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SUMMARY: Construction worker actions, driven by personal and organizational goals, are vital in handling 
dynamic and unstructured environments. As the industry advances towards Construction 5.0, integrating 
automation while maintaining a value-oriented approach necessitates understanding the worker's actions in 
several dimensions. Action understanding goes beyond recognition to interpreting intentions, predicting future 
actions, assessing behavior, and many others. Yet, in the adoption, several challenges are faced due to complex 
action hierarchies, domain-specific applications, and a semantic gap between observations and interpretations. 
This paper addresses the challenges by developing a hierarchical taxonomy. An initial study is conducted on 
existing literature, narrowing the scope to the two-dimensional RGB camera-based computer vision as the sensing 
system. Identifying the lack of a structured approach and the existence of a semantic gap between observed features 
and their assigned meanings, this work embarks on establishing a unified taxonomy. Following the PRISMA 
protocol, a dual-literature review is conducted across literature across the domains of computer vision and 
construction automation, and findings are presented in three steps. In the first step, the review papers in the 
computer vision field were synthesized to develop a taxonomy essential for action understanding. This taxonomy 
outlines a four-step approach essential for action understanding. In the second step, the construction automation 
literature is reviewed, and the extant literature is mapped to the taxonomy established. In the third step, a 
discussion is presented on the current state-of-the-art approaches, the missing elements, the possible future 
directions specific to different parts of the taxonomy, and the integration with current technologies. Along with the 
future directions, suggestions also include use cases for the construction industry to improve upon core values in 
line with Construction 5.0. 

KEYWORDS: Construction 5.0, Worker Action Understanding, Taxonomy. 

REFERENCE: Sudheer Kumar Nanduri & Venkata Santosh Kumar Delhi (2025). Foundations for Construction 
5.0: A Review-based Taxonomy for Construction Worker Action Understanding. Journal of Information 
Technology in Construction (ITcon), Special issue: ‘Construction 5.0’, Vol. 30, pg. 924-962, 
DOI: 10.36680/j.itcon.2025.038 

COPYRIGHT: © 2025 The author(s). This is an open access article distributed under the terms of the Creative 
Commons Attribution 4.0 International (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original work is properly cited. 



 

 
 ITcon Vol. 30 (2025), Nanduri & Delhi, pg. 925 

1. INTRODUCTION 
Construction workers are the driving force behind the construction processes, intentionally operating in dynamic 
and often unstructured environments to achieve their personal and organizational goals. The worker actions do not 
merely represent mechanical movement but enable achieving their intentions and goals embedded within the 
specific process workflows and contexts. In addition to the organizational goals, the worker's personal conditions 
drive their behavior at the workplace. Given the hazardous and physically demanding nature of the construction 
work, an automatic understanding of worker actions becomes imperative for the industry to ensure the productivity, 
safety, and well-being of workers and projects. Such automation has to go beyond just recognition of actions to 
actually understand them - Interpreting the intentions behind the actions (Blakemore and Decety, 2001), Predicting 
future actions (Koppula and Saxena, 2016), Assessing behavior (Pentland, 2007; Cristani et al., 2013) are some 
practical applications. Such advancements from 'action recognition' to 'action understanding' have long been the 
focus of extant research, especially in the domains of artificial intelligence in robotics and their application to 
controlled production environments (Demiris, 2007; Zhang et al., 2022). Given the dynamic environment of 
construction, the development of action understanding models is a significant need for integrating technological 
developments and improving project metrics like safety and productivity. 

With the rapid advancement of technology, the construction industry is increasingly integrating digital tools and 
automation across the project life cycle, as indicated in Construction 4.0 (Karmakar and Delhi, 2021). The 
emergence of Industry 5.0 – extending to Construction 5.0 – emphasizes a value-driven approach to technological 
integration, prioritizing the core values of human-centricity, sustainability, and resilience (European Commission 
et al., 2021). Considering the essential role of workers in construction, Construction 5.0 aligns with all three values 
by positioning them at the core of technological advancements. For instance, robots can form teams with workers 
(Baskaran and Adams, 2023), and automation can help anticipate worker safety risks, ensure workplace resilience, 
and maintain workflow sustainability. In the evolving landscape of construction automation, applications of action 
understanding enhance the perception capabilities of different types of technologies (You, Zhou and Ding, 2023), 
keeping humans at the core, thus making action understanding a key component in adopting Construction 5.0. 

Translating the research advancements in action understanding to the construction industry presents significant 
challenges primarily due to the complex action hierarchies and the organizationally driven goals rather than 
individual choice alone. Additionally, different applications for metrics like productivity or safety require different 
approaches. A safety-oriented process will necessitate a specific set of actions and intentions, which differ 
considerably from productivity-oriented actions. Similarly, various technologies like robots or remote monitoring 
applications adopt action understanding differently. These applications have commonalities originating from 
similar works in artificial intelligence research. Thus, building a construction-specific approach for developing 
tools is necessary while also recognizing the commonalities from the ground up. A systemic approach is needed 
for integrating structured taxonomies, ensuring relevance across application use cases, and closely aligning with 
the core values of Construction 5.0 in the industry. 

In addition, researchers also identify a ‘semantic gap’ between low-level action primitives observed on the field 
and high-level semantic interpretations of the same actions (Zhong et al., 2019; Paneru and Jeelani, 2021). 
Different supportive components are proposed, including Ontologies and Rule engines (Zhong et al., 2019); 
Additional technologies and BIM models (Fang, Ding, et al., 2020); Knowledge graphs (Liu and Jebelli, 2022); 
and Prior knowledge and Posterior inference models (Xu et al., 2021). However, there is no integrated 
understanding of where and how these components add value to overcoming the semantic gap. This necessitates a 
hierarchical taxonomy approach, from low-level primitives to high-level interpretations. 

In summary, action understanding is a foundational capability that enables a value-oriented approach to adopting 
different technologies in the construction industry. However, the existing action understanding approaches are 
limited in their applicability to construction due to the industry-specific action hierarchies, domain-specific use 
cases, and a lack of a unified framework for integrating various supporting technologies to bridge the semantic 
gap. This paper proposes to build a hierarchical taxonomy tailored to address these challenges, using an in-depth 
literature review integrating findings from artificial intelligence and construction automation. The scope and 
boundaries for the review are established based on the existing studies, detailed in the literature review section. 
Overall research methodology and PRISMA reporting are presented in the methodology section. The taxonomy is 
presented in the results section, and studies in construction automation are tagged within the taxonomy in its sub-
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section. The discussion section highlights the current state of the art and future directions for research in two layers 
– underlying algorithms and utilizing technologies. 

2. LITERATURE REVIEW 
Research on action understanding can focus on equipment and worker actions. Equipment actions are largely 
deterministic, making action understanding useful for applications such as productivity monitoring (Chen, Zhu 
and Hammad, 2022). In contrast, workers and operators possess expertise, adaptability, and decision-making 
capabilities, making their actions uniquely complex. Focusing on understanding worker action is crucial for 
developing human-centric technologies aligned with Construction 5.0. 

In the first step of data collection, earlier studies have explored frameworks (Calvetti et al., 2020) and mapped 
existing sensors (Gao et al., 2022) for workers. Yet, recent advancements in the sensor domain, such as the 4D 
mmWave sensor, highlight continuous improvements in the information collection capabilities and subsequent 
construction applications (Han et al., 2023). Therefore, rather than focusing on sensor technologies, this work 
centers on using a single technology while sustaining the generalizable approach across different applications. 

A prior review of activity recognition (Sherafat et al., 2020) categorizes the methods into audio-based, video-
based, and kinematics-based approaches. While this classification provides a useful starting point, it does not 
account for theoretical approaches to action understanding. Among the methods, video-based approaches excel in 
capturing worker movements and interactions with surrounding tools and objects, making them particularly 
effective for comprehensive action understanding. Therefore, this paper focuses on video-based action recognition 
as it provides the most comprehensive insight into construction activities with minimal preprocessing. 

While multiple technologies exist within the computer vision field (Stereo vision, RGB-D cameras), this work 
limits its scope to only regular cameras with 2D images collected over time. By focusing on regular 2D cameras, 
this study ensures broader applicability in real-world construction scenarios where such equipment is prevalent 
while generating insights that can be extended to advanced systems like stereo and RGB-D cameras.  

Classic (Arashpour, Ngo and Li, 2021) and modern (Paneru and Jeelani, 2021) computer vision (CV) methods are 
useful in field applications and also for offsite production (Alsakka et al., 2023). Of the different field applications, 
progress monitoring (Yang et al., 2015; Pal et al., 2023; Moragane et al., 2024), safety & health monitoring (Seo 
et al., 2015; Fang, Love, et al., 2020; Liu et al., 2021; Guo et al., 2021) are the most touched upon topics, and 
newer approaches like quality control (Wang et al., 2021) are also being presented. Computer vision has the 
potential for scene-based, location-based, and action-based risk identification (Seo et al., 2015), typically utilizing 
the methods of detection, localization, tracking, and action recognition (Li et al., 2024). However, these 
applications remain fragmented, focusing primarily on pattern recognition and lacking deeper insights into worker 
intentions, reasoning, and other cognitive aspects. 

Bridging this gap requires drawing from cognitive and neurological research, which has explored how humans 
perceive, comprehend, and project actions in the real world (Guo et al., 2021). These processes align with computer 
vision tasks such as detection, assessment, and prediction, indicating better potential for modeling worker actions. 
Ongoing research has sought to replicate these capabilities in industrial robots (Bonci et al., 2021), yet their 
application to human-centered construction environments remains limited. Additionally, neurological studies 
explored the vision-language connection, highlighting how humans connect the visual and language aspects 
(Willems, Özyürek and Hagoort, 2007). This connection could support more advanced action interpretation while 
tackling the semantic gap between low-level observations and high-level understanding. Theoretical approaches 
like the 3Rs - reconstruct, recognize, and reorganize (Wiriyathammabhum et al., 2016) offer additional frameworks 
for structuring action understanding over time, but their adaptation to dynamic environments like construction 
remains underexplored. 

In summary, various studies have explored action understanding in construction, focusing on machinery and 
human workers using different types of sensors, and computer vision-based worker action understanding 
applications stand out to be more helpful. Despite significant advancements in computer vision-based methods, 
the applications remain limited in their ability to infer worker intentions and contextualize within workflows. 
Furthermore, while cognitive research offers promising theoretical models, these have not yet been integrated into 
construction automation research.  
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To address these gaps, this study: 
1. Adopts a dual-literature review approach, systematically integrating insights from both computer vision 

and construction automation research.  
2. Develops a hierarchical taxonomy tailored for construction worker action understanding. 
3. Evaluates the current practices in construction and identifies challenges and opportunities for future 

research. 

