 

Tixier et al. (2017) (a genetic-inspired attribute-based model). However, attribute-based assessment overlooks the 

fact that safety attributes for different trades may have different probabilities and severities. The risk score for each 

attribute is considered to be constant regardless of different professions (Choe & Leite, 2017a). 

Current risk quantification methods either use historical data or, more commonly, expert opinion and other non-

empirical methods subjected to cognitive bias to assess safety hazards (Esmaeili et al., 2015; Tixier et al., 2017). 

For instance, Jannadi and Almishari (2003) developed a user-friendly computer model for assessing safety risks 

based on expert opinion values on probability, severity, and exposure. In a similar approach, Rozenfeld et al. (2010) 

presented a time and space-dependent model to calculate the risk of each loss of control event. Their model 

considers the impact of teams on each other, but no human factors, such as Myopia or illness, have been taken into 

account. Cortés-Pérez et al. (2020) proposed a BIM-based methodology in which the importance of the hazards 

related to each component in the 3D model is determined by manually entering the severity and probability of 

safety risks in the Dynamo plugin. Hallowell and Gambatese (2009) used the Delphi method to quantify the 

severity and frequency of safety risks and determine the degree of exposure through observation to minimize 

cognitive biases. On the other hand, relying on statistical data, researchers use data from historical events provided 

by the National databases to assess safety risks. Baradan and Usmen (2006) used historical data to quantify the 

risk of injury and death of construction-related occupations using two dimensions: probability and intensity. 

Esmaeili et al. (2015) conducted a content analysis of struck-by incident reports to assess safety risks. In their 

approach, the location and time of activities and their impact on each other have been considered. To consider the 

unique nature of each activity, Choe and Leite (2017a) examined the data on fatality and days-away injuries 

presented by the US Bureau of Labor Statistics and obtained the relative safety score of 19 private sector 

occupations in the construction industry. Although using previous accident reports to assess safety risks can 

provide a more reliable estimate, this approach requires a reliable technical database to review the data effectively. 

It should also be noted that incident reports provided by relevant organizations and departments usually only 

include high-severity incidents. Still, low-severity incidents and near-miss events are not reported. 

2.3 Workspace Management 

The terminology 'Workspace management' could be defined as the process of workspace generation, allocation, 

conflict detection, and conflict resolution at any time during a construction project (Chavada et al., 2012). In recent 

years, construction workspace management has become a matter of concern in research and practice due to the 

necessity to improve productivity and safety by reducing spatiotemporal clashes between activities (Igwe et al., 

2020). 

Traditional workspace planning methods do not consider the spatial feature of each activity (Choi et al., 2014), do 

not appear to have an adequate visual representation, and are limited in terms of workspace–time conflicts analysis. 

Furthermore, using conventional planning methods to manage workspace is particularly challenging when it comes 

to micro-scheduling of short-duration activities requiring the use of heavy construction equipment due to the 

dynamic nature of construction activities (Igwe et al., 2020).  

The existing literature could be divided into two categories in terms of determining the required workspace. The 

first category of articles specifies the required workspace for performing the activities per person regardless of the 

type of activity, the conditions of the work, and the construction method. For example, Chua et al. (2010) stated 

that each worker needs 0.6 m3 of space. The second category considers the type of activity or construction method 

to determine the required workspace. The required workspace could be determined by measuring through a three-

dimensional model, estimation based on physical properties, estimation of crew productivity, construction 

manager's experience, observation, and historical data (Thabet & Beliveau, 1994; Riley & Sanvido, 1997; Guo, 

2002; Moon et al., 2014a; Choi, et al. 2014; Zhang et al., 2015b; Kim et al., 2016; Dashti et al. 2021). 

Wang et al. (2019) categorized current workspace modeling studies by two methods: solid geometry-based or cell-

based. The solid-based method refers to an approach that utilizes one or more geometry solids to represent the 

space requirements. Chavada et al. (2012); Moon et al. (2014a); Kim & Teizer (2014); Kim et al. (2016); Mirzaei 

et al. (2018); Wang et al. (2019); Dashti et al. (2021) adopted the solid geometry-based method and used bounding 

boxes and variants of it to generate the required workspace. The solid-base method could automatically generate 

a workspace based on the model elements (Akinci et al., 2002), digital construction methods (Choi et al., 2014), 
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or historical tracking data (Zhang et al. 2015b), and easily detect and analyze workspace clashes since workspaces 

are geometric elements. However, to model irregularly moving objects (e.g., a truck) the cell-based method must 

be adopted, which uses a series of cells (grids and nodes) to represent space usage (Wang et al., 2019). The cell-

based approach has been developed to simulate resource movement and plan floor-level construction material 

layout (Park et al., 2012), for near real-time simulation of earthwork equipment workspaces, to find the shortest 

travel path for mobile cranes, and to detect transport Path Obstruction (Wang et al., 2019).  

Instead of imposing parametric models on data gathered from complex systems with unknown mechanisms (e.g., 

workspace usage during construction activities), algorithmic models such as neural networks, classification trees, 

and Support Vector Machines (SVMs) may obtain higher accuracy and be used for data classification and pattern 

recognition. Although other machine learning algorithms could be used to model linear and non-linear datasets, 

SVMs are highly contingent in the construction domain and have been used to predict deviation from the project’s 

objectives, project control, dispute resolution, cost estimation, and performance prediction (Shafaat et al., 2022; 

Golazad et al., 2024). 

