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SUMMARY: Digital building models have become a transformative tool in the management and monitoring of 

assets in the built world. Laser scanners are valuable tools for creating digital building models through Scan-to-

BIM algorithms, capturing the as-built status of the environment in the form of point clouds. However, a main 

challenge persists in the automated creation of digital models from these point clouds, providing both coherent 

geometry, and semantics.  Staircase elements are vital in multilevel buildings, facilitating essential vertical 

movement and serving as crucial emergency evacuation routes. This paper proposes a hybrid bottom-up, top-down 

approach for the automatic creation of digital staircase models using laser scanner point clouds. The workflow 

involves separating staircase points, designing parametric models, and model fitting through optimization. The 

proposed method is validated using eight real laser scanning point clouds containing highly diverse stair 

configurations. The results demonstrate the effectiveness of the proposed method in automatically creating high-

quality digital staircase models with coherent geometry. 

KEYWORDS: Digital model, Laser scanner, Scan-to-BIM, Point cloud, Bottom-up, Top-down approach, Model 

fitting. 
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1. INTRODUCTION 

Digital building models have revolutionized the Architecture, Engineering, Construction, and Operations (AECO) 

domain by providing detailed representations of structures and improving precision and efficiency in management, 

planning, and maintenance  (Duong and Lin, 2022; Elshabshiri et al., 2025). A semantic digital building model 

accurately represents structural components and integrates data to reflect the physical asset's evolving behaviors 

and performance characteristics. This enables advanced resource and facility management, allowing more 

intelligent analysis and decision making (Mahmoodian et al., 2022; Yoon, 2023). In built environments, staircase 

structures serve both utilitarian and architectural functions, facilitating vertical movement and contributing to 

spatial aesthetics. Creating as-built digital staircase models and accurate documentation of their dimensions and 

design streamline maintenance processes, enhance safety inspections, and facilitate renovations. The essential 

prerequisite for creating as-built digital staircase models with rich semantics and coherent geometry is to capture 

precise geometric data  (Eyre et al., 2015). In this context, laser scanning technology, with the swift collection of 

point cloud data and the creation of virtual replicas for indoor and outdoor environments, is recognized as a 

valuable tool for developing methods for creating digital models (Chen et al., 2020). 

Currently, creating high-quality digital models from point cloud data demands significant manual effort and time. 

Despite the significant progress made in the engineering and computer vision algorithms, the automatic creation 

of accurate geometric-semantic digital staircase models from point cloud data remained challenging. The indoor 

environment is inherently associated with challenges such as complex space layouts, clutter, and obstructions. This 

requires developing and utilizing advanced point cloud processing techniques and 3D scene understanding 

methodologies to interpret raw point cloud data and separate staircase points (Mehranfar et al., 2024). Moreover, 

the inherent complexity of staircase configurations and the intricacies involved in accurately capturing their spatial 

dimensions necessitate a comprehensive understanding of computational geometry principles and advanced 

algorithms to effectively process and interpret the point cloud data, estimate the geometric parameters, and create 

a consistent digital model. 

1.1 Digital staircase modeling for built environment digitalization 

Staircases are one of the critical elements in the built environment, facilitating vertical movement, connecting 

spaces, and ensuring accessibility across building floors. In this regard, the digitalization of staircases is essential 

for several reasons: 

• Safety and Compliance: staircases must comply with safety standards and building codes. Digital models 

enable the evaluation of these structures for compliance with regulations, including accessibility 

standards. 

• Replanning: digital staircase models provide documentation of existing conditions, enabling effective 

planning for maintenance or renovation projects. 

• Integration in smart built environment digital model: as part of a larger digital model, staircases contribute 

to the overall analysis of built environment performance, including digital model integrity, user flow 

simulations, and emergency evacuation modeling. 

Despite their structural and functional significance, staircases often pose significant challenges in the digitalization 

process due to their complex geometries and diverse designs. Traditional manual modeling from point clouds is 

labor-intensive and error-prone, especially for intricate geometries like spiral or irregular staircases. In the Scan-

to-BIM domain, automated staircase digitalization plays a pivotal role. The automatic generation of digital 

staircase models from point clouds provides a robust solution, enabling seamless integration of these critical 

structures into Building Information Modeling (BIM) workflows. Automation enhances the accuracy and 

efficiency of built environment digitalization, offering: 

• Time and cost savings: developing an automated method for creating digital staircase models using the 

laser scanner point cloud reduces the labor and expertise required for manual modeling. 