The following methodology section outlines the approach used in detail. 

3. METHODOLOGY 
A three-step process is set out for this review, presented in Figure 1. In the first step, a hierarchical categorization 
is established from past works in computer vision. The literature on computer vision is reviewed to identify the 
broad categories that are necessary to build a taxonomical structure. In the second step, the construction domain 
works are tagged following the hierarchy. The discussion section in the third step presents the current state-of-the-
art findings, how well they fit into the taxonomy, what is missing, and future directions. For both reviews, the 
PRISMA protocol is followed for documentation. 

 
Figure 1: Overall Methodology. 

Since the objective in the first step is to derive a categorization, a search was conducted in the IEEE Xplore, ACM 
Digital Library, Web of Science, and Scopus databases. These databases were chosen due to their extensive 
coverage of computer vision and construction literature, ensuring a comprehensive review. As the initial search for 
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'action understanding' yielded no results in IEEE, the search terms were adjusted to 'activity recognition' or 'action 
recognition. The search term (ALL = (“activity recognition” OR “action recognition”) AND ALL = (review) AND 
(From 2000 to 2023) is used. The timeframe from 2000 to 2023 was selected to capture the evolution and 
advancements in action recognition research both using classical and modern computer vision methods. Within 
each database, the search string varied as they have different service providers. However, only these terms are 
utilized. Only review papers that align with action understanding are identified by manual verification of title and 
abstract. This boiled down a database of 4071 papers to 58 documents for use. These papers identify the essential 
components of an intelligent system, the use cases, and the problems. The PRISMA flowchart is provided in the 
figure below. 

 
Figure 2: PRISMA Methodology for Review of Computer Vision Literature. 

For the second step, focusing on the construction field, again a search was conducted in all the same databases 
with the search term (ALL = (“activity recognition” OR “action recognition”) AND ALL = (construction)) AND 
(Up to February 2024). From the results, duplicates and completely irrelevant papers were removed. The remaining 
papers are separated into groups according to the different themes they cover in their work. All reviews are 
removed from the documents. Papers that propose algorithms and network architectures have also been removed. 
Papers that deal with action recognition - in machines, for overall processes, and inside the built environment – 
are removed. These exclusions ensured that the review focused specifically on studies addressing human action 
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recognition in construction. Papers that deal with audio, vibration, wearables, and other sensors have also been 
removed. Finally, we are left with documents on human action recognition within the construction processes using 
computer vision. The PRISMA flowchart for this part of the work is presented as a figure below. 

 
Figure 3: PRISMA Methodology for Review of Construction Automation Literature. 

In the third step, the construction literature is discussed within the context of the developed hierarchical structure, 
drawing connections between the identified themes, highlighting trends and potential use cases, and identifying 
limitations in the current body of work. 

4. RESULTS 

4.1 Action Understanding in Computer Vision Research 
4.1.1 Taxonomy 

Following step 1 of the methodology, many review papers are found on action recognition (Minh Dang et al., 
2020) and action segmentation (Gammulle et al., 2023). These papers presented summarizations, frameworks, and 
taxonomies. Following the aim of the study, documents that focus on taxonomies are studied in detail and presented 
in Table 1. The table is not an exhaustive listing of taxonomies but a select few that present different elements 
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necessary for the taxonomy. One major limitation of all the literature is a lack of focus on (any) industry-relevant 
hierarchies and application use cases. 

Table 1: Comparison with Existing Taxonomies and Literature. 

Reference Proposed Taxonomies Unique Contributions Gaps for Action Understanding in 
Construction 

(Turaga et 
al., 2008) 

• Low-level – Optical flow, Point 
trajectories, Background subtracted 
blobs and shapes, filter responses 

• Actions: Mid-level (Simple) – Non-
parametric, Volumetric, Parametric 
approaches 

• Activities: High-level (Complex) – 
Graphical, Syntactic, Knowledge-based 
models 

• Introduces a hierarchical 
taxonomy 

• Identifies the need for 
different approaches in high-
level tasks 

• Does not cover low-level features 
from newer approaches like 
convolutional neural networks, 
which are found helpful for the 
construction domain 

• Does not discuss contextual 
reasoning approaches needed for 
handling the issue of semantic gap in 
complex activities, observed in 
construction 

(Aggarwal 
and Ryoo, 
2011) 

• Single layered – Space-time, Sequential 
approaches 

• Hierarchical – Statistical, Syntactic, 
Description based approaches 

• Classifies approaches into 
two types and identifies 
appropriate application areas 

• No discussion on low-level features 
and differentiation between action-
relevant knowledge and contextual 
factors for different applications like 
safety 

(Ke et al., 
2013) 

• Low-level core technology – object 
segmentation, Feature extraction and 
representation, activity detection and 
classification 

• Mid-level human activity recognition 
systems – single person, multiple 
people interaction and crowd behavior, 
abnormal activity 

• High-level Applications – Surveillance, 
Entertainment, Healthcare 

• Hierarchical layering leading 
to applications in the field 

• Categorization of individual 
steps further based on 
existing works 

• Identifies model-free, 
indirect, and direct human 
model approaches 

• No discussion on the motion 
detailing needed for different types 
of technologies 

• No discussion on models capturing 
workplace, tools, and other 
contextual elements. 

• No discussion on deep learning 
approaches 

(Guo, 
Ishwar and 
Konrad, 
2013) 

• High-level cues – Human body, Body 
parts, Objects, Human-Object 
interaction, Context, or scene 

• Low-level features – Scale-Invariant 
Feature Transforms, histogram of 
Oriented Gradients, Shape Context, 
Spatial envelop, Others 

• Action learning – Generative models, 
Discriminative models, Learning mid-
level features, Multiple feature fusion, 
Spatial saliency, Conditional Random 
Fields, Pose matching 

• Utilizes a bounding box 
approach for covering the 
high-level cues, breaking 
down the body into parts, 
and also interactions and 
context 

• Adds more methods beyond 
previously identified 
generative and 
discriminative approaches 

• Limited to image-based action 
recognition approaches and lacks a 
discussion on temporal aspects, 
which is essential to understanding 
the dynamics of actions 

(Rodríguez 
et al., 2014) 

• Learning procedure – Data-driven, 
Knowledge-driven, Hybrid 

• Modeling technique – Graphical, Non-
graphical, Hybrid 

• Social interaction 
• Sensor Infrastructure 
• Scalability 

• Identifies context as a key 
component for behavior 
recognition 

• Extensive discussion on 
ontologies for human 
behavior recognition 

• Proposes the Ambient 
Intelligence as an application 
area 

• Limits to behavior recognition and 
does not discuss activity recognition 
and other applications 

• No discussion on a single modality-
based structured approach, limiting 
the possibility of developing specific 
applications using a single modality. 

• Lack of a hierarchical approach to 
the taxonomy 

(Vrigkas, 
Nikou and 
Kakadiaris, 
2015) 

• Unimodal – Space-time, Stochastic, 
Rule-based, Shape-based methods 

• Multimodal – Affective, Behavioral, 
and Social networking methods 

• Decomposes activities into 
gestures, atomic actions, 
interactions, group actions, 
behaviors, events 

• Incorporates multi-modal 
information in action 
understanding 

• Mixes all levels of human actions 
and activities into a single layer, 
reducing the range of applications for 
different use cases in construction 

(Onofri et 
al., 2016) 

• Statistical approaches – Bayesian belief 
networks, Probabilistic Petri nets, 
Hidden Markov Models 

• Syntactic approaches – Ontologies, 
Logic rules, Approximate reasoning, 
Grammars 

• Description-based approaches 

• Separates exploitable 
knowledge for action 
recognition into apriori 
knowledge and context 
information 

• Focuses on knowledge-based 
hierarchical approaches 

• Lack of discussion on all low-level 
features like pose, motion, interest 
points, and others necessary for 
computer vision applications in 
general 
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(Herath, 
Harandi and 
Porikli, 
2017) 

• Deep architectures – Spatiotemporal, 
Multistream, Deep generative, 
Temporal coherency 

• Presents local feature 
representations and feature 
aggregations for them 

• Presents the different 
network structures as an 
essential parameter 

• Does not utilize taxonomical 
approaches for developing 
applications 

• Lacks discussion on any schema or 
breakdown of actions into 
components  

(Beddiar et 
al., 2020) 

• Activity hierarchy – Elementary human 
actions, gestures, behaviors, 
interactions, group actions, events 

• Discusses in detail the 
different features 

• Presents stages such as 
detection, tracking, and 
classification of actions. 

• Merges multiple approaches from 
feature extraction processes, 
recognition stages, sources of inputs, 
and learning supervision level – but 
does not consolidate into a unified 
taxonomy 

• No connection between the proposed 
hierarchy and the presented 
approaches 

(Pareek and 
Thakkar, 
2021) 

• Action representation – Interest points, 
depth, pose, motion, shape, and others 

• Dimensionality reduction – Principal 
component analysis, Autoencoders, 
Reduced basis decomposition, Linear 
and Kernel Discriminant analysis 

• Action classification – Traditional 
machine learning, deep learning 

• Presents action recognition 
system with feature 
extraction and encoding, 
dimensionality reduction, 
action classification steps 

• Identifies the dimensionality 
reduction and specific action 
representations 

• Lack of discussion on aspects such 
as learning type – supervised, semi-
supervised, and others – which is 
relevant to construction, as data 
availability is limited in many cases 

• Lack of discussion on hierarchical 
approaches and knowledge 
integration for developing 
applications for specific use cases 
like safety. 