Hazard could arise from spatial and temporal relationships between building elements, materials, temporary 

equipment and tools, operations, and human workspace (Guo et al., 2021). Akinci et al. (2002) define workspace 

conflicts as conditions when the space requirements for an activity interfere with one another or with work in 

place. As surrounding simultaneous activity carried out by other workers nearby could expose workers on 

construction sites to hazards (Mitropoulos et al., 2005; Moon et al., 2014b), detecting, preventing, and resolving 

any spatial-temporal conflicts is of much significance. Riley & Sanvido (1997) developed a graphical manual 

space planning method that considers activities’ sequences and identifies potential spatial conflicts. The 

methodology presented by Guo (2002) identifies spatial interactions by marking the required workspaces on two-

dimensional maps produced in the AutoCAD software. Visualization technologies (e.g., BIM, 4D CAD, virtual 

prototyping, virtual reality, and augmented reality) have facilitated the detection and analysis of spatiotemporal 

clashes. Akinci et al., (2002) used 4D CAD to manually generate temporary structures and automatically detect 

spatial conflicts between them. In order to automatically detect spatial-temporal clashes, collision detection 

algorithms have been used to determine conflicts among site entities and time-dependent structure components, 

temporary structures, and workspaces (Moon et al., 2014a; Kim et al., 2016). Correspondingly, Choi et al. (2014) 

proposed a framework that used a spatial clash-detection algorithm to detect workspace conflicts. However, their 

approach is more accurate in terms of representing workspace utilization over time by breaking down each activity 

into several sub-activities passing through part of the required space during the entire activity duration. Dashti et 

al. (2021) developed a software application as an add-on for Autodesk® Navisworks® Manage to generate 

workspaces as variants of the bounding box and to automatically compute the collision percentage by dividing the 

number of collided cuboids into the total number of cuboids for each workspace. In their approach, some if-then 

rules are defined based on site engineers' opinions and coded to evaluate the detected conflicts. To represent 

workspace usage over time, the BIM-based approach developed by Zhang et al. (2015b) computes accurate 

workspace occupation parameters based on historical data to represent workspace usage over time and detects 

potential workspace conflicts among work crews or between material lifting equipment. Taking conflict detection 

a step further, Moon et al. (2014b) suggested an optimized algorithm based on a location-constraint genetic 

algorithm accompanied by a 4D CAD system to minimize workspace interference. 

3. PROPOSED METHOD 

After reviewing the existing literature regarding workspace management, it was revealed that although workspaces 

of construction activities have evolving geometries during the construction process, the approaches using 

Bounding Box and variants of it to represent workspaces are unable to capture the dynamic evolution of 

workspaces (Igwe et al., 2020). The majority of previous studies, including Thabet & Beliveau, 1994, Akinci et 

al., 2002; Guo, 2002; Chavada et al. 2012; Moon et al., 2014a; Dashti et al., 2021, assumed that the workers occupy 

the workspace allocated to each activity for the entire duration of the activity. This notion neglects the fact that the 

required labor occupies only a portion of the activity's workspace during each time interval and may result in 

unrealistic conflict detection (Mirzaei et al., 2018). Furthermore, commercially available 4D Virtual Construction 

Scheduling and Simulation software such as Autodesk® Navisworks® and Synchro Pro, albeit offering clash 

detection tools, are limited to identifying and representing conflicts between workspaces and do not quantify the 

risk of conflict between them. Therefore, a robust method is required to represent workspace usage over time and 

conduct conflict detection and analysis based on the dynamic nature of construction activities.  
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The presented BIM-based method considers spatial requirements for construction activities and represents 

workspace usage based on empirical data. This method, thus, facilitates the spatial-temporal conflict detection and 

analysis process. It provides the project safety managers with pertinent information regarding whether the planned 

construction sequence is appropriate and should be executed in terms of the safety impacts of concurrent activities 

and it could be used during the decision-making process to select the appropriate alternative. 

 

Figure 1: The proposed Method. 
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The method consists of five main components; construction workspaces 2D graph, BIM Model, Support Vector 

Machine regression, safety score matrices, and scenario evaluation code in Python. Fig.1 demonstrates the 

interrelation among the framework's components and illustrates a schematic diagram of the proposed method. The 

steps of the method will be elaborated in more detail in the following sub-sections. 

3.1 Step 1: Field Observations 

Blockwork and post-installation activities are common construction tasks that could be executed concurrently. 

These tasks are inherently linked to each other, as installing the two posts of each wall are precedent for the 

blockwork activity of that wall (mandatory dependency). As numerous walls could be constructed during each unit 

of time in a project, the spatial-temporal clashes between blockwork and post-installation activities could inundate 

workers with safety risks. Thus, these activities were opted for a more detailed study.  

Four samples of blockwork (executed by groups of 2 workers) in the project were filmed over four days to obtain 

information such as the amount of space required by the workers, the frequency of workers' visits to any point of 

these spaces, and the construction time. Before filming, the construction space in front of each wall was divided 

into a grid with identical dimensions: 0.5m × 0.5m. Subsequently, these videos were converted into photos (frames) 

at two-second intervals. Based on these photos, the space required for blockwork activity (details are described in 

3.2), the number of visits to each module (details are described in 3.4), and the construction time of each wall were 

determined. Table 1 depicts the data that was collected from the observed samples of blockwork activity. 