• Standardization: using standard descriptors within the creation of the digital staircase models ensures 

interoperability with existing BIM systems and compliance with established BIM standards such as 

Industry Foundation Classes (IFC). 
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1.2 Contribution 

In this paper, we propose a hybrid bottom-up, top-down method for the automated creation of digital staircase 

models from dense laser scanner point cloud data. The proposed method leverages domain knowledge in designing 

and constructing staircases within indoor environments to generate parametric digital models with coherent 

geometry. The main contribution lies in utilizing domain knowledge to extract inclined staircase points and 

formulate parametric staircase models with various configurations and designs, subsequently fitting the coarse 

models to point cloud data to accurately estimate the real parameter values. Using the parametric modeling 

approach, the proposed algorithm can create dynamic digital models, allowing manipulation by adjusting 

parameter values using predefined constraints. This capability provides a foundation for frequent geometric 

updates throughout the operational lifespan of a facility and for planning and management purposes. The main 

contributions of our research are the following: 

• Automated hybrid bottom-up, top-down approach for staircase point separation and digital model 

reconstruction. 

• Development of an end-to-end bottom-up framework for separating staircase points with rectangular and 

non-rectangular shape configurations. 

• Utilization of domain engineering knowledge to create a library of parametric staircase models. 

• Creation of digital staircase models through parametric model fitting. 

The present paper is structured as follows: Section 2 presents a literature review of the methods developed for 

creating digital staircase models using point cloud data. Section 3 details the proposed methodology from a 

theoretical point of view. Section 4 provides several case studies to demonstrate the feasibility and effectiveness 

of the proposed approach. Finally, Section 5 examines the key findings and explores potential avenues for future 

research. 

2. BACKGROUND 

2.1 Creation of digital building models 

Over the past decade, BIM and the creation of digital building models from point cloud data, a process known as 

Scan-to-BIM, have become highly sought after in the Architecture, Engineering, Construction, and Operations 

(AECO) industries (Turkan et al., 2024; Madubuike and Anumba, 2022).  These digital models play a vital role in 

efficient building operations, providing comprehensive information that significantly aids in maintenance, repairs, 

and overall facility management (Austin et al., 2020; Borrmann et al., 2018; Choi et al., 2024).  

Laser scanners and photogrammetry technologies are the most modern and efficient three-dimensional (3D) data 

capturing tools, enabling the acquisition of precise geometric and semantic information essential for creating 

digital building models. However, the raw building point clouds are generally complex and unstructured. This 

necessitates further processing steps and deriving higher-level contextual information to support scene 

understanding and automate the geometry provision tasks (Bassier and Vergauwen, 2020). In the realm of computer 

vision and computational modeling, extensive research has been conducted on the digitization of the built 

environment. Several authors have developed various methodologies to automatically process point cloud data and 

generate digital building models (Bosch´e et al., 2015). Within this context, most of the developed methods rely 

on data-driven, model-driven, and Artificial Intelligence (AI)-based approaches (Mehranfar et al., 2024). 

In the data-driven methods, here denoted as bottom-up methods, the point cloud interpretation begins by labeling 

several random seed points. This process gradually extends to all points, systematically incorporating additional 

data points until a higher-level representation of the surface, volume, or model is achieved (Xiong et al., 2023; 

Kong et al.. 2023). These higher levels are commonly represented by meshes (Marton et al., 2009), voxels (Vo et 

al., 2015), and planes (Poux et al., 2022; Gao et al., 2024). Normal vectors, curvatures, and RGB values are typical 

features used in common data-driven methods, such as Region Growing (RG), Random Sample Consensus 

(RANSAC), model-based, and edge-based approaches, to differentiate between geometrical and spectral details of 

various surfaces (Nikoohemat et al., 2020). The data-driven approach ensures that the model is comprehensive and 

detailed, effectively capturing the intricacies of the building's structure. This results in digital building models that 

closely resemble the real world, providing a highly accurate representation. However, these approaches are 
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particularly sensitive to data quality, especially with regard to occlusions. Their performance may decline when 

faced with challenges such as clutter or noise. 