(Kong and 
Fu, 2022) 

• Shallow action representations – 
Holistic, Local 

• Shallow action classifiers – Direct, 
Sequential, Space-time, part-based, 
manifold learning, Feature fusion 

• Deep learning – Space-time, multi-
stream, hybrid 

• Adds action localization, 
action prediction, and motion 
trajectory prediction to the 
tasks 

• Differentiates action 
classifiers and relevant 
action representations 

• Also discusses different 
learning methods, useful as a 
parameter 

• Lack of discussion on hierarchical 
approaches for developing 
applications for specific use cases 

• No discussion on feature reduction 
approaches and knowledge 
integration for higher-level action 
understanding-based applications 

(Morshed et 
al., 2023) 

• Feature extraction-based methods - 
Hand-crafted, Deep learning, Attention-
based 

• Activity type-based methods – Atomic 
action, Behavior, Interaction, Group 
activities 

• Presents a schema as part of 
the activity-type based 
methods in the taxonomy 

• Separates attention-based 
methods from other deep-
learning methods 

• Lack of discussion on model-based 
approaches, feature engineering 
approaches 

• Lacks discussion on construction 
task knowledge and contextual factor 
integration to develop construction-
specific applications for use cases 
like safety 

 
Figure 4: Proposed Taxonomy. 
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Apart from the limitations mentioned in Table 1, construction sites struggle with the placement of the sensors as 
the workplace is dynamically changing. For application-specific use cases, understanding the processes in the 
industry becomes more relevant, and none of the works attempt to focus on hierarchical breakdown. This gap 
requires us to define two factors – the breakdown of processes to elemental motions and the categorization of 
sensor capabilities in collecting the data needed for feature extraction. These factors are grouped under the motion 
detailing preliminaries that must be defined. From the contribution of different papers, multiple elements of 
taxonomy are observed – learning methods, network approaches, and low-level features, among others. To unify 
these different elements, we introduce a four-level taxonomy for action understanding, consisting of:  

1. Motion detailing: Setting up preliminaries for action understanding for different applications 
2. Low-level feature extraction: Capturing essential visual elements for action understanding 
3. Mid-level action detection: Recognizing actions within frames or sequences with temporal and 

spatial localization 
4. High-level action understanding: Applying contextual knowledge to interpret actions with a focus 

on applications  

4.1.2 Motion detailing 

 The task of understanding actions from vision is informed mainly by pattern recognition, particularly the motion 
patterns that vary according to the context. Two preliminary specifics need to be set up to differentiate between 
different actions – Schema and Level of detail. 

Setting up a schema is the first step after determining the application or use case. Schema is necessary to 
differentiate the patterns observed under different abstractions. Typically, schemas are set up to categorize the 
motions (or the lack of such) and their combinations in a single person (and sometimes extended to multiple 
people) into a semantically valuable hierarchy. A simple schema can consist of actions, focusing on individual 
simple motions and activities, covering complex motions, and having multiple people (Turaga et al., 2008). One 
schema often quoted by construction literature classifies motion patterns as – Gestures, Actions, Interactions, and 
Group activities (Aggarwal and Ryoo, 2011). Other proposed schema include Gestures, Atomic actions, Human-
object or Human-human interactions, Group actions, Behaviors, and Events (Vrigkas, Nikou and Kakadiaris, 2015) 
or simply Gestures, Actions, Human-Object interaction, Human-Human interaction, Group activity (Sargano, 
Angelov and Habib, 2017). SPHERE hierarchy (Woznowski, Kaleshi, et al., 2016) focuses on activities of daily 
living and proposes physiology, pose, motion, action, activity, and behavior as part of the schema. Based on the 
application, as new semantic approaches are developed, schemas can be modified with new abstractions 
(Rodríguez et al., 2014). 

These schemas work in conjunction with the Level of Detail by which humans are represented in the processing 
steps. The level of detail for human representation is decided based on the data capture parameters like the type of 
camera and the camera's intrinsic parameters. At the scene level, humans are represented as part of the scene or by 
bounding boxes or ellipses. At the full-body level, distinct body parts (head, torso, arms, legs) are represented as 
constituents of the body and represented by lines, cylinders, and boxes. At a finer body-part level, the constituents 
of individual body parts (like fingers and eyebrows) are also considered and represented by lines or points. With 
more detailed representations, more classifications can be made to the schema. This detailing can be regarded as 
evolving from the three-part classification - scene interpretation (of the whole picture), holistic recognition (of the 
entire body and parts being used), action primitives and grammars (action hierarchy used for scene description), 
considered together for action recognition (Afsar, Cortez and Santos, 2015) in a more straightforward way. 

These two preliminaries set the boundaries for the applications that can be served based on the sensor capabilities. 
For example, when we utilize far-field cameras, the level of detail is limited to bounding boxes, and schema is 
limited to events. In such cases, the low-level task can only detect and track when people are in large numbers 
together. Mid-level action classes will be events that can be identified based on a large number of people working 
together. High-level action understanding applications can only determine the causes and effects of such events. 
Thus, the sensor capabilities need to be carefully matched with the application at hand. 

4.1.3 Low-level Feature Extraction 

Unlike the classic image processing methods, the low-level tasks we consider are segmentation, detection, and 
tracking. Although only three low-level tasks are mentioned, the target of low-level tasks is to derive different 
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feature representations for the actions (Turaga et al., 2008; Ziaeefard and Bergevin, 2015; Herath, Harandi and 
Porikli, 2017; Pareek and Thakkar, 2021) –  

1. Motion (Optical Flow, Motion History Image, Motion Energy Image),  
2. Trajectories (Points, Parts, Objects, Bodies),  
3. Interest points (Space-Time, Color Space-Time, Corners and Edges),  
4. Pose (2D, 3D, Skeletal) and Poselets (poses of individual body parts or a subset of the whole body), 
5. Shape (Silhouette, HOG, Image moments), and  
6. Depth,  
7. Others (Texture, Gait) 

From a neurological perspective, action recognition occurs in the mind in the ventral and dorsal pathways. Ventral 
pathways capture the form of the body, and Dorsal pathways capture the body's motion (Yousefi and Loo, 2019). 
Together, these features enable the brain to perceive and differentiate between actions. The first three feature 
representations mentioned above relate to the motion, and the remaining relate to the form of the body. Motion 
History Images, Motion Energy Images, and Spatio-Temporal Interest points can be considered hybrid feature 
representations containing both the motion and form of the body. 

Except for the interest points and poselets, all other features are considered global descriptors; the two are deemed 
local descriptors. As the word suggests, global descriptors provide features of the overall human body and motion. 
Local descriptors are more robust against background clutter, illumination changes, and occlusions (Abu-Bakar, 
2019). 

All the above features are traditionally identified in the literature to help in action recognition. With the 
introduction of deep learning approaches, specifying these features is shunned, and instead, bounding boxes are 
utilized to let the models determine useful features themselves. Since the precise features utilized by the deep 
learning models are unknown, few generalized feature representations can be added to the above list based on the 
scope of bounding boxes. 

8. Body part features 
9. Local features 
10. Frame features 

 
Figure 5: Low-Level Feature Representations. 
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Model availability is the next consideration. The mirror mechanism theory from neuroscience suggests that action 
understanding is achieved by transforming the sensory representations of others` behavior into one's motor 
behavior. Since computers cannot replicate the same approach, modeling and simulation approaches seem apt. A 
model of the actor, object, and environment can be developed from prior knowledge, with features including 
appearance, physical capability, physical affordances, and other features that might be useful for understanding 
the actions. However, modeling new environments and actions is a challenge in itself. We can generally see model-
free, indirect, and direct approaches for using apriori models (Ke et al., 2013). The model-free approach uses no 
prior information regarding the human body. Indirect (or partial) models use information like aspect ratio between 
limbs, orientations, and relative placements. The direct model uses an explicit geometric representation of the 
shape, structure, appearance, and movement of the body and its parts (Afsar, Cortez and Santos, 2015). The 
availability of a model can reduce the dependence on feature extraction. For example, with a full-fledged human 
body model, simple key-point data is used to simulate a motion and derive all motion features relevant to specific 
use cases. 

Feature engineering is sometimes applied to low-level features to connect them to mid-level tasks. In older works, 
considering the limited compute capability, the features and models with sizeable dimensional vector sizes are 
applied with dimensionality reduction methods like Principal Component Analysis, Auto encoders, Reduced Basis 
Decomposition, and Linear and Kernel Discriminant Analysis. In the current scenario, with increased computing 
capabilities, feature enrichment methods are adopted for error reduction of data captured through Generative 
Adversarial Networks and other methods. An alternative approach is the feature conversion from one type to 
another for subsequent steps. 

4.1.4 Mid-level Action Detection 

Mid-level task types include action recognition, temporal action localization, and spatiotemporal action 
localization. Action recognition attempts to recognize the action within a frame or a set of frames by identifying 
the feature patterns. Temporal and spatial localizations provide additional information that is helpful for real-world 
use cases. Due to the richness of features from low-level tasks, researchers embraced machine learning methods 
from the early days of these tasks. 

Overall, the output of this step is the action recognized and optionally localized spatially and/or temporally. 
Temporal localization is also considered action segmentation. It is helpful in continuous action recognition, close 
to real-life scenarios where actions transition from one to another rather than stopping at discrete time points 
(Gammulle et al., 2023). The temporal action localization will need additional metrics related to action labels and 
the start-end time proposals (Vahdani and Tian, 2023). Different types of segmentations can be made, like Fixed-
size, Overlapping, Hierarchical, and Semantic types of action segments, which break the activity into chunks of 
actions (Sedmidubsky et al., 2021). Activities can be classified into action sequences – Composite, Concurrent, 
Sequential, and Interleaved (Kulsoom et al., 2022). In general, for any sensor, the typical processing flow will be 
segmenting the input into chunks, extracting features, and classifying the segment into some actions (Meng et al., 
2020) and combining them back. Spatiotemporal localization adds a spatial dimension. The actions are mapped to 
the three-dimensional space, which in this case is the construction field to extract relations between different 
entities and their motions. The additional metrics that can be applied are similar to the localization of objects in a 
frame at the low-level feature extraction stage. However, the output of spatiotemporal localization is much more 
useful in extracting relationships between different entities and their actions, enabling a better understanding of 
the field. At the same time, this approach is more complex than others. 

As mentioned earlier, machine learning is the preferred choice of researchers in this field. Learning approaches 
like supervised or transfer learning are typically utilized to train the models with data. However, it does not 
discount the possibility of using other approaches like unsupervised learning, reinforcement learning, and others. 
Popular network types use convolutional neural networks (CNN) for extracting spatial features, recurrent neural 
networks (RNN) for extracting temporal features, transformers for extracting features from extended context 
lengths of any feature type, and graph neural networks (GNN) for encoding and extracting relational features 
between entities. In some cases, CNNs are also repurposed to collect spatial features from multiple frames, 
equating to collecting spatiotemporal features. For the tasks mentioned across the taxonomy, the approaches of 
CNNs, RNNs, GNNs, and Transformers or Attention Networks are found helpful. At the current state-of-the-art, 
skeletal pose-based action recognition using transformers (Xin et al., 2023) is utilized. However, the network 
structures can differ based on the application. 
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4.1.5 High-level Action Understanding 

High-level steps bring the reasoning and understanding aspects, move beyond computer vision alone, and are 
application-oriented. From a neurological perspective, activities can be broken into goals and plans, and each can 
have different approaches to recognition (Van-Horenbeke and Peer, 2021). Tasks like action prediction, intention 
recognition, and activity recognition (Kong and Fu, 2022) can be considered part of this level. Some researchers 
also consider the mid-level and high-level tasks as single and hierarchical approaches (Aggarwal and Ryoo, 2011). 
The vision-language connection is explored by extending the neurological observations of overlap between visual 
and language aspects in Broca’s area (Willems, Özyürek and Hagoort, 2007) and theoretical lens like the 3R 
framework (Wiriyathammabhum et al., 2016). 