To determine the required workspace for post-installation activity (executed by groups of 2 workers) and the 

construction time of it, three installations were filmed and then observed frame by frame. Since all the posts in the 

project have the same height and installation method, the execution time and the required workspace were assumed 

to be constant for all of them. The result showed that the average installation time of each post is 4 hours. However, 

each post requires a 4-hour lag (two units of time in this study) for welding confirmation before the blockwork 

activity of the associated wall can begin. This lag was further considered during the determination of tasks' 

sequence linear arrays in step 7 by writing the value "-1" twice for each lag between post-installation activities in 

the sequence array of each contractor (further explanation in 3.7). 

Table 1: Observed samples of blockwork activity. 

 Wall length Construction time Number of examined frames 

Sample 1 1.9 m 3:15:34 5867 

Sample 2 1.9 m 2:40:06 4803 

Sample 3 3.2 m 7:04:09 13231 

Sample 4 2.9 m 5:21:18 9647 

Total  18:21:07 22878 

1:51:13 Average construction time of blockwork activity per meter of wall 

The process of extracting activity-specific workspace parameters could also be done automatically using the 

Global Positioning System (GPS) and novel algorithms (Zhang et al., 2015b). However, this approach is less 

accurate, inasmuch as data loggers installed inside the equipment cabin or on workers hardhats could be obstructed 

by other construction resources such as overhead equipment cabins or materials, and workers' head pose orientation 

continuously change as well as the line-of-sight of the data logger to the sky. 

3.2 Step 2: Samples' Simulation and Analysis in BIM Software 

To acquire a deeper understanding of the required workspace and the workers' use of the existing workspace before 

conducting a quantitative study, each observed sample was simulated in the Rhinoceros 3D® software environment 

using the Grasshopper® plugin. This parametric approach could be adopted using similar BIM modeling 

applications such as Autodesk® Dynamo. 

The workspace in front of each wall (with the length of X) was modeled parametrically, considering it to be a 

rectangle with a width of 3.5 m and 2 + X + 2 ≤ length ≤ 3 + X + 3. Owing to the fact that based on the gathered 

data through observation, the frequency of blockwork laborers’ visits to each module decreases considerably if the 
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distance from the wall increases by 2 meters, and by moving more than 3 meters (from each side of the wall), the 

frequency of visits practically reaches zero (Fig.2). 

 

Figure 2: The number of Blockworkers' visits to each module )occupancy grid) in sample 1-4. 

 

Turning to post-installation, the required workspace for each team was simulated as a circle the center of which is 

the post, and having an adjustable radius based on the field observation data. In this research, the radius was 

determined to be 2.8 m due to scaffolding dimensions (2.8 m × 1.5 m) which allocates enough space to rotate and 

move the scaffold. 

 

Figure 3: Automatic identification and enumeration of a)vertics, b)edges. 
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3.3 Step 3: Automate Workspace Taxonomy 

The floor plan of the project was manually plotted as a graph in AutoCAD®. The edges in this graph represented 

the walls and the vertices represented the posts. Importing the graph into Rhinoceros 3D® software and using the 

Grasshopper® plugin, edges and vertices were automatically identified and numbered (Fig.3 and Fig.4). 

Rhinoceros 3D® is used since it is compatible with most CAD software and supports CAD file formats for 

importing. The main advantage of using Grasshopper® is that as a visual scripting language and parametric 

modeling add-on, it works along Rhinoceros 3D® and empowers the users to conduct quantitative analysis using 

visual programming as opposed to textual programming languages such as C# or Python, which require extensive 

coding.  

The identified edges (walls) were classified into a limited number of categories (with a distance of 0.5m) according 

to their length (Fig.5). This categorization helps in three different ways. First, since walls in one category have the 

same workspace, allocating workspace could be conducted easier and faster. Second, predicting the frequency of 

visits to each module of the workspace could be done for each category once; therefore, the volume of calculations 

would be dramatically reduced. Third, it rounds up the time needed for constructing each element; therefore, linear 

arrays would be in integers. Regarding observations, the average construction time per meter of the wall was one 

hour fifty-one minutes, and thirteen seconds (1 unit of time). In this case, by classifying the walls and assuming 

that the construction time has a linear relationship with the wall length, the construction time of walls in each 

category could be determined. 

 

Figure 4: Graphical representation of enumerated edges and vertices in Rhino. 

 

Figure 5: Automated blockwork activity workspace classification using grasshopper. 

3.4 Step 4: Computing the Presence Probability Using Support Vector Machine 
Regression and Grasshopper ® 

The risk of spatial-temporal clashes between concurrent activities is calculated by determining the probability of 

conflict between the workspace of each activity with other activities (in pairs) and the severity of the conflict. To 

determine the probability of conflict between two workspaces, in this study, we sought to find the probability of 

workers being present at any point of the workspace allocated to them for each activity. However, due to the lack 

of available information resources, the severity is assumed to be the same for different types of conflict (regardless 

of the construction method and activity type). 
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To predict the probability of workers being present at any point in the workspace, Support Vector Machine 

Regression (SVM) was used to anticipate the number of blockwork laborers’ visits to each workspace module. 

Given a set of training examples that each belongs to one or two categories, the Support Vector Machine training 

algorithm creates a model that assigns new samples to a category and is, therefore, a non-probabilistic binary linear 

classifier. A Support Vector Machine model represents samples as points in space that are plotted in such a way 

that examples from separate categories can be distinguished from each other as much as possible. After being 

fitted, the model can be used to predict new values. It should be noted that using SVM regression in higher-

dimensional spaces brings about computational complexity and requires more training time. Therefore, alternative 

machine learning methods like Random Forests or Gradient Boosting could be more suitable. To avoid overfitting 

or underfitting, careful tuning of hyperparameters such as the regularization parameter (C) and kernel parameters 

(e.g., gamma for RBF kernels) is needed.In this study, all SVM codes were produced with "scikit-learn" (Pedregosa 

et al., 2011), also known as Sklearn, an open-source machine learning library for Python programming language. 