The model-driven approach, here also denoted as top-down methods, uses predefined geometry, relationships, and 

constraints in point cloud processing and digital building model creation to ensure the geometric coherence of the 

resulting model (Tran and Khoshelham, 2020; Adan et al., 2023). This approach begins by segmenting a point 

cloud into compositional sub-groups based on the similarities and dissimilarities of various elements. Using a top-

down strategy, perceptions begin at the highest level of abstraction and move toward finer granularity. This 

systematic progression helps maintain a structured and coherent model throughout the reconstruction process 

(Ochmann et al., 2019). However, the major challenge of this approach lies in accurately defining the fundamental 

geometric relationships and constraints that are crucial to achieving optimal results. 

In contrast to conventional bottom-up and top-down data-driven approaches, AI models can learn various 

characteristics of different datasets without the need for manual selection and fine-tuning of decisive features (Pan 

et al., 2023). The AI networks for point cloud processing utilize a set of training data to learn the rules for assigning 

meaningful labels to points (Maru et al., 2023). This task can be divided into semantic segmentation, classification, 

and instance segmentation. Semantic segmentation involves assigning a label to each point in the point cloud, 

classifying each point based on its context (Xue et al., 2019). Classification refers to identifying and labeling the 

entire point cloud or large sections of it as a whole (Park and Cho, 2021). Instance segmentation goes a step further 

by not only labeling points but also distinguishing between different instances of the same element class within 

the point cloud (Maximilian et al., 2023). However, separating and identifying building structural elements within 

the point cloud requires an extensive and diverse dataset to train the models effectively. This dataset must cover 

various building types, structures, and conditions to ensure the model's robustness and accuracy. 

2.2 Staircase points separation and modeling 

Despite significant advancements in automated methods for creating digital building models, research has 

primarily focused on main structural elements (e.g., wall, ceiling, floor, and column) and openings (door and 

window). In contrast, the detection of staircases within point clouds and their subsequent digital modeling has 

received less attention in the realms of computer vision and digital twinning. Staircases are designed with various 

configurations, shapes and sizes, ranging from straight flights to spiral and helical forms, each with unique 

geometrical characteristics. This variability is compounded by architectural details such as handrails, balustrades, 

and landings, which add further complexity. These factors make the process of detecting staircase points 

challenging and hinder the development of a generalized method for creating staircase geometry models. 

In the limited body of conducted research, Schmittwilken et al. proposed a low-level module based on the 

RANSAC (Random sample consensus) algorithm to generate planar polygonal patches for building facades and 

the surrounding ground (Schmittwilken et al., 2009). The proposed method employs local neighborhood features 

and attribute grammar (e.g., object partonomy and observable geometric constraints) through Conditional Random 

Fields (CRFs) to classify these patches into facade, window, door, and staircase categories. Schmittwilken and 

Plümer proposed a top-down approach for reconstructing triple-run staircases from point cloud data. The method 

utilizes an attribute grammar formulation based on geometric dependencies for designing 3D models and 

subsequently employs the RANSAC paradigm for model selection and extraction of geometric parameters of each 

3D object (Schmittwilken and Plumer, 2009). Oßwald et al. developed a plane segmentation method to detect 

vertical and horizontal planes and extract their geometric parameters for reconstructing 3D models of stairs using 

point clouds captured by humanoid robots (Oßwald et al., 2011). 

Sanchez and Zakhor proposed a method that uses principal component analysis (PCA) to separate inclined planes 

of staircases. The method then uses the RANSAC algorithm to extract six parameters (number of steps, reference 

point, depth of the tread, riser height, width of the step and azimuth) to create a 3D model of stairs (Sanchez and 

Zakhor, 2012). Sinha et al. presented a data-driven approach that uses a minimal 3D map representation and 

calculates step-like local features using point neighborhoods to detect stairs (Sinha et al., 2014). 

Perez-Yus et al. proposed a stair detection and modeling method that uses the depth-sensing capabilities of RGB-

D cameras to segment and classify various elements in the scene. The proposed pipeline utilizes the Region-

Growing strategy and common plane fitting algorithms, including the Hough transform and RANSAC, to segment 
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the scene and extract information about the location, orientation and number of steps of the staircase (Perez-Yus 

et al., 2015). 