The high-level task of action understanding is application-oriented as we attempt to understand the actions with 
specific use cases. For this high-level understanding, we require coherence between our interpretations of visual 
input and our understanding of knowledge about the world. To achieve coherence, past researchers adopted three 
steps –Represent knowledge of the world and the context of the action (Representation), Capture the context 
specific to the observations (Incorporation), and match the observations with these representations to derive new 
knowledge (Interpretation). There is also a proposal to utilize apriori knowledge of actions and contextual 
information, each valuable for motion categorization into sub-events and event detection from these sub-events, 
respectively (Onofri et al., 2016). However, the current work presents the categorization of motions as a mid-level 
task. Providing appropriate context is verified to be more helpful in understanding actions (Wurm and Schubotz, 
2017). Though the three steps seem simple, realizing the tasks is nontrivial. The reasons behind such difficulty are 
– the long temporal interdependencies, complexity, and quantity of possible actions, relevance of associated 
semantics, and the existence and interaction of several actors in the same environment (Rodríguez et al., 2014). 
Considerable overlap of the methods within the three steps can be observed in the knowledge engineering domain, 
which identifies several knowledge-based systems and their required components (Kendal and Creen, 2007). 

Knowledge representations can be differentiated based on how objects and relations are represented and the ease 
of knowledge extraction. Hierarchical modeling approaches break down an activity into its constituents 
straightforwardly. Key-value models, mark-up scheme models, semantic web technologies, event-based 
representations, vector representations, and object-oriented approaches are other straightforward encoding 
methods to represent knowledge. Knowledge graphs capture entities and relationships between entities for efficient 
querying. Entities can be actions, and relationships can be evaluated from context. Ontology-based systems 
provide a structured way to represent concepts, relationships, and axioms for reasoning within a domain. Like 
knowledge graphs, ontologies can encode actions as concepts and context in relationships. The only difference is 
the presence of axioms, which are pre-defined and fixed for an ontology, reducing the flexibility of querying. Finite 
automata can be applied to model actions as sequences of states and transitions are used based on the application. 
Description-based methods involve detailed descriptions of actions, capturing their attributes and contexts. 
Semantic descriptions of actions can be captured in these methods and used to generate higher-level descriptions 
(Guo and Lai, 2014). 

When studied in different contexts, the same action can provide different understandings. For example, a lifting 
action is done by a worker to place a material at some height. The quantity of material placed in one lift and the 
lift speed are necessary for productivity applications. For health applications, the postures adopted, the repetitions 
made over a given time, and the weight of material lifted are more critical. For safety applications, the location 
where the lift happened and the conditions of the location before and after the lift are the necessary aspects. 
Separating the context allows us to reuse the same low and mid-level task outputs for multiple applications more 
efficiently. 

Thus, context incorporation is the most informative step for action understanding towards different applications. 
The word context is defined as “ambiance, attitude, circumstance, dependence, environment, location, occasion, 
perspective, phase, place, position, posture, situation, status, standing, surroundings, and terms” and “any 
information that can be used to characterize the situation of an entity. An entity is a person, place, or object that is 
considered relevant to the interaction …” (Sezer, Dogdu and Ozbayoglu, 2018). Following these definitions, we 
can classify the contextual factors within the construction domain as Regulatory (for safety and other compliances), 
Physical environment (the working space and supporting structures, work layout, and work handled), Social (team 
dynamics, supervision, and management styles), External environment (weather conditions), Project (the time 
constraints, project specifications, technology used), and Conditions of the worker (health, motivation, emotions, 
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experience). Though not exhaustive, this list indicates a need for a more nuanced understanding of contextual 
factors for developing newer applications. Context can be explicitly modeled within the knowledge representation 
or implicitly modeled while adopting interpretation approaches, or additional inputs can be made for the 
interpretation step. Due to the intricacies of capturing context, sensors and interpretation methods differ while 
incorporating different contexts. 

Finally, Interpretation involves making sense of observations within the context of the represented knowledge. 
Rule-based systems depend on manually pre-defined rules between conditions, actions, and relationships. Logic-
based systems allow formal logic, including first-order and predicate logic, by encoding the logical rules and 
inference mechanisms. Causal analysis focuses on understanding actions by identifying cause-and-effect 
relationships in each scenario. Physics constraints involve modeling actions according to the physical laws 
governing the real world, ensuring the actions are plausible and physically feasible. The syntactic analysis utilizes 
the grammatical structure of actions to comprehend their meaning (Aggarwal and Park, 2004). By reasoning under 
uncertainty without considering plausibility, three approaches can be used to interpret the actions. Graphical 
representation models like Bayesian networks and Markov models utilize the probabilistic relationship between 
variables. Other representations can utilize Fuzzy logic and Confidence factors for reasoning. Like regular 
expressions, Pattern searching and matching algorithms identify patterns within the data to match the knowledge 
representations. Learning approaches like machine learning and deep learning extend these aspects to match the 
patterns within data of larger dimensions. Exploratory learning schemes like self-supervised learning and 
reinforcement learning are also covered under this approach, which is similar to mid-level learning approaches. 

With these theoretical concepts identified from computer vision literature, we review the works in the construction 
domain, which cover the aspects of action recognition and understanding. As the field is more oriented towards 
application, we also consider the application contexts in which they are used. 

The Part-1 literature review yielded the taxonomy and the relevant details of each heading. For example, the most 
popular low-level features are identified and discussed in the relevant section above. Extensive work is done in 
the computer vision field to understand actions for generalized applications. Comparatively, application-oriented 
research in the construction field is still in a nascent stage. Hence, there is a need to establish the direction while 
identifying the current need, particularly the lack of appropriate schema. Thus, the following section reviews past 
construction literature to fill the gaps and determine the current status and possible future directions.  

4.2 Action Understanding in Construction 
Following the taxonomy above, the construction literature is classified for each step of the taxonomy. Of the total 
seventy-one papers found, fifty-seven are journal papers, and fourteen are conference papers. The publication trend 
is increasing, particularly in recent years. The grid of column charts in Figure 6 shows the trends in individual 
construction use cases over time. 

An increasingly heavy focus is observed in safety-related applications. Consistent efforts have been made to 
understand, monitor, and measure productivity over the years. Occasionally, applications on quality and health 
also pop up. Human-robot collaboration (HRC) as an application has been observed in recent years. 

The tasks adopted at different levels of the taxonomy and the related use cases are presented in Figure 7. The colors 
of the nodes are purposefully kept consistent with the taxonomy in Figure 4. Specifically, the nodes represent 
feature choice at the low level (in orange), task types at the mid-level (in yellow), and action interpretation in the 
high-level (in green) components of the taxonomy. The other parts of the taxonomy and the results are presented 
separately in dedicated sections following the current section. The last column of nodes (in grey) represents the 
use cases in the construction industry, as per the reviewed literature. Application-agnostic works focused on 
detecting actions and activities without specific use cases, and multi-application studies utilized the detected 
elements for multiple use cases like safety and productivity.  

Few works have utilized more than one task under each level, and this work quotes each separately in Figure 7. 
For example, one paper might have utilized pose and local features. Then, it is counted in both these works, thus 
making the numbers more numerous than the total papers. 

 

 

FIG 6: Sankey Diagram of Number of Works Using Different Low-Level Features, Mid-Level and High-Level 
Tasks for Construction Use-Cases 
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Of the seventy-one papers, forty papers utilize only mid-level tasks, twenty-three utilize only high-level tasks, and 
only eight utilize both mid-level and high-level tasks. In all the works, low-level features are extracted and used. 

In works that consider high-level tasks, there are distinct application areas for different high-level tasks. The 
behavior and condition recognition tasks are exclusively considered in safety applications. Some safety and 
understanding applications utilize human-human interaction recognition as a high-level task. Applications of 
human-robot collaboration (HRC) required the intention recognition task. The prediction task is helpful for safety 
and HRC and is also proposed to be useful for all purposes. For more context, the predictions are the trajectory 
predictions that the people will follow in their motion on the site. 

 
Figure 7: Year-wise Action Understanding Related Works Published on Different Use-Cases in Construction. 

Within works that consider mid-level tasks, only a few exclusively identify them separately. Prediction tasks that 
use trajectories and poses are straightforward motion predictions that do not consider the actions handled. Instead, 
they are only concerned with the next instant of motion. Activity recognition without mid-level tasks works directly 
by using local features and poselets. Behavior and condition recognition without mid-level tasks also utilized low-
level features like pose, trajectories, body part, local and frame features, and shape features. However, all 
applications utilize action recognition as the main mid-level task. Action segmentation is utilized only for the 
productivity aspect in one paper.  

For low-level feature extraction tasks, features like pose, local image features, trajectories, motion, frame features, 
interest points, shape, body part features, and poselets are utilized in the works reviewed. 

4.2.1 Motion Detailing for Construction 

Motion detailing is the first step in the presented taxonomy, yet very few works in construction literature are found 
to utilize or define similar steps explicitly. Considering that various technologies differ in their capability to collect 
motion information of workers in construction sites, these preliminaries are necessary to match the capabilities 
with applications. The current sub-section defines a schema relevant to construction while also considering the 
concept of level of detail. 

One of the old depictions (Everett and Slocum, 1994) categorizes construction operations at seven levels - Project, 
Division, Activity, Basic Task, Elemental Motion, Orthopedics, and Cell. Most recent literature uses the term 
‘process’ rather than division in the construction. According to recent works (Seo, 2016), using wall masonry as 
an example process, tasks like setting up, placing mortar, laying blocks, leveling, and rechecking are involved. 
Each task has operations like lifting, moving, placing, and tapping followed in a sequence. However, if we refer 
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to ISO 9001:2015, the definition of a process is “A set of interrelated or interacting activities which transforms 
inputs into outputs”. We take the help of the level of detail to set up the schema for ease of reference using the 
spatial boundaries. The level of detail here considers the scale at which motion is observed as the basis, with an 
increasingly larger area relating to more complex motion and their resultant schema elements. The schema is 
presented in Figure 8, and a few examples of the schema elements. 

Humans adopt postures relevant to their actions without any motion in the body. At an individual body part level, 
we can observe elemental motions. Examples of these motions include moving the hand, lifting the head, raising 
eyebrows, and bending the knee. These motions can give some information by themselves. A combination of these 
motions can be considered as Actions. Actions can be observed at the whole-body level and classified into 
expressions, gestures, general body movement, and object manipulation. Though there can be other types of 
motions and actions in general usage, the elements mentioned here are the most relevant work-related types. 
Beyond the body level, the actions can be combined as an activity within a locality. Activities include interactions 
with objects and humans, individual behavior, and events by a group. A series of activities within an environment 
can be considered a process. The critical aspect is the level of detail, which can differentiate and provide context 
for observing movement.  