The SVM codes were processed with Jupyter Notebook (Kluyver et al., 2016), an open-source browser-based 

computational environment. 

The training examples for SVM were provided through observation (further details in 3.1). Being confronted with 

a Non-Linear Data Set and based on Cover's theorem (1965), a Radial basis function kernel (RBF) was used to 

map the input into high-dimensional feature spaces, making them more separable. To achieve nonlinear 

classification more accurately and in a more reasonable time, two parameters must be considered: C and Gamma. 

The parameter, which is called "C" in the Sklearn (Pedregosa et al., 2011) Python library, controls the margin 

hardness and trades off the misclassification of training examples against the simplicity of the decision surface. A 

low C makes the decision surface smooth, while a high C aims at classifying all training examples correctly. 

Gamma defines how much influence a single training example has (1.4. Support Vector Machines, n.d.). The higher 

the gamma value, the more the algorithm tries to perform the fit exactly on the basis of the training data set, which 

leads to an over-fitting problem. In this study, the C Parameter was set equal to 200, and Gamma was calculated 

based on the Sklearn module through the following formula: 

Gamma= 1 / (Number of independent variables*Training data variance) 

 

Figure 6: Independent variables in the regression: X1=distance from A, X2=Vartical distance from the wall, 

X3=distance between two wall-posts. 

The number of workers' visits to each module (y) was considered to be a dependent variable, and the distance from 

A (X1), the vertical distance from the wall (X2), the distance between two wall-posts (X3), and the construction 

time measured in hours (X4) were considered to be independent variables. For each wall, point A was fixed and 

contracted. Thus, if the worker is standing in front of the wall in the center, point A is the post to his right (Fig. 6).  
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Of the 378 data observed, 10% (38) were randomly selected as test data, and fitting was performed on the 

remaining 340 data as training data. Table 2 shows the mean squared error in all data, training data, and test data, 

respectively.  

Table 2: R2 score of conducted regression. 

Based on the regression, the number of blockwork laborer's visits to each module (x,y) during blockwork activity 

of the wall Wi (nC(x,y)Wi) for each category of walls could be predicted and stored. To anticipate the number of 

visits to each module (Y), the independent variable X3 (distance between two posts) was determined to be the 

maximum distance between two posts in that category. For example, in the category of the walls with the length 

between 1 and 1.5 meters, 1.5 was set as the independent variable X3. Furthermore, the execution time for 

blockwork activity was assumed to be a linear function of the length of the wall. In other words, it was assumed 

that as the length of the wall increases, the construction time increases at the same rate. After importing the 

predicted values of the number of blockwork laborer's visits to each module (x,y) into Grasshopper®, the 

probability of worker presence in each module for blockwork activity PC(x,y)Wi could be calculated as follows:  

𝑃𝐶(𝑥,𝑦)𝑤𝑖 =  
𝑛𝐶(𝑥,𝑦)𝑊𝑖

∑ ∑ 𝑛𝐶(𝑥,𝑦)𝑊𝑖𝑦𝑥

 

Supplementary to this, the probability of post-installation workers' presence in each point of the required 

workspace was assumed to be the same, and the sum of them was set equal to one. Therefore, the probability of 

workers' presence in section i (Si) of the installation workspace of Post j (Pj) is PSiPj and could be calculated by 

the below formula where APj = total area of Pj workspace, and ASiPj = the area of Si in that workspace. 

𝑃𝑆𝑖𝑃𝑗 =  
𝐴𝑆𝑖𝑃𝑗

𝐴𝑃𝑗
 

In order to consider the voids, if a portion of the workspace was located within the voids, the probability of workers 

being present in that area is zero and the reduced probability of presence would be proportionately added to the 

modules around the void so that the total probability of presence remains the same. In other words: 

𝛼 =  ∑ ∑ 𝑛𝐶(𝑥,𝑦)𝑊𝑖

𝑦𝑥

 ×  
𝑆𝑉,𝐶(𝑥,𝑦)

𝑆𝐶
 

𝑛′𝐶(𝑥,𝑦) = (𝑆𝑐  − 𝑆𝑉,𝐶(𝑥,𝑦)) ×  𝑛𝐶(𝑥,𝑦)𝑊𝑖  + 
(𝑆𝐶 −  𝑆𝑉,𝐶(𝑥,𝑦))

𝑆𝑇 −  𝑆𝑉
 ×  𝛼 ∀𝑥 ∈ 𝑋, ∀𝑦 ∈ 𝑌 

𝑃𝐶(𝑥,𝑦)𝑤𝑖 =  
𝑛′𝐶(𝑥,𝑦)𝑊𝑖

∑ ∑ 𝑛𝐶(𝑥,𝑦)𝑊𝑖𝑦𝑥

 

In the above formula, ST = the total area of the workspace, SV = the total area located in the void, C(x,y)Wi = the 

module (x, y) for the wall Wi, SC = the area of the module (0.25 m2 in this study), SV,C = the area of modules 

located in the void, nC(x,y) = the number of visits to module (x,y) during blockwork activity of wall Wi, n'C (x,y) 

= the number of visits to module (x,y) after deducting the probability of being in the void, and PC(x,y)Wi = the 

probability of worker presence in module (x,y). 