Westfechtel et al. proposed a plane-based staircase detection method that utilizes a 3D graph concept to identify 

staircase structures within a point cloud. The method employs multiple ways to initialize the graph, enabling robust 

detection of staircases even if parts of the staircases are occluded (Westfechtel et al., 2018). Li et al. proposed a 

step plane detection method for the 3D reconstruction of staircase structures. The algorithm initially employs the 

NDT-RANSAC plane-filter and Region Growing plane-extraction methods to segment large-area planes. Next, 

the stair parameters (e.g., length, width, height, and number of steps) are extracted using an arithmetic progression 

calculation in the stair area (Li et al., 2018). 

Yang et al. proposed a bottom-up hierarchical semantic classification method. This method uses semantic 

definitions, such as the planarity of the wall, ceiling, and floor surfaces, to establish relationships between the 

staircase connection spaces and the indoor spaces. For coarse segmentation of staircase points, the height histogram 

of points identifies the void regions between the planar surfaces of solid slabs and the connection space with stairs. 

The connected component algorithm then clusters distinct pieces, planes, and staircase clusters. Finally, the α-

shaped algorithm constructs the surface model for each step of the staircase (Yang et al., 2019). 

In the realm of utilizing AI methods for scene understanding and separation of staircase points, Chun et al. 

proposed an automatic pipeline to create digital staircase models from the point cloud using an AI method. The 

proposed pipeline includes the predictor's training procedure and the entire staircase detection and modeling 

process, which specifically uses the PointNet++ architecture as the backbone network for the instance 

segmentation task (Chun et al., 2024). 

 

Figure 1: The proposed hybrid bottom-up, top-down workflow for creating digital staircase models using point 

cloud. 

2.3 Research gap 

Over the past decade, the creation of semantic digital building models and the digitization of built world assets has 

become feasible using multi-sensor remote sensing technologies. Raw point cloud data can be transformed into 

usable information for human and machine interpretation using advanced methodologies and techniques in 

computer vision and computational modeling. However, this process remains particularly challenging for staircase 

structures due to their diverse shapes and designs. In addition, unfavorable sensor positions often exacerbate these 

difficulties, leading to significant portions of the staircase being occluded or sparsely captured. 
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The point cloud data are unstructured and contain numerous objects and various planes. Hence, the data-driven 

methods developed for staircase detection and modeling still lack optimal performance. These methods result in 

creating digital models with inconsistent geometry and frequently necessitate extensive manual tuning of 

parameters to achieve accurate staircase detection. The model-driven approaches developed for creating digital 

staircase models also necessitate exploring numerous existing rules and constraints to formulate the staircase 

geometric model with high logical consistency. Achieving accurate digital representations requires meticulous 

consideration of these factors to effectively capture the nuanced complexities of real-world staircases. However, 

this task is particularly challenging due to the wide variety of staircase designs and configurations in diverse built 

environments. 

Although the substantial growth of AI and machine learning (ML) concepts has yielded promising results in 

semantic understanding tasks, particularly in separating the main structural elements within point clouds, the 

efficiency of AI methods heavily relies on the diversity and completeness of training datasets. In this regard, 

collecting a large amount of annotated point cloud data for buildings, including staircase structures that are 

sufficiently diverse and complete, can be costly and time-consuming. 

In this research paper, we aim to leverage the advantages of bottom-up and top-down approaches to create highly 

consistent digital staircase models with various geometric shapes and configurations. The objective is to utilize 

existing domain knowledge in design and construction to develop an automated framework for separation, design, 

and the parametric model fitting of staircase structures from point cloud data. Further insights into the proposed 

methodology will be provided in the following sections. 

3. PROPOSED METHOD 

As shown in Figure 1, the proposed hybrid bottom-up, top-down workflow for the automatic creation of digital 

staircase models using point clouds consists of three major steps: 1) staircase point separation, 2) design of digital 

parametric staircase models, and 3) model fitting through optimization. The details of each step are provided in 

the following subsections. 