 
Figure 8: Proposed Schema and Relation with Level-of-Detail, along with Examples. 

For example, a process like masonry occurs in the construction site environment, constituting several activities. 
Activities occur within a workstation or a location, involving object interactions with material and tools, human 
interactions with other workers to communicate, and following different behaviors underlying these interactions. 
To elaborate, bricklaying activity within the masonry process can be achieved while interacting cooperatively with 
other workers or passively neglecting using specific tools for the job. The behaviors arise from the worker's mood, 
emotions, and other internal factors which can dictate their interactions. Each activity constitutes several actions 
within the confines of the human body. While laying bricks, the workers must grasp, lift, place, tap the blocks, 
give hand signs, or express themselves to co-workers for interactions. The motion aspect combines several body 
parts in conjunction. Each body part has specific movements that need to be achieved to complete the actions. The 
actions and elemental motions depend on the postures adopted for the actions, but the postures by themselves do 
not constitute any motion. This is a very simplified example, covering the core hierarchy according to the schema 
above. In real life, there can be several elements that are not mentioned in the examples above. Considering the 
existing literature, the schema focuses only on the work-related motions and their hierarchical presentation. 

The review found that sixty-eight of the seventy-one can fall within this schema. However, three works propose 
slightly different schema. The differing schema is - Action, Activity, Step, Subtask, Task (Pan and Yu, 2024a, 
2024b) and Interaction, Activity (Fang et al., 2018). The first schema was proposed for intention recognition tasks 
and human-robot collaboration applications, possibly used since the focus is also on allowing the robot to 
understand the task context and human action context together. The second schema was proposed to understand 
applications. Yet, it differs from our current proposal as atomic activities can be considered actions, and 
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interactions can be regarded as activities within our proposal. This means that the schema is used in reverse in the 
work. The proposed schema is also close to the SPHERE hierarchy (Woznowski, Burrows, et al., 2016). Still, it 
varies by considering the behavior as part of the activity and adding processes above the activity level. This is 
done since the mentioned work is focused on daily living, whereas we are focused on construction activities. 

4.2.2 Low-level Feature Extraction 

 
Figure 9: Year-Wise Usage of Different Low-Level Features in Construction Literature. 

As presented in Figure 9, there has been a marked increase in the usage of pose (i.e., 2D & 3D body key points) 
and local features (i.e., bounding boxes around humans) in recent years, owing to their simplicity. Trajectories are 
utilized sometimes. Interest points are entirely out of favor. A few works have experimented with poselets, body 
part features, and shape. Few works utilize the whole frame as features and motion features (through optical flow 
or similar feature extraction).  

 
Figure 10: Feature Engineering Adopted for Different Features (Left) and Year-wise Usage of Techniques (Right). 
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Interest points and motion features are large-size features requiring feature reduction, and these approaches were 
used in older machine learning tasks. Current methods mostly use pose and local features and convert or enrich 
the features for further use as can be observed from the adoption trends in Figure 10.  

 
Figure 11: Year-wise Usage of Models in Different Approaches. 

Figure 11 presents the year-wise trends of different modeling approaches used. There is also a marked increase in 
the use of both model-free and partial model approaches, whereas direct model use is completely reduced. 

 
Figure 12: Model Usage for Different High-Level Tasks. 

However, only model-free or partial models are used for high-level tasks, as observable in Figure 12. Particularly 
for condition and interaction detection, some details regarding the human body are necessitated in the literature. 
Partial models are also helpful in understanding postures and elemental motion in the schema. 

4.2.3 Mid-Level Action Detection 

In mid-level tasks, as mentioned previously, forty works stop with mid-level tasks, and eight works extend to high-
level tasks from mid-level. The older works utilized machine learning approaches like support vector machines 
and k-nearest neighbors. Newer works mostly prefer deep learning methods. As we deal with images, 
convolutional networks are the most popular approach. Graph neural networks have been increasingly used in the 
past few years. Attention networks are another frequently used network type. Only one work in 2016 adopted an 
action segmentation task using the Bayesian learning approach. Forty-seven works adopted action recognition 
tasks, one work adopted action segmentation, and twenty-three did not have a mid-level task. 
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Figure 13: Year-wise Usage of Different Network Types for Mid-Level Tasks. 

4.2.4 High-Level Action Understanding 

In high-level tasks, the most common tasks are activity, behavior, and condition, which are closely related to safety. 
There is a reduced interest in activity recognition in general and an increase in behavior and condition recognition. 
Newer tasks also focus on human-human interaction (HHI), prediction of trajectories, and intention recognition. 

 
Figure 14: Year-wise Changes in Different High-Level Tasks Adoption. 

Besides deep learning, rule-based approaches are also used for different high-level tasks. Deep learning has shown 
its versatility in application to various tasks. However, the significant applications of activity, behavior, and 
condition recognition utilized rules similar to deep learning. This also has a relation to contextual factors. The 
Bayesian approach is used in cases where there is a need for probability exists. Machine learning and feature 
matching are much less used. 
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Figure 15: Overall Number of Works Applying Different Approaches Across High-Level Tasks. 

Considering that the work focused on computer vision, a large number of works are identified with CNN networks. 
There has been an increase in GNN and attention network usage in recent years. Traditional methods of machine 
learning are less in use. 

 
Figure 16: Year-wise Number of Works with Different Networks for High-Level Tasks. 

One newer trend is integrating the regulatory and external environment as contextual factors. Regulatory 
information like safety rules is increasingly considered a context to ground the worker action understanding within 
the field. The other usual contexts are the project-related task factors, the physical work environment around the 
worker, and the worker conditions. The external environment is one of the newest additions to the contextual 
factors. 

0

5

10

15

20

25

Machine Learning Feature matching Bayesian Deep Learning Rules

Intention HHI Prediction Condition Behavior Activity

0

1

2

3

4

5

6

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Bayesian SVM Nearest Neighbors RNN Attention GNN CNN



 

 
 ITcon Vol. 30 (2025), Nanduri & Delhi, pg. 943 

 
Figure 17: Year-wise Count of Works Using Different Contextual Factors. 

Interestingly, the work on site condition recognition has yet to utilize project task factors. The physical work 
environment is the most utilized context, followed by the worker's condition. However, the work on intention 
recognition utilized the project task information rather than others, suggesting that it is more advantageous for 
HRC to have knowledge of the tasks to understand the worker's intention. Additionally, the external environment 
is also helpful for condition recognition. 

 
Figure 18: Context Representation Approaches. 

Context representation is incorporated in the existing works, as depicted in Figure 18. Implicit modeling 
approaches include the context as part of the knowledge representation. Explicit modeling presents the context 
separately at the interpretation step. Additional inputs consider the context to be a separate input from other sensors. 
Mixed modeling breaks context into parts and includes them both explicitly and implicitly. Across all types of 
modeling approaches, vector representation is the most in number. This also reflects the large number of learning 
approaches depicted in Figure 15. The second most used approach from Figure 15 is the rules-based approach. For 
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this type of approach, text descriptions are utilized for semantic rule matching in both implicit and mixed modeling 
approaches. Explicit modeling provided more flexibility in adding context through different methods like fuzzy 
models, knowledge graphs, ontologies, and hierarchical models. The additional inputs are expected from various 
modalities, and sensors are typically fed vectors to let the learning models decide the importance of the context 
from them. 

 
Figure 19: Contextual Factors Used for Different High-Level Tasks. 

Figure 19 is a breakdown of different contextual factors, mapping to different high-level tasks, and Figure 20 is a 
breakdown of the context representation approaches used for the contextual factors. This paragraph discusses the 
results combining both charts, as the individual charts directly depict that larger values are the most used factors 
and approaches, respectively. The physical environment is the most utilized context across tasks, and its 
representation widely varies across the different modeling approaches. Descriptions are provided for the physical, 
project, and regulatory contexts. Hierarchical models are primarily utilized for project task context modeling. Yet, 
some attempts are made to capture the physical environment and worker conditions. 

 
Figure 20: Contextual Factors Incorporation Using Different Approaches. 
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4.2.5 Quantitative Analysis 

Of the seventy-one papers, thirty-seven reported accuracies for mid-level tasks, and twelve reported accuracies for 
high-level tasks. Other metrics mentioned at the mid-level are precision, recall, F1-score, error reduction, and 
BLEU scores. Other metrics like CIDEr-D, ROGUE-L, and SPICE are also at the high-level tasks. The BLEU, 
CIDEr-D, ROGUE-L, and SPICE are metrics used to measure the text-based approaches quantitatively.  

Apart from accuracy, few papers touched on the other metrics to quantitatively suggest any observations. Natural 
language processing-based metrics like BLEU are mentioned in only three papers (Liu et al., 2020; Zhai, Wang 
and Zhang, 2023; Zhong et al., 2023). Hence, they are not further presented and discussed. 

Table 2: Metrics of Reviewed Works. 

S No Metric Minimum Maximum Average Papers reporting the metric 

 Mid-Level tasks     
1 Accuracy 57.00% 99.50% 86.09% 37 

2 Precision 62.40% 95.00% 79.89% 9 

3 Recall 66.70% 92.00% 80.05% 5 

4 F1-Score 78.87% 78.87% 78.87% 1 

 High-Level tasks     

1 Accuracy 71.70% 99.60% 88.09% 12 

2 Precision 69.85% 98.26% 81.51% 5 

3 Recall 70.50% 97.80% 83.18% 4 

4 F1-Score 79.00% 96.78% 89.59% 3 

Due to the paucity of other metrics used, this section focused on comparing the accuracy between different works 
for the quantitative evaluation.  

Of the seventy-one papers, except for one paper that proposes to use scene graphs and ten documents that did not 
mention the details of the datasets, others mentioned using datasets in the form of frames or clips. Twenty-four 
papers used Frames for the dataset, which ranges from 110 frames to 38176 frames. Thirty-five papers use Clips 
for the dataset, ranging between 4 clips to 63900 clips, ranging between 0 to 20 seconds each, or using 100 to 200 
frames per clip in most cases.  