3.5 Step 5: Automated Workspace Visualization and Occupancy Grid Allocation  

In this step, based on which category each edge of the graph (walls) belongs to, the workspace of each blockwork 

activity and the probabilities of worker presence associated with each module of the workspace (occupancy grid) 

are allocated using the Grasshopper plugin. It should be emphasized that due to wall thickness, the workspace 

allocated to each wall must be drawn with an offset of half of the thickness from the edge.  

R2 SCORE  

0.9589 All data 

0.9548 Training data 

0.9573 Test data 
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Correspondingly, the post-installation workspaces are automatically allocated, being a circle with an adjustable 

radius and center of vertices (based on step 2). The probability of worker presence in each section of these 

workspaces is calculated and modeled based on step 4 (3.4). 

 

Figure 7: Automatic workspace conflict detection and safety score calculation: a) Graphical representation of 

Pair-wise blockwork - blockwork (w-w) conflict in Rhinoceros 3D®. 

 

Figure 7: Automatic workspace conflict detection and safety score calculation: b) Automatic conflict risk 

calculation for blockwork - blockwork (w-w) activities using Grasshopper® components. 

3.6 Step 6: Automatic pair-wise Conflict Risks Calculation  

With the probability of workers' presence in each point of the workspaces, the risk of conflict between one 

workspace and others (in pairs) could be automatically calculated based on Table 3 using Grasshopper (Fig. 7). 

The safety score of conflict between workspaces indicates the risk of interference between them which is a number 

between zero and 1, and its lowest value occurs when two workspaces do not interfere with each other.  

After computing the probability of workers' presence at each point of the workspaces (step 3.4), the risk of conflict 

between one workspace and others (in pairs) could be automatically calculated based on Table 3 using Grasshopper 

(Fig. 7). In other words, the safety score of conflict between workspaces indicates the risk of interference between 

them, which is a number between zero and 1, and its lowest value occurs when two workspaces do not interfere 

with each other. The importance coefficients in safety score calculation indicate the severity of each type of 

conflict, which could vary due to work environment characteristics (including working at height, adjacency to 

irregularly moving objects (e.g., a truck), safety measurement, and construction method) and human factors 

(including age, experience level, myopia, or illness). These factors could impact the severity of collisions between 

objects, workers, and vehicles and classify them into risks ranging from low-severe (including near-miss events 
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and non-day lost cases) to high-severe incidents (including first aid cases, medical intervention, fatalities, and 

permanent incapacity). In this research, the significance of all three types of conflict (a- blockwork and blockwork, 

b- post-installation and blockwork, and c- post-installation and post-installation workspaces) was considered to be 

equal due to lack of information resources (𝑐𝑜𝑒𝑓𝑤−𝑤 =  𝑐𝑜𝑒𝑓𝑝−𝑤 =  𝑐𝑜𝑒𝑓𝑝−𝑝 = 1) . This limitation could be 

addressed in future studies by measuring the risk (calculated as assigned severity multiplied by probability) to 

provide a more reliable estimate. 

For M (from 0-m) blockwork and N (from 0-n) post-installation workspaces, the Safety score of 3 types of conflicts 

could be calculated separately for a- blockwork and blockwork, b- post-installation and blockwork, and c- post-

installation and post-installation workspaces, and stored as 3 matrices with dimensions of M*M, M*N and N*N 

respectively. In fact, the elements of these matrices represent the safety score of the interference of one workspace 

with another. These matrices are then saved to be used to evaluate the safety score of each construction schedule 

regarding each type of conflict. 

Table 3: Calculation of safety score based on conflict type. 

formula example Conflict type 

 Safety score = the probability of workers' presence in the overlapping 

area of workspace A × he probability of workers' presence in the 

overlapping area of workspace B × 𝑐𝑜𝑒𝑓𝑤−𝑤 

 

Blockwork - blockwork 

(w-w) 

Safety score = the probability of workers' presence in the overlapping 

area of workspace A × he probability of workers' presence in the 

overlapping area of workspace B × 𝑐𝑜𝑒𝑓𝑝−𝑝 

 

Post installation- Post 

installation (p-p) 

Safety score = the probability of workers' presence in the overlapping 

area of workspace A × he probability of workers' presence in the 

overlapping area of workspace B × 𝑐𝑜𝑒𝑓𝑝−𝑤 

 

Post installation- 

blockwork (p-w) 

3.7 Step 7: Work Sequence Conflict Detection and Scenario Safety Evaluation 

For each schedule, the sequence of tasks by which each working crew must execute their job would be written by 

contractors as a linear array based on the enumerated edge and vertices. Hence, the number of arrays would be 

equal to the number of working groups. In these arrays, each element is representative of a unit of time. For 

example, The array [156, 156, -1,-1, 42,42, -1, -1, …, 12, 12, -1, -1] represent the working sequence of a working 

group that start their job with installing the post "156" for 2 units of time and waits for welding confirmation for 

the following 2 unit. After a lag of 2 unit of time, this working group resumes their job by installing the post "42". 

These arrays would be automatically cross-checked using python code to determine which activities are performed 

concurrently. The safety score obtained from the simultaneous execution of these activities would be read from 

the workspaces' interference matrices. Accordingly, the safety score of w-w, p-p, and p-w workspace conflicts, and 

ultimately the total safety score (Sum of the previous three) would be computed for each unit of time and the total 

construction time. These values could be used to evaluate different schedules in terms of spatial-temporal clashes 

and select a scenario with the least safety risk. Contractors also could be informed about the safety impacts of their 

work sequence. 