3.1 Staircase points separation 

Staircase structures in the built environment are designed with specific inclination angles, influenced by factors 

such as building codes, architectural styles, and their intended function. Based on domain knowledge, typical 

staircases are designed with an incline between 30 and 37 degrees, aligning with recognized standards to ensure 

both safety and usability (International Building Code, 2021). Specifically, occupational safety standards 

recommend an angle of inclination between 30 and 50 degrees for fixed industrial stairs, with a preferred range of 

30 to 35 degrees for indoor staircase environments (Occupational Safety and Health Administration, 2023). 

In the proposed method, the Normal_Z  feature is utilized to distinguish inclined staircase points from other 

building elements such as vertically oriented walls and horizontally oriented ceilings and floors within the point 

cloud (Figure 2b). To compute the normal vector values for a point in the point cloud space, the covariance matrix 

and the eigenvector values of its nearest neighboring points are calculated and analyzed (Chehata et al., 2009). 

This process involves determining the covariance matrix c for a given point p using Equation 1: 

       𝑐 =
1

𝑘
∑ (𝑝𝑖 − 𝑝̅). (𝑝𝑖 − 𝑝̅)𝑇𝑘

𝑖=1
        (1) 

where k denotes the number of neighboring points within a sphere of radius 25 cm, and pi and p refer to the 3D 

coordinates of the points under consideration. Furthermore, eigenvalues and eigenvectors are determined using 

Equation 2: 

                                                                      𝑐. 𝑣⃗𝑗 = 𝜆𝑗 . 𝑣⃗𝑗 , 𝑗 ∈ {0,1,2}                                   (2) 

where λ and  𝑣⃗𝑗  denote the eigenvalues and eigenvectors, respectively. To determine the direction of the normal 

vector for each 3D point within the point cloud space, a predefined viewpoint is necessary. In this regard, the +Z 

axis serves as the reference, establishing the orientation of surfaces relative to this downward direction. 

As can be seen in Figure 2c, the points corresponding to perfectly horizontal surfaces display a Normal_Z value 

of zero, while the points on vertical surfaces show the highest Normal_Z value, which is one. In this regard, the 
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inclination angle of the staircase surfaces to the horizontal plane (θ) can be related to the Normal_Z using Equation 

3: 

               𝑁𝑜𝑟𝑚𝑎𝑙_𝑍 = 𝐶𝑜𝑠(𝜃)                              (3) 

According to domain knowledge and recommended inclination angles for designing staircase structures, points 

with Normal_Z values ranging from "0.79" to "0.99" are selected. This selects points on the surfaces with an 

inclination angle of up to 30 degrees. (Figure 2d). Although the method effectively separates inclined staircase 

points, the output may also include edge points of walls, ceilings, and floor elements represented as lines, noise, 

and clutter. To mitigate this issue, the Linearity feature is used to isolate only the staircase surface points (Figure 

2d). The Linearity feature is computed for each point within a spherical neighborhood of 25 cm radius using 

Equation 4: 

    𝐿𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦 =
𝜆1−𝜆2

𝜆1
                     (4) 

According to the histogram of Linearity values, edge points, noise, and clutter consistently exhibit higher Linearity 

values compared to the points of inclined staircase surfaces. In this regard, the mean value of the Linearity feature 

distribution (μ) is calculated, and points with Linearity values lower than μ are extracted as staircase points (Figure 

2f). This selection includes points corresponding to staircase steps, risers, treads, and parts of railings (Figure 2g). 

Finally, to segment staircase instances within the environment into individual segments, the Connected Component 

Segmentation (CCS) algorithm is utilized (Figure 2h). This method involves setting a distance threshold and a 

minimum number of points per segment, thus identifying all connected points within the threshold as separate 

segments (Trevor et al., 2013). The approach effectively identifies and removes noise and outliers, typically 

manifesting as small or isolated segments in indoor scenes. 

3.2 Design of digital parametric staircase models 

3.2.1 Interpretation of staircase configuration 

The architectural design of staircases typically features a series of stair flows and often includes two or more 

landing treads. The configuration and structural form of the staircases are fundamentally shaped by considerations 

such as the movement of people entering and leaving the space and the strategic positioning of the landing treads. 