In the works studied in the review, only eleven papers were presented using the frame dataset and the accuracy of 
the mid-level tasks. We observed that two to ten classes were used at most. A 99.5% accuracy is observed for four 
classed datasets with 9695 datapoints, which can be mentioned as the best benchmark, with nearly 2400 frames 
per action class (Han, Lee and Peña-Mora, 2014). The following best is with only two classes and 2569 datapoints, 
reaching 1200 frames per action class and 98% accuracy with the latest graph neural network (Liu and Jiao, 2022). 
Only 26 papers report the accuracies with clips as datasets. Within this, most (five) papers used seven classes of 
datasets. And they reached an average accuracy of 89.5%. The best-performing works used four to seven classes 
of actions and combinations of clip lengths between 2 seconds to 10 seconds, continuous videos, and 
predominantly 5-second clips. The dataset ranges from just 72 clips of 4s each for four classes to around 8000 for 
5s clips for seven classes. Although a few applications use data without clipping for evaluations, these numbers 
give a sense of the dataset requirements. 

Most papers start with pre-trained models for pose and object detection tasks. However, a few also started with 
action recognition datasets like Kinetics-400 and HMDB; Image recognition datasets like ImageNet, Flickr8K, 
and MS COCO; and Task-specific datasets like Le2i falling humans dataset, WiderFace, and CelebFaces+ datasets. 
Three valuable datasets within the construction community are available (Yang, Shi and Wu, 2016; Roberts et al., 
2020; Tian et al., 2022), which can be utilized for developing new action understanding networks and training 
approaches. 
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5. DISCUSSION 
Table 3: Overall Taxonomy With Details Under Each Level. 

Motion Detailing Low-Level Feature Extraction Mid-Level Action Detection 

Schema Level of Detail Model 
Availability 

Feature 
Choice 

Feature 
Engineering Task Network Type Learning 

Approach 
• Posture 
• Element

ary 
Motion 

• Action 
• Activity 
• Process 

• Individual 
Body Parts 

• Whole Body 
• Locality 
• Environment 

• Model-
Free 

• Indirect 
Model 

• Direct 
Model 

• Motion 
• Trajectori

es 
• Interest 

points 
• Pose 
• Shape 
• Depth 
• Others 

(Texture, 
Gait) 

• Body part 
features 

• Local 
features 

• Frame 
features 

• Feature 
Reduction 

• Feature 
Enrichmen
t 

• Feature 
Conversion 

• Action 
Recogniti
on 

• Temporal 
Action 
Localizati
on 

• Spatio-
Temporal 
Action 
Localizati
on 

• Convolutio
nal Neural 
Network 

• Recurrent 
Neural 
Network 

• Graph 
Neural 
Network 

• Attention 
Network 

• Supervised 
Learning 

• Unsupervise
d Learning 

• Transfer 
Learning 

• Machine 
Learning 

• Deep 
Learning 

• Reinforcem
ent Learning 

        
 High-Level Action Understanding  

 Knowledge 
Representation 

Context Incorporation Action Interpretation  

 Context 
Type 

Context 
Incorporati
on Method 

Interpretation 
Network 

Types 

Interpretati
on Method 

Interpretation 
Task 

 

 • Key-Value 
• Markup 

scheme 
• Semantic 

web 
• Even-based 

representatio
n 

• Vector 
Representati
on 

• Object-
oriented 
approach 

• Ontology 
• Knowledge 

graph 
• Finite 

Automata 
• Semantic 

Descriptions 

• Workspac
e 
Environm
ent (e.g., 
layout) 

• External 
Environm
ent (e.g., 
Weather) 

• Regulator
y 

• Social 
• Project 
• Condition 

of worker 

• Explicit 
modeling 

• Implicit 
modeling 

• Mixed 
modeling 

• Additiona
l inputs 

• Convolutio
nal Neural 
Network 

• Graph 
Based 
Neural 
Network 

• Causal 
analysis 

• Physics 
constraints 

• Syntactic 
analysis 

 

• Rule-
based 

• Logic-
based 

• Causal 
analysis 

• Physics 
constraint
s 

• Syntactic 
analysis 

• Reasoning 
under 
uncertaint
y 

• Probabilis
tic 
relationshi
ps 

• Fuzzy 
logic 

• Pattern 
Searching 

• Machine 
learning 

• Deep 
learning 

• Explorato
ry 
learning 

• Activity 
Recognitio
n 

• Behavior 
Recognitio
n  

• Condition 
Recognitio
n  

• Human-
Human 
Interaction 
Recognition 

• Human-
Object 
Interaction 
Recognition 

• Intention 
Recognition  

• Trajectory 
Prediction 

• Action 
Prediction 

 

 

Worker action understanding represents a foundational capability necessary for fully realizing the potential of 
Construction 5.0 technologies. This research reviewed the current state of the art and presented a structured 
taxonomy, addressing the complex action hierarchies driven by organizational goals. This taxonomy presents a 
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unified approach for various use cases and technologies, realizing the goal of Construction 5.0. The hierarchical 
taxonomy (Motion detailing, Low-level Feature Extraction, Mid-level Action Recognition, and High-Level Action 
understanding) addresses the need for a unified taxonomy for different use cases. The hierarchical schema (Posture, 
Elemental Motion, Action, Activity, Process) presented as part of the motion detailing step provides a structured 
means of categorizing the worker motions and matching them with technological advances. A summary of all the 
elements within each part of the taxonomy is presented in Table 3. Under each part of the taxonomy, the most 
preferred elements in construction literature are highlighted in bold in the table. 

5.1 Current State-of-the-Art and Scope for Improvement 
Overall, there is growing interest in applying action understanding to safety and productivity, while other use cases, 
such as quality and human-robot collaboration, are in the exploratory phase. Notably, safety applications are 
preferred in high-level tasks based on the ABCs of workers – Activity, Behavior, and Condition Recognition. 
Contextual factors such as work environment and worker conditions have also emerged as critical inputs across 
different applications. A few worker-specific elements, such as health conditions, are targets for applications and 
contextual factors for other applications. Intention recognition and project information as context have been 
explored in human-robot collaboration but have been helpful for different applications like safety and productivity. 
High-level tasks reveal increasing adoption of vector representations for implicit context modeling. Nevertheless, 
the limited use of representations such as semantic descriptions suggests the unmet need to bridge the semantic 
gap. 

Table 4: Mapping of Potential Application Use-Cases to Construction 5.0 Values. 

Applications Human-Centricity Sustainability Resilience 

Documentation 
/ Monitoring 

Self-review logs: Action records and 
analysis for worker feedback. 

Digital archives: Visual logs to 
reduce paper use and store detailed 
information. 

Forensic playback: Identify and 
replay events to reconstruct incidents 
and events. 

Health Ergonomic alerts: Unsafe postures 
or movement detection for feedback 
and alerts. 

Wellness tracking: Monitoring 
activity patterns to prevent long-term 
strain on workers. 

Overexertion alert: Early warnings 
from detected signs of fatigue or 
excessive effort to avert injuries. 

Human-Robot 
Collaboration 

Intent capture: Worker intention 
recognition to improve robot 
interactions that are helpful to 
workers. 

Task efficiency: Identify, plan, and 
share actions between worker and 
robot to enhance energy efficiency 
and reduce redundant work. 

Adaptive fallback: Detection of 
anomalous interactions, either from 
robot or worker, to trigger backup 
safety measures. 

Productivity Performance profiling: Analysis of 
individual task actions to assess 
workers' efficiency while 
maintaining privacy. 

Inefficiency flags: Detection of 
redundant or non-value-added 
actions that waste time or materials 
across trades and processes. 

Sequence disruption: Early alerts 
when task flows break down, 
preventing workflow interruptions. 

Quality Procedure Compliance: Verify that 
correct methods and steps are 
followed to maintain work standards 
and to give feedback. 

Resource efficiency: Monitoring 
actions to ensure optimal use of 
materials and energy, reducing 
wastage. 

Fault precursor: Identification of 
early signs of errors in task 
execution that may lead to quality 
issues. 

Safety Unsafe actions: Detection of unsafe 
and abnormal behaviors that 
compromise personal safety and the 
safety of others. 

Hazard prevention: Recognition of 
hazardous behaviors in waste 
material handling to avoid 
environmental pollution. 

Crisis detection: Real-time 
detection of emergency conditions 
for fast response. 

Skill Skill profiling: Analysis of action 
patterns to assess individual 
competencies and tailor personal 
training. 

Competence mapping: Evaluation 
of processes to align worker skills 
for better use of resources. 

Training gaps: Identification of 
areas for skill development. 

Action recognition is the commonly used mid-level task without temporal and spatial localization, crucial for 
several meaningful site applications. Few works achieve localization by manually placing bounding boxes before 
processing for action recognition. The taxonomy's inclusion of localization tasks within the mid-level presents the 
opportunity for automating and developing applications utilizing the time and location of workers for purposes 
like productivity or safety. There is an increasing trend of using pose and local features, with older methods like 
interest points declining in usage. This shift is beneficial for faster processing and covering more ground on 
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construction sites. Simultaneously, enriching and converting the features are increasingly preferred, suggesting 
richer feature information is needed. 

Quantitative analysis shows accuracy as the most common metric for mid-level and high-level tasks. Frame-based 
and Clip-based datasets worked equally well in the mid-level action recognition task. However, results show the 
underuse of quantitative evaluations beyond accuracy, particularly for high-level tasks, a lack of comprehensive 
assessment across the pipeline, and ablation studies made by removing some components and evaluating the output 
metrics. Secondly, the datasets in the reviewed works are typically built from various sources, randomly split in 
70:30 ratios for training and testing. Considering the large parameter size of deep learning methods that are 
currently popular, unseen data not used in training, for example, taken from a different project site, needs to be 
used as a validation dataset to evaluate the generalizability of the models. Finally, following a standard schema 
will enable the evaluation of different approaches for newer applications. 

Table 4 attempts to map application use cases to the construction 5.0 values. Applications that are found from the 
results are also integrated within the use cases. These different use cases present a wide variety of tasks that can 
be adopted within the action understanding tasks to improve automation efforts in the industry. 

In summary, achieving the need for a unified taxonomy, the current work presented a hierarchical taxonomy, 
categorizing four steps useful for developing applications relevant to different use cases. While the presented 
taxonomy provides a critical structural contribution, it also highlights significant gaps and future directions that 
must be addressed to fully realize the potential of action understanding to Construction 5.0. The advancements are 
discussed in the following subsection in terms of future directions. 

5.2 Future Directions 
To simplify the discussion, the future directions are categorized logically based on the taxonomy for algorithmic 
advancements and based on the schema for technological advancements. The algorithmic advancements focus 
strictly on computer vision-related methods but also present the vision-language connection, which is promising 
in the current large language model-based research. The technological advancements categorize the technologies 
around the worker into three categories – on-body devices, near-body agents, and ambient systems – connecting 
them to the schema presented.  