4. CASE STUDY 

To examine the technical feasibility of the proposed method, blockwork and post-installation activities were 

selected as the case study and were investigated in a large-scale hospital project ("Atieh 2") in Tehran. These 

activities could be executed simultaneously and have a mandatory dependency with each other. Thus, detecting 
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work sequence conflicts between working groups of these activities and evaluating the safety of different 

construction scenarios in terms of the interference between workspaces of these activities is of much significance. 

Formerly, to avoid the risk of spatial-temporal clashes between the two activities in "Atieh 2" project, this risk was 

implicitly considered in the daily planning and the contractors were supposed to consider this risk when arranging 

their daily work sequence.  

The 3D Model of the second floor of the "Atieh 2" was developed in BIM using Autodesk Revit® Structure 

software (Fig. 8-a). Among the 4 zone of the construction plan, zone A of this project was selected for extensive 

evaluation due to its activities' limited available workspaces, the presence of several voids, and the fact that as the 

core zone of the building the construction layout of this zone repeats in all floors (Fig. 8-b). 

 

Figure 8: Case Study, Atieh 2 Building. 

After plotting the construction layout as a graph in AutoCAD ®, the topological study was conducted on this graph 

in Grasshopper®. 87 edges (walls) and 164 vertices (posts) were automatically identified and enumerated. The 

identified edges were classified into 7 categories based on their length (Table 4). 

Table 4: Classification of the identified edges (walls). 

Category 

 Number 
Wall Length (m) 

Number  

of walls 

Constriction 

 time 

CAT 1 (0,0.5] 6 1 

CAT 2 (0.5 ,1] 25 2 

CAT 3 (1 ,1.5] 17 3 

CAT 4 (1.5 ,2] 12 4 

CAT 5 (2 ,2.5] 11 5 

CAT 6 (2.5 ,3] 10 6 

CAT 7 (3 ,3.5] 6 7 

Using the empirical workspace parameters obtained from field observation, the required workspace for each 

activity was determined. Fig. 9 illustrates the results of the SVM regression conducted to determine the number of 

blockwork laborers visiting each module of their workspaces for each wall category (i.e., blockwork activity). Two 

key observations can be made: 1- As the wall length increases, the probability of blockwork laborers visiting each 

module also increases, as they require more construction time; and 2- The frequency of blockwork laborers' visits 

to modules decreases as the distance from the wall increases, eventually reaching zero at distances greater than 3 

meters.The predicted values were then imported into Grasshopper® and used to automatically generate and 

allocate the 2D parametric occupancy grid of each construction element. 

The safety scores of the interference of each workspace with other workspaces (in pairs) were calculated and 

separately stored for w-w, p-p, and p-w conflicts as 3 matrices with dimensions of 87*87, 164*164, and 164*87 

respectively. Table 5 represents part of the calculated p-w interference matrix. For instance, the safety score of the 

conflict between blockwork of wall 84 and installation of post 2 was calculated to be 0.519556. These workspaces' 
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interference matrices were imported into Jupyter Notebook as a .csv file to be used in scenarios' safety score 

calculation. 

 

Figure 9: The prediction of the number of masonry workers' visit to each module of the allocated workspace. 

Table 5: Part of p-w interference matrix. 

 {0} {1} {2} {3} {4} ...  {83} {84} {85} {86} 

{0} 0.718338 0.639011 0 0 0  0 0 0 0 

{1} 0.52383 0.153371 0 0 0   0 0 0 0 

{2} 0.037754 0.430061 0 0 0  0 0.519556 0 0 

{3} 0 0 0.530822 0 0  0.173033 0 0 0 

{4} 0 0 0.493214 0 0  0.195739 0 0 0 

…
 

          

{161} 0 0 0 0 0  0 0 0 0 

{162} 0 0 0 0 0  0 0 0 0 

{163} 0 0 0 0 0  0 0 0 0 

{164} 0 0 0 0 0  0 0 0 0 

It is practically not plausible to investigate all possible scenarios for executing 164 post-installation and 84 

blockwork tasks which doing so requires optimization methods and was not within the scope of this research. 

Therefore, 5 detailed compressed scenarios were developed in which the blockwork and post-installation activities 

in Zone A of the case study were executed simultaneously. In these scenarios, the sequence of activities and the 

duration of activities were taken into consideration. The quantity of labor for each type of activity was determined 

to be equal to 2 regardless of the construction element type or the required construction time, as it was conventional 

in this project. Based on the gathered data from the field observation, the installation time of each post was 

determined to be 2 units. Moreover, the construction time for each wall was considered to be a linear function of 

the length, 1 unit per 0.5 m. Bearing the precedence relationship between activities in mind, all scenarios were 

scheduled in a way so that working crews are constantly available, and no crew will be kept idle while an activity 
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is waiting to be executed. Furthermore, all activities were planned to be executed on their Early Start (ES). 

Ultimately, the total construction time was estimated for each construction scenario. 