In this context, the central parts of the staircase segments are analyzed to quantify the number of landing treads 

and determine the stair flows within the environment. As illustrated in Figure 3a, the extracted staircase segments 

lack points corresponding to the horizontal planes of the landing treads due to the filtering process described in 

Section 3.1. However, this data gap helps interpret the overall configuration of the staircase. To analyze the 

configuration of stairs, a 2D bounding box with a grid cell size of d is initially fitted to the stairs points in the X-

Y plane. Subsequently, for any points present within the grid cells, the height value is replaced by the maximum 

height of the points within the grid cell (Figure 3b). This process eliminates the influence of noise points and 

ignores the uncommon inclined planes beneath the steps of the stairs during the model reconstruction step (Figure 

3c). To detect the orientation of the staircase flows within the environment, the 3D density feature is computed for 

each point within a spherical neighborhood of a radius of 25 cm, and the central parts of the staircase are examined 

(Figure 3e). As illustrated in Figure 3f, this analysis reveals that the extracted staircase element comprises three 

flows and two landing treads, which run from left to right, top to bottom, and right to left, respectively. 

3.2.2 Library of the parametric digital staircase models 

The primary differences between the staircase instances lie in the number and size of the main components (such 

as steps, width, length, depth of steps, and landing treads) and the specific designs for flow rotation and landing 

tread placement. Specifically, four possible flow orientations are considered, labeled with numerical identifiers 1, 

2, 3, and 4. These identifiers correspond to left-to-right, right-to-left, bottom-to-top, and top-to-bottom 

orientations, respectively (Figure 4a). The exact value of the identifiers indicates the flow of the stairs, the number 

of landing treads, and the placement of each landing tread. For instance, the primary configuration of the extracted 

staircase in Section 3.2.1 is represented by the array "142" (Figure 4b). This indicates that the staircase consists of 

two landing treads and three stair flows, positioned successively from left to right, top to bottom, and right to left. 

Accordingly, a library of parametric staircase models is generated based on the number of stair flows, landing 

treads, and their orientation within the environment. The library has multiple parametric prototype models for 
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staircase types up to two landing treads. These prototypes can be systematically extended to more comprehensive 

models with three or more landing treads. Figure 5 shows a subset of this library. 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

  

(g) (h) 

Figure 2: Staircase points separation: (a) original point cloud, (b) Normal_Z  feature calculation, (c) histogram 

of the Normal_Z  values, (d) filtering the points with the Normal_Z values between 0.79 to 0.99 (slopes ranging 

from 0.01% to 0.37%), (e) Linearity feature calculation, (f) histogram of the Linearity values distribution, (g) filter 

edges, noise, and unwanted furniture points using μ of the Linearity values, (h) separation of the individual 

staircase segments using CCS algorithm. 
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(a) (b) (c) 

   
(e) (f) (g) 

Figure 3: Interpretation of staircase configuration: (a) extracted staircase points, (b) the staircase points projected 

on Y-Z plan, (c) grid-based noise filtering and removing the uncommon inclined planes beneath the stair steps, (d) 

the staircase points projected on X-Y plan, (e) 3D point density feature calculation, (f) the detected stair flows. 

   
(a) (b) (c) 

Figure 4: Determining the type of staircase based on the number of stair flows and the number of landing treads: 

(a) possible rotation orientations, (b) the configuration of the parametric model for the staircase instance with two 

landing treads and three stair flows with ID array of [1 4 2], and (c) design of the parameterized digital staircase 

model. 

3.3 Model fitting through optimization 

3.3.1 The parameters of the digital staircase model 

The staircase structures typically comprise distinct components with unique values and dimensional attributes. 

Figure 6 shows an overview of the main components of a staircase structure. With laser scanning technology, only 

the visible surfaces of staircase components can be captured, not the parts that are obscured or internal. Therefore, 

the geometry provision and model reconstruction step focus on the visible parts. These include the stair tread (the 

horizontal part of the step), the stair riser (the vertical part between each tread), the landing treads (the flat platforms 

at the top or bottom of a staircase or between flights of stairs), the handrails (the rail for support) and the outer 

stringer (the structural component on the side of the staircase). 

Table 1 presents the parameters required to create a digital staircase model using the proposed approach. These 

parameters are essential for accurately replicating the staircase structure in a digital format, ensuring that all critical 

dimensions and characteristics are captured for analysis or reconstruction purposes. 
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(ID=1) (ID=2) (ID=3) (ID=4) 

    
(ID=11) (ID=24) (ID=44) (ID=13) 

    
(ID=231) (ID=142) (ID=232) (ID=424) 

Figure 5: Subset of the library of parametric digital staircase models. 