One commonly discussed aspect in both categories is worker privacy, a critical concern for managing worker trust 
and organizational expectations. Identifying individuals allows for targeted training and evaluation but raises the 
risks of over-surveillance, bias, and misuse. Conversely, complete anonymization can limit personalized 
interventions and security-related measures. A balanced approach is crucial for the ethical adoption of action-
understanding-based applications aligning with the value of human-centricity. As an additional benefit, targeted 
data collection reduces costs, making adopting technology sustainable for a cost-sensitive industry like 
construction. 

5.2.1 Algorithmics Advancements 

In low-level features, the increasing use of feature enrichment and conversion suggests taking a look at low-level 
features such as Interest points (Li et al., 2017) and Poselets (Tian et al., 2023). With the increase in model 
availability for representing the human body like SMPL (Chu et al., 2020), extending features from the two-
dimensional perspective of the image frame is becoming quite valuable for applications like ergonomic analysis. 
3D positioning using methods like objective knowledge (Shen et al., 2021), scene analysis (Shen et al., 2023), 
camera calibration using epipolar geometry (Assadzadeh et al., 2021), and homography transformations (Fang, Li, 
et al., 2020) are found useful in this direction. The problems of varying perspectives, occlusions, and low-level 
errors can be offset by regressing human mesh models like SMPL over the image frames instead of mapping image 
features to 3D. Biomechanical models, like 3DSSPP and OpenSim (Yu et al., 2017; Li et al., 2019), used for 
musculoskeletal disorders analysis, can be extended to action understanding, particularly in applications related to 
health and safety. In case of a lack of data, model-based action datasets can be created by generating synthetic data 
(Neuhausen, Herbers and König, 2020; Kim et al., 2022, 2023) or by repurposing larger datasets (Tian et al., 2022). 
Simple methods like utilizing the biological regularities within human motion can also present interesting low-
level features or partial model inputs (Noceti et al., 2017). Instead of modeling individuals, automaton approaches 
like Finite state machines (Martinez et al., 2021) can also be expanded and integrated with building models. 
Models of humans and the environment can be used to build digital twins or move information to a metaverse and 



 

 
 ITcon Vol. 30 (2025), Nanduri & Delhi, pg. 949 

extract relevant features from simulations. Finally, the schema can be tailored to specific applications, such as the 
task-oriented schema for Human-Robot Collaboration applications (Pan and Yu, 2024a). 

In the mid-level action detection methods, considering that the industry faces a lack of appropriate data for each 
application, adopting techniques like Weakly supervised learning, Unsupervised learning, and Self-supervised 
learning techniques need to be verified in more detail. Within the typically used transfer learning, different 
approaches can be adopted to solve specific issues (Ray and Kolekar, 2024). For instance, unsupervised transfer 
learning can be adopted to identify anomalous behavior, and transductive transfer learning can be used to adapt a 
previously trained model to site-specific processes with fewer data. Replacing some learning approaches with 
interpretation approaches like logic, causal analysis, physical constraints, and probabilistic alternatives like fuzzy 
logic can be explored to reduce data dependency. 

In high-level action interpretation methods, particularly the context types, human attention as context based on 
head and body orientations has shown considerable utility (Cai, Zhang and Cai, 2019), beyond the regularly used 
bounding box-based positional context (localization). Other useful contextual features currently identified are 
workplace factors like proximity and congestion and worker conditions like working height and leading postures 
(Xu and Wang, 2023); external environmental factors like humidity and temperature (Moohialdin et al., 2023); 
worker conditions like expertise (Ryu et al., 2022). Other contexts like project context (the work and workplace 
details) need to be exploited further, as these are the workers' most relevant task guiding factors. Instead of 
manually capturing and inputting the contextual information, it can be accessed through Building Information 
Models and site data (Xu et al., 2021) and digital twins (Pal et al., 2023), integrating into existing virtual 
construction processes. Construction tasks inherently present a hierarchical breakdown structure, and explicit 
knowledge modeling approaches like knowledge graphs and ontologies are preferable as they can capture these 
structures while maintaining human and machine readability. Applications related to quality and health need 
structured approaches to utilise high-level task outputs. 

The vision-language connection provides avenues for many hitherto unexplored applications in construction by 
connecting the language-related methods in the high-level tasks, building upon directly from the low-level features 
or mid-level action information. Older methods in vision-language connection focused on generating words from 
visual patterns in top-down and bottom-up approaches (Wang, Zhao and Yuan, 2014). Newer methods have bi-
directional capabilities like generating descriptions from images and generating and reasoning over images, among 
others (Mogadala, Kalimuthu and Klakow, 2021). Although using pose data for descriptions (Chen, Dong and 
Demachi, 2023) can provide useful information, generating descriptions for action data caters to applications like 
worker skill analysis. Documenting the visual process is essential for business purposes, as well as for safety 
records, process descriptions (Ren and Zhang, 2021), and method statements. When documentation is available 
before fieldwork, action understanding can help cross-verify the field, reducing the workload of field supervisors. 
As construction activities in the real world vary beyond the instructions documented, unsupervised techniques like 
topic modeling will help identify commonalities across different worker actions (Pal et al., 2021). Apart from the 
video captioning techniques identified in the reviewed literature, Scene description (Pereira et al., 2023) and Video 
Description (Aafaq et al., 2019) techniques can provide detailed accounts of the activities in a scene or a video, 
providing plausible explanations for incidents and accidents. Specific to the construction activities, considered to 
have a hierarchical structure, syntactic approaches provide the modularity needed for analysis at different steps 
(Astolfi et al., 2021). Furthermore, syntactic descriptions, semantic graphs, and knowledge graphs represent 
human actions in more detail (Wu et al., 2022). In some interesting reverse approaches, given an image and some 
description, models are developed in construction research to identify the bounding boxes (Liu et al., 2022), and 
given an image, the features are enriched with semantic details like object, status, action, and activity (Zeng and 
Hartmann, 2023). In summarizing the methods and their relation to Construction 5.0, exploiting the vision-
language connection helps maintain human-centricity and meet the needs of supervisors and organizations. 
Reducing the need for manual supervision at multiple locations simultaneously allows supervisors to focus on 
critical work tasks, improving the resilience of process control. Reducing the manual analysis reduces site 
inefficiencies like rework and resource misutilization, improving organizational sustainability.  

The recent progress in generative large vision-language models (alternatively called foundation models) enables 
simultaneous documentation and visual feature processing while following the hierarchical structures. These 
models have shown emergent capabilities in reasoning, making them apt for high-level interpretation tasks. 
Research is needed on how well these models can be utilized in the field since these generative models often face 
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the issue of hallucinating in their responses. Thus, it is still necessary for construction researchers to identify 
appropriate context, establish the knowledge representation, and integrate the knowledge into these large models 
to improve their correctness in interpretations. 

Differential privacy is another promising research avenue, enabling tailored privacy settings based on application 
needs – for instance, revealing identities for security applications while protecting them for productivity 
applications, which are more prone to misuse. It also allows workers to self-declare privacy preferences, ensuring 
consistency across site applications that may require identity information. Clearly defining and declaring the 
privacy aspects in newly developed applications is crucial for industry and academia to make informed decisions 
on their adoption. For example, a skill assessment application needs to declare the use of identity information right 
from the research stage, facilitating smoother field implementation. Algorithmic methods like face anonymization, 
cartooning, and encryption (Jung, 2020) can enable differential privacy. 

5.2.2 Integration with Technologies 

The current technologies that enable workers can be broadly categorized into - On-body or Body-worn devices, 
Near-person agents, and Ambient systems. Due to the proximity to humans and the level of detail available, these 
technologies can provide information under specific parts of the schema, as shown in Figure 21, and the 
applications can be tailored to these schema parts for the technologies. Other technologies and sensors will be 
necessary for applications that require information beyond the parts of the schema from which technology can 
collect information. This section discusses the research directions for improving action understanding in these 
three categories with respect to the schema. 

 
Figure 21: Existing Technologies Mapped to Presented Schema. 

On-body devices can capture elemental motions due to their proximity and can extend to action recognition. 
Sensors and smart wearables (Calvetti et al., 2020) and exoskeletons (Zhu, Dutta and Dai, 2021; Perera et al., 
2023) fall under the on-body devices. Sensors and smart wearables alone do not contribute to the worker's actions 
but can passively collect information and be utilized with other technologies. Exoskeletons are wearable 
mechatronic devices that assist and augment human capabilities. For such systems, intention recognition must be 
close to real-time for better performance and feedback. Different sensor systems enable recognizing the motion 
intentions that travel from the brain to the relevant body parts at different scales of the motion being created (Li et 
al., 2023). A detailed evaluation is essential for understanding motion-level intentions using vision. Egocentric or 
first-person view camera-based datasets like EPIC-KITCHENS (Damen et al., 2018) are useful in understanding 
actions by focusing on the movement of hands. Understanding actions at such proximity can help capture the 
worker's intentions for low-level motions. Simple gesture recognition and localization can enable safety 
applications (Rabbi and Jeelani, 2024). Real-time feedback for improving productivity, safety, health, and quality 
is also possible by using predictive and proactive applications while accommodating individual work styles. 
Evaluating individuals' performance, work quality, skill level, and training needs is possible with action evaluation 
techniques (Lei et al., 2019). 

Near-person agents can be robots that do the task themselves or machines that humans operate to achieve the tasks 
(You, Zhou and Ding, 2023). These systems interact with humans to augment their capabilities and replace humans 
in riskier tasks. Human-robot interactions are classified into coexistence, cooperation, and collaboration (Hentout 
et al., 2019) and represent the increasing complexity of such interactions. Action understanding is essential for 
robots for complex interactions like working together safely and efficiently. As both these agents can only be at 
some distance from the worker for safety reasons, they are limited in capturing the elemental motions but gain the 
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capability to observe the locality surrounding the worker. Though it enables capturing actions and activities, these 
systems have limited capability in understanding the whole processes that can span multiple locations within the 
field. Progress monitoring (Martinez et al., 2021) and abnormal operation detection (Lin, Chen and Hsieh, 2021) 
can be implemented for workers, as done on machines in the cited works. Worker well-being can also be evaluated 
through emotion, fatigue, and stress recognition based on worker condition as contextual input. Beyond trajectory 
prediction, as done in the existing works, future research can focus on evaluating worker conditions and predicting 
their behavior for different applications in safety, as well as in productivity and quality. 