For each schedule, the work sequence of each working crew (3 groups of blockwork laborers and 2 groups of post 

installers in this study) was specified. However, the number of working crews, and correspondingly the number of 

work sequences, is considered to be adjustable in the method. Work sequences of each schedule were automatically 

cross-checked using python code to identify simultaneous activity execution in each unit of time which specifies 

the safety score of each schedule in terms of different types of conflicts (w-w, p-p, and p-w) and the total safety 

score. The safety score computation was done based on the imported workspaces' interference matrices. The 

schedules were then compared in terms of safety performance to select the safest construction scenario. In this 

case "safest" refers to the minimal conflict between allocated workspaces. The calculation results for the safety 

score of the different scenarios are listed in Table 6 regarding different types of conflict. The results indicate that 

the first scenario had by far the least total safety score expected in the site in comparison with those of other 

scenarios and had to be opted as the safest schedule. This scenario also was responsible for the least p-p and p-w 

conflicts. In all scenarios, the collision between post-installation's and blockworks' workspaces accounted for the 

lion's share of the total safety score. This fact highlights the importance of this type of conflict and necessitates 

proportionate safety measures. However, it should be pointed out that the importance coefficient and severity of 

risks were assumed to be the same for all three types of conflict. If different coefficients were considered for each 

type of collision, the final result would vary and this could be considered as a topic for future research. 

Table 6: Safety score computation results for scenarios. 

Scenario  
Safety score of w-w 
conflict 

Safety score of p-w 
conflict 

Safety score of p-p 
conflict 

Total safety score Construction time 

1 5.031964 34.78495 0.901578 40.71849 330 

2  4.296698 39.95911 1.347438 45.60324 330 

3 12.52582 42.696109 2.99719 58.22182 331 

4 11.73897 40.360568 3.468897 55.56844 335 

5 10.38231 42.002659 5.09599 57.48096 334 

Comparing safety scores of different schedules determines the level of safety (in terms of the risk of spatial-

temporal clashes between activities) expected in the site in each scenario and could equip project and construction 

managers with the required knowledge to make informed decisions regarding work sequences. Fig. 10 depicts the 

total safety score results for different scenarios in each unit of time. 

Figure 10: The total safety score results for different scenarios in each time unit. 
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Similar charts could be produced showing the safety scores of different scenarios concerning each type of conflict 

in each unit of time and cumulatively. For example, Fig. 11 represents the safety score of different types of conflict 

in each unit of time in the first scenario. 

 

Figure 11: Safety score of different types of conflict in each time uint in scenario 1. 

One application of the developed prototype is that using these charts high-risk work periods could be identified in 

any schedule, thus, workers can be warned, and safety personnel could plan safety measures in advance. For 

instance, as shown in Fig. 10, the highest total safety score of 1.7329 occurs in unit time 112 in scenario 5, which 

includes all the w-w, p-w, and p-p conflicts. Supplementary to this, a threshold (e.g., a safety score of 1.5) could 

be determined by which periods with a safety score higher than this value could be identified and be used to alert 

safety personnel or to oblige the amendment of work sequences. In scenario 5, excluding unit time 112, this 

threshold exceeds in time units 21 and 29 with safety scores of 1.6045 and 1.5438, respectively. 

5. DISCUSSION  

This paper presents an automated procedure for detecting and scoring spatial-temporal conflicts in limited 

construction sites. This method receives and processes activity-specific workspace information to automatically 

classify, generate, and allocate the workspaces in BIM. The proposed method takes into account the activity-

specific geometric parameters, and the probability of workers' presence in allocated workspaces (predicted by 

SVM regression) to conduct automatic pair-wise conflict risks calculation. The pair-wise conflict risks calculation 

output is safety score matrices discussed in section 3.6. Based on the safety score matrices, which concern different 

types of conflicts (w-w, p-p, and p-w), conflict detection in each scenario is carried out through automatic cross-

checking of the working group's work sequence using python code. Subsequently, the safety scores of each 

scenario are calculated for each unit of time and cumulatively.  

The calculated safety scores are numbers between 0 and 1, zero indicates there is no conflict between workspaces. 

Decision-makers could primarily use the safety scores as the criteria to compare different construction scenarios 

and select the most appropriate option based on the risk of spatial-temporal conflicts between activities' 

workspaces. The safety scores can also be used to determine high-risk periods. Identifying high-risk periods could 

alert safety personnel to take the necessary measures to proactively respond to risks and notify them about the 

level of safety expected at the site at different times.  

The presented BIM-based method is superior to traditional heuristic approaches of conflict detection and analysis, 

since: 1- The processes of workspace generation, classification, allocation, and conflict detection are automated, 

2- Instead of relying on expert opinion to detect conflicts based on 2D layouts, which is error-prone, work 

sequences are automatically cross-checked, which ensures that no conflict has been missed and the dependence on 

humans is reduced. 3- The dynamic nature of construction and spatial and temporal information of activities are 

considered during the hazard identification process, and conflict risks are calculated for each unit of time. 4- If 

changes happen in the process, recalculating the safety risks is much easier than the conventional methods, 5- 

Safety planning is integrated into the planning phase, and hazards could be identified prior to construction. 6- The 

overall safety communication is enhanced as all the teams could be informed about the safety impacts of their 

work sequence in advance and make adjustments if it is required by the project planner or the safety manager. 

Another novelty of the developed method compared to other previously developed automated conflict detection 

methods and commercially available 4D Virtual Construction Scheduling and Simulation software such as 

Autodesk® Navisworks® and Synchro Pro is that; 1-it avoids unrealistic conflict detection, and 2- it quantifies 
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the risk of spatial-temporal conflicts. Since laborers occupy only a portion of the activity workspace during each 

time interval (Mirzaei et al., 2018), the present method considers the dynamic evolution of activities' workspaces 

during the workspace generation to avoid the unrealistic conflict detection. In other words, instead of using 

Bounding Box variants to represent workspaces (adopted by Chavada et al., 2012; Moon et al., 2014a; Kim & 

Teizer, 2014; Kim et al., 2016; Mirzaei et al., 2018; Dashti et al., 2021; Wang et al., 2019), the workspace usage is 

represented by allocating occupancy grids to each construction element (in the case study: walls and posts). 