 

Figure 6: The components of a staircase with one Landing tread. 

In other cases, such as curved, L-shaped with wider run, and spiral stairs, in addition to the parameters included in 

Table 1, the parameters related to the coefficients of the curvature equations of staircase structures are also added 

as unknown parameters in the model reconstruction process (Figure 7). These coefficients are specific to the 

mathematical equations of polynomial functions of the 2nd degree, spiral, and exponential functions, or circle 

equations. In this regard, the number of unknown parameters will vary depending on the mathematical function 

used and the specific configuration of the staircase. By incorporating these additional parameters, the model can 

more accurately represent the unique geometries of curved and spiral staircases, leading to a more comprehensive 

digital reconstruction. 
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Table 1: The parameters required for the creation of a digital staircase model with a single landing tread 

(Manhattan-world structure). 

Parameters  

Number of steps n 

Height of steps h 

Width of steps w 

Depth of steps d 

Length of the landing tread L 

Centre point of the starting step Xc, Yc, Zc 

 

 

 

 

    

Polynomial of 

degree 2 
Exponential curve Circular curve Spline curve 

Figure 7: Representation of a non-rectangular staircase structures using various mathematical methods and 

equations. 

 

𝑦 = 𝑎𝑥2 + 𝑏𝑥 + 𝑐                                (5) 

        𝑦 = 𝑎𝑒𝑏𝑥                               (6) 

      (𝑥 − 𝑥𝑐)2 + (𝑦 − 𝑦𝑐 )2 = 𝑟2                                (7) 

𝑆0(𝑥) = 𝑎0 + 𝑏0(𝑥 − 𝑥0) + 𝑐0(𝑥 − 𝑥0)2 + 𝑑0(𝑥 − 𝑥0)3               (8) 

𝑆1(𝑥) = 𝑎1 + 𝑏1(𝑥 − 𝑥1) + 𝑐1(𝑥 − 𝑥1)2 + 𝑑1(𝑥 − 𝑥1)3 

𝑆2(𝑥) = 𝑎2 + 𝑏2(𝑥 − 𝑥0) + 𝑐2(𝑥 − 𝑥0)2 + 𝑑2(𝑥 − 𝑥0)3 

3.3.2 Objective function definition 

In the designed parametric staircase models using the proposed approach, specific rules and restrictions are 

established and applied to ensure that any change in the internal parameters of a component impacts all related 

elements (Figure 8). These rules and constraints are based on the principles of building design and construction, 

aiming to optimize the structure's functionality and aesthetics. Despite the consistent semantic topology, the 

designed parametric model might exhibit low geometric accuracy concerning the element's property values and 

the position of the entire staircase structure within the environment. In this regard, the selected raw parametric 

model is further refined by fitting to the point cloud data using the Nelder-Mead optimization method to extract 

optimal values for the model's parameters (Nelder and Mead, 1965). 

The required model-to-point fitting objective function for the optimization process is defined by Equation 9: 

𝑂𝑏𝑗 = 𝑚𝑖𝑛(𝛼 × 𝐺 +  𝛽 × 𝐹 )                                 (9) 
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(a) (b) (c) (d) 

Figure 8: Designing the parameterized digital staircase model; the process of changing the parameter values. 

The term G refers to the distance between the points and the planes of the entire model, which is a critical factor 

for the vertical alignment of the parametric model toward the staircase points. This term is defined by Equation 

10: 

        𝐺 = ∑ |𝑝𝑖 − 𝑝𝑙𝑎𝑛𝑒𝑗|
𝑛,𝑘

𝑖=1,𝑗=1
                   (10) 

where the 𝑝𝑖  is the staircase point i, 𝑝𝑙𝑎𝑛𝑒𝑗 is the jth plane of the parametric model. 

Also, the term F is related to the number of steps present within each stair flow connecting the landing treads, as 

well as the placement of the parametric model planes on the staircase points on the X-Y plane. This term is defined 

by Equation 11: 

       𝐹 =  |𝑝𝑠𝑡𝑎𝑖𝑟𝑠 − ∑ 𝑝𝑖𝑛
𝑠𝑡𝑒𝑝𝑠
𝑖=1 |                   (11) 

where 𝑝𝑠𝑡𝑎𝑖𝑟𝑠 is the number of staircase points and 𝑝𝑖𝑛 is the number of staircase points inside the step box of the 

staircase model. 