Unlike machines, robots can be developed to recognize and imitate different gestures, actions, and emotions (Ji et 
al., 2020), as observed in other industries like entertainment, healthcare, and education. Three steps are needed for 
these agents to imitate human actions - action recognition, action synthesis, and task-level planning (Krüger et al., 
2007). Beyond the action recognition proposed in the schema, it is suggested that these agents need to recognize 
the actions and movements of the observed agent (worker). Action synthesis is understanding the effects of the 
actions on the environment. Task-level planning is understanding how to act to cause the same effect on the 
environment using its end effectors (robot’s arms, for example), which might differ from that of the observed agent 
(worker’s arms). The concept of action understanding mentioned in the current work encompasses action 
recognition and action synthesis. Task-level planning is considered to be a different cognitive function and is not 
included since it does not involve the perception part, but is an internal simulation considering its own effectors. 
Action recognition is extensively discussed in the preceding content. Action synthesis consists of object state, 
affordances, and function understanding. These ideas are not at all explored in the construction domain, probably 
due to the limited research into robotics in the past. Affordance and function are essential concepts that can be 
integrated into the context modeling step of the taxonomy proposed. Functionality is the possible set of tasks that 
can be performed with an object. Affordances are the possible set of actions an environment allows and possible 
use cases of objects. Knowing the affordances enables agents to understand and interact with the environment 
effectively (Hassanin, Khan and Tahtali, 2021). These two steps will enable agents to recognize the activities better 
and predict future actions. In addition, the provision of valid functionality of objects enables the agents to identify 
anomalous usage of objects, such as the wrong usage of PPEs. Knowing the affordances also enables the agents to 
work autonomously with tools and explore creative solutions similar to those of their human counterparts. 

There are no strict examples of ambient systems in the construction industry literature. Alternative terms used for 
these systems are Cyber-Physical Systems, Ambient Intelligence, Ubiquitous Computing, and Pervasive 
Computing, among others (Rocher et al., 2020). These systems are predominantly developed, focusing on 
everyday life (Cook, Augusto and Jakkula, 2009) by sensing, reasoning, and acting upon the real world. 
Construction literature did not specifically utilize the terms of ambient systems, yet many systems developed can 
be considered industrial applications of ambient systems. Computer vision applications using far-field cameras 
placed over tower cranes can be considered part of ambient systems. These systems typically capture limited detail 
and resolution. While this problem limits the capturing of the elemental motion and actions of individuals, the 
systems take on the role of capturing the activities and processes within the environment effectively. Extending 
these systems for action recognition is a point of active research in construction literature (Luo et al., 2019). Due 
to the need to collect as much information as possible from the environment, the placement of cameras is also an 
active research topic (Kim et al., 2018; Yang et al., 2018; Kim et al., 2019; Chen et al., 2021; Tran et al., 2022). 
Stabilizing the inputs using features from videos (Kim et al., 2019), Improving the scene illumination (Chen and 
Yu, 2023), and View invariance setup (Yan, Zhang and Li, 2019) are some interesting directions for establishing 
ambient systems. Techniques like image super-resolution can also be adopted to improve the detail, but have not 
been observed in the literature.  

Due to the large volume of data that is possible to collect, ambient systems have many possible applications in 
construction. Social signal processing, proposed to understand actions in groups of people, uses human-human 
interactions as a basis. The interactions include behavioral cues like physical appearance, gesture and posture, face 
and eye behavior, vocal behavior, space, and environment. Such understanding can identify workplace social 
networks and aspects like team cohesiveness and leadership (Beyan, Vinciarelli and Bue, 2023). Further, crowd 
action analysis can help in public safety (emergency evacuations), anomalous individual identification, and crowd 
behavior understanding (Cristani et al., 2013). The workspaces can be divided according to the crowd's actions in 
that locality (Luo et al., 2019), identifying different work zones and catering to the needs of the workers. 
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In summary, with different levels of detail captured by different technologies, the technologies face a hard 
limitation in their application across the presented schema. Table 4 maps the discussed technologies and the schema 
elements to the high-level tasks and application use cases. Table 3 presented earlier maps the application use cases 
to the Construction 5.0 values, and hence, they are not discussed here specific to each technology. The specified 
use cases and value-related applications are not comprehensive, but they present interesting research directions 
relevant to the industry. 

Table 5: Technology Categories Mapped to Application Use-cases. 

Technology Motion Detailing: 
Schema 

High-Level Tasks Application Use-cases 

On-Body 
Devices: 
Exoskeletons 

Elemental motion, 
Action 

Intention recognition, Gesture recognition, Predictive and 
proactive action recognition, Action evaluation 

Monitoring, Health, Safety, 
Productivity, Human-Robot 
Collaboration, Quality, and Skill. 

Near-
Person 
Agents: 
Robots 

Action, Activity Activity recognition, Behavior recognition, Condition 
recognition, Intention recognition, Acion synthesis, 
Affordance and functionality recognition 

Productivity, Human-Robot 
Collaboration, Health, Safety, 
Quality. 

Ambient 
Sytems: 
Remote 
Monitoring 
Systems 

Activity, Process Activity recognition, Process recognition, Social signal 
processing, Crowd action analysis, Work zone 
classification, Process evaluation 

Monitoring, Health, Safety, 
Productivity. 

The last step of the proposed schema - Process and its understanding would help identify the practices adopted in 
the field for various aspects like waste management, environmental friendliness, sustainability, and resilience. 
Monitoring a larger environment will help apply techniques like location-based management systems, theft 
monitoring, and safety hazards. Video retrieval (Ramezani and Yaghmaee, 2016) is necessary to identify relevant 
videos over many surveillance camera footage. Video classification and summarization through key frame 
selection and video skimming (Sabha and Selwal, 2023) will help compress large volumes of data from multiple 
cameras. From this compressed data, evaluating processes becomes more manageable. 

In cases where algorithmic privacy preservation is not trusted, technological solutions can be applied to protect 
privacy at the source of data collection. In place of high-definition RGB videos that allow for the visual 
identification of workers, extremely low-resolution images (Yang et al., 2024) and thermal cameras (Wu et al., 
2023) have shown considerable success. Additionally, technologies like thermal cameras work in low-light 
conditions, improving the resilience of the technology-based processes for action understanding. 

Moving beyond the RGB camera, vision technologies with additional capabilities are also useful for action 
understanding. LIDAR, Stereo Vision, and RGB-D can provide depth information, Event cameras can provide 
motion information, and thermal cameras can provide thermal information. These technologies add helpful 
information for the low-level features mentioned in the schema if provided with the additional cost and technical 
expertise. 

The ABCs of activity recognition, predominantly used for safety applications in literature, can also be utilized for 
worker health and well-being use-cases beneficial for achieving human-centricity and resilience. In the current 
work, an activity combines several actions and is part of a process. The workers do activities in line with the 
organizational goals. However, behavior is related to the worker's mood and other internal factors dictating their 
interactions with others and the work elements. For example, the same activity of masonry can be achieved by 
workers with quality-oriented behavior or very unsafe behavior, or passive behavior without interacting with other 
workers. Context in our work is related to several factors surrounding the activity and the worker. Activity-aware, 
Behavior-aware, and Context-aware computing (Favela, 2013) paradigms are already much-researched areas in 
the Internet of Things and sensor research. These systems are focused on providing individual-level feedback to 
users based on their application focus (Miranda, Viterbo and Bernardini, 2022). For example, Activity-aware 
systems can monitor workers' tasks to suggest productivity improvements. Activity-aware systems are also shown 
to improve motion prediction (Heravi et al., 2024). Behavior can arise from several personal factors (Dávila-
Montero et al., 2021) without the control of the individuals. Behavior-aware systems can recognize unsafe 
practices of an individual or a group and alert a supervisor to potential hazards. Context-aware systems can observe 
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environmental and site conditions and promote well-being by adjusting workloads for workers. Since capturing 
these details with vision alone is extremely difficult, additional sensors or data sources must be in place to expand 
the action understanding into new paradigms. 

These sensors can also feed into different contextual information that prove helpful for action understanding. 
External environmental context from additional input sensors (Ma et al., 2023) is found useful in the reviewed 
literature. Motion sensors and altimeters (Khan et al., 2022), Pressure and electroencephalography sensors (Xiahou 
et al., 2023), and Electrodermal and electroencephalography sensors (Mehmood et al., 2023) are shown to be 
helpful in action understanding. However, with different types of sensors, it is necessary to consider the match 
between applications and sensors, types of devices housing the sensors, positioning and orientation of the sensors, 
sampling rate, and application domain (Khan and Ghani, 2021). Activity recognition methods vary across sensor 
technologies (Ariza-Colpas et al., 2022), but the taxonomical hierarchy from the current work can be utilized. 

5.3 Limitations 
The current work focuses on technology-related issues while developing the taxonomy and has limited discussion 
over social and ethical issues like explainability and fairness, practical issues like installation feasibility and 
serviceability, and compute availability for large-scale or real-time applications pointed out as potential use cases. 
Considering the exponential growth of current automation technologies like language models and robotic agents, 
the potential applications presented can be considered quite limited since we primarily refer to the successful 
applications from past literature while synthesizing the directions. Beyond the algorithmic and technological 
directions, the current work presented no discussion related to system integration and implementation lifecycle. 
Despite several research studies, action understanding is still in a nascent phase. Significant challenges remain to 
be answered in the domain of artificial intelligence, with several higher-order issues in interpretation (Rodríguez 
et al., 2014) as well as lower-order issues arising from the use of 2D RGB cameras (Jegham et al., 2020; Pareek 
and Thakkar, 2021). Future research needs to take up such challenges in developing action-understanding-based 
applications. 

6. CONCLUSION 
In conclusion, worker action understanding is a foundational capability necessary for different technologies 
surrounding the workers, with use-cases in safety, productivity, and many more aspects of the processes. Through 
a double review, literature from computer vision and construction automation domains are combined to 
successfully develop a taxonomy of four levels essential for action understanding. Through the hierarchical 
taxonomy, critical issues like industry-specific action hierarchies and use cases and the semantic gap problem have 
been identified and addressed. The current state of the art is analyzed in the construction automation literature 
based on the taxonomy suggesting the predominant focus on safety and productivity applications, utilization of 
skeletal pose and bounding box as feature vectors, deep learning methods for the action recognition task, and 
utilization of project tasks and workplace environment as contextual factors for activity recognition, again through 
deep learning methods. Two future directions are presented, covering the algorithmic advancements relevant to 
the taxonomy and technology integrations relevant to the schema, which is a part of the presented taxonomy. The 
use of advanced low-level features and models, better learning approaches at mid-level tasks, and additional 
contextual information at high-level tasks are discussed in relation to the taxonomy. The potential applications 
using the vision-language connection, which are increasingly becoming relevant with the large language models 
and subsequent developments, are also discussed in the algorithmic advancements. The technological 
advancements are categorized as on-body devices, near-body agents, and ambient systems, and the potential 
applications are presented. In both directions, technologies that can provide privacy preservation are also 
discussed. The relevance of action understanding to the core values of Construction 5.0 is discussed throughout 
the discussion. 
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