Although software applications as an add-on for Autodesk® Navisworks® Manage (Dashti et al., 2021) or BIM-

based approaches (Zhang et al., 2015b) have been developed to compute workspace collision in existing literature, 

their if-then rules were based on expert opinion or historical data. In the proposed method, the occupancy grids 

are parametrically generated in Grasshopper® based on SVM regression for blockworks' workspaces and 

observation for post-installation workspaces and represent the probability of workers' presence at any point in the 

allocated workspaces.  

The two activities investigated in this study (blockwork and post-installation) were not specifically present in the 

body of literature. Therefore, the activity-specific information, including the required workspaces and the extent 

to which workers use the allocated spaces, was not available. In this study, an attempt was made to fill this gap by 

collecting this information through field observation and processing it through SVM regression. The findings and 

the results can be used by other researchers to validate their automated safety or planning frameworks in the future. 

In this study, the process of extracting activity-specific workspace data is done by recording videos, converting the 

videos into photos with two-second intervals, and manually examining the photos to enter the data (number of 

blockwork laborers’ visits to each module of the workspace). The extracting activity-specific workspace 

parameters could be done by developing a GIS-based technology to make this process simpler by sacrificing 

accuracy. GIS-based techniques can provide raw data for the SVM algorithm, developed in this study, to create a 

dataset of the workspace and presence probability for different construction activities.  

The number of working groups, the size of the workspaces, the frequency of workers' visits to each point of the 

allocated workspace, and the execution time of each activity were considered to be adjustable. Therefore, all the 

codes in this research, including the pair-wise conflict risks calculation in Grasshopper® and the scenario 

evaluation code in Python could be generalized to examine other activities.  

Since the main focus of this study was on conflict probability, the severities of conflicts were assumed equal. This 

limitation could be addressed in future studies. Secondly, evaluating all possible scenarios requires optimization 

algorithms that were not within the scope of the present study. However, this research has the potential to lay the 

groundwork for additional investigation into the optimization. Novel algorithms could be developed to use the 

calculated safety score and other criteria, namely time and productivity to optimize the work sequences.  

Finally, this method has the potential to serve as a tool for measuring social distancing during a pandemic like 

COVID-19. The practical application of the proposed method during a pandemic (e.g., COVID-19) and periods of 

similar contagious viruses could be investigated in future studies, inasmuch as it has the potential to empower site 

managers and project planners with the ability to integrate social distancing into the workspace management, 

particularly in the case of large-scale projects. Such an outcome could be achieved by using this method to 

parametrically generate workspaces regarding official guidance or protocols (e.g., at least 6 feet according to the 

OSHA COVID-19 Guidance) and evaluate work sequences in terms of workspaces’ spatial-temporal conflicts. 

Consequently, project managers could request contractors to alter work sequences to ensure they meet social 

distancing requirements and select the construction scenario with the least health-related hazards. 

6. CONCLUSION  

This paper presented a novel method that evaluates work sequences in terms of the risk of spatial-temporal conflicts 

between simultaneous activities in construction sites. The method consists of five components; construction 

workspaces 2D graph, BIM model, Support Vector Machine regression, safety score matrices, and scenario 

evaluation code in Python. 

The spatial requirements of construction activities in this study are based on the empirical data collected. This data 

is used for workspace generation and allocation processes. Pair-wise conflict detection and analysis are conducted 

to form the safety score matrices for different types of conflicts. These matrices are used as the inputs for scenario 

evaluation code in Python. Compared to previously developed automated conflict detection methods (e.g., using 
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variants of the Bounding Box idea), dynamic evolution of activities' workspaces was taken into consideration, 

which results in avoiding unrealistic conflict detection. 

The case study results demonstrate the applicability of the proposed method in evaluating different construction 

scenarios and selecting the safest one (concerning the safety impacts of concurrent activities), identifying high-

risk periods, and determining the level of safety expected in construction sites in each scenario. The findings help 

the safety managers proactively respond to risks and the construction planners to select the construction scenario 

wisely. All spatial-temporal parameters (e.g., the number of working groups, the size of the workspaces, the 

frequency of visits to each point of the allocated workspace) were considered to be adjustable. Although employing 

the proposed method on large-scale projects with innumerable concurrent tasks could bring about computational 

complexity, the pairwise conflict risks calculation in Grasshopper® and the scenario evaluation code in Python 

have the potential to be generalized to examine other activities. To facilitate the process, GIS-based technology 

could be used to extract activity-specific workspace parameters with less accuracy. Moreover, machine learning 

algorithms with faster training times and less computational cost, such as Random Forests or Gradient Boosting 

could be used for larger datasets, and novel algorithms could be developed to optimize work sequences based on 

the severities of conflicts, time, and productivity. Recognizing the limitation of uniform conflict severity, future 

research can focus on assigning variable weights to different conflict types, while being mindful of the potential 

increase in computational complexity. Recognizing the limitation of uniform conflict severity, future research can 

focus on assigning variable weights to different conflict types, while being mindful of the potential increase in 

computational complexity. 
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