The terms G and F represent values from two different aspects, with a significant difference in their values. To 

balance the impact of both terms on the overall objective function, the α and β coefficients are considered. These 

coefficients are also optimized to ensure that the influences of G and F terms are balanced in the final objective 

function. In addition, creating excessive steps during the optimization process may not change the overall distance 

value between the steps and the model planes. To address this problem, a penalty factor is incorporated into the 

objective function. Specifically, if an additional step does not encompass any points within the 2D X-Y plane, a 

penalty value of 10000 is appended to the final value of G term: 

if 𝑝𝑖𝑛 == 0   𝑡ℎ𝑒𝑛    𝑂𝑏𝑗 = (𝛼 × 𝐺 +  𝛽 × 𝐹 ) + 10000                   (12) 

As mentioned in Section 3.3.1, a non-rectangular staircase structure can also be created by a mathematical method 

and equation (e.g., polynomial of degree 2, exponential curve, and circular equation). In this regard, the exact type 

of staircase is selected after the model fitting process and the comparison between the overall objective function 

values of the parametric models being tested. 

  

(a) (b) 

Figure 9: Fitting parametric staircase model to points; (a) Vertical alignment of the parametric model toward the 

staircase points (term G), (b) placement of the parametric model planes on the staircase points (term F). 
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4. EXPERIMENTAL RESULTS 

4.1 Case study 

In this paper, eight different staircase instances are considered to evaluate the performance of the proposed method 

for the automatic creation of digital staircase models from dense laser scan point clouds (Figures 10-11). These 

datasets are from five different buildings located at Technical University of Munich and Oregon State University 

campuses and include staircases with both rectangular and non-rectangular configurations. A detailed summary of 

the pertinent properties of the input data, including the dimensional information and the number of points, is 

provided in Table 2. The proposed pipeline is implemented in Python and MATLAB on a desktop computer (11th 

Gen Intel(R) Core(TM) i7-1165G7, with 16.0 GB of memory). The evaluation metrics considered various aspects 

of the proposed method, including accuracy, efficiency, and scalability regarding the geometry and semantics. This 

comprehensive analysis provides insights into the practical implementation of the proposed method for the 

automatic creation of digital staircase models in the built environment. 

  
OSU Peavy Hall staircase instance (1) TUM Floor 2 staircase instance (1) 

  
TUM Floor 2 staircase instance (3) TUM Floor 4 staircase instance (1) 

Figure 10: The results of the staircase points separation on the test data using the proposed method (rectangular 

configuration). 

  

OSU Peavy Hall staircase instance (1) TUM Floor 2 staircase instance (1) 

  

TUM Floor 2 staircase instance (3) TUM Floor 4 staircase instance (1) 

Figure 11: The results of the staircase points separation on the test data using the proposed method (non-

rectangular configuration). 
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Table 2: Overview of data used in this research. 

Dataset Length (m) Width (m) Number of points Number of staircase 

OSU Peavy Hall 6.66 3.25 612.530 1 

TUM Floor E 12.09 5.12 113.112 1 

TUM Floor 2 16.31 46.00 1.057.295 3 

TUM Floor 4 18.26 32.88 13.239.024 1 

TUM Entrance 19.58 34.94 10.027.980 2 

4.2 Implementation 

This paper presents an automated pipeline for creating parameterized digital staircase models from raw laser scan 

point clouds. The proposed method does not require point cloud features, such as intensity, depth, or RGB values, 

as input. It utilizes XYZ values only for separating inclined staircase points and creating a subsequent parametric 

digital staircase model. Additionally, to improve processing efficiency, the input point clouds are initially 

uniformly subsampled using a grid size of 2.5 cm. This reduces the processing time for calculating Normal_Z 

values and Linearity features for the separation of inclined staircase points. Thus, the proposed method is well-

suited for effectively processing data with similar point densities. 

According to the proposed pipeline, the Normal_Z feature is first calculated for any point within the point cloud, 

considering a sphere neighborhood with a radius of 0.25 cm. The points belonging to the inclined surface with 

Normal_Z values between 0.79 and 0.99 are then separated. As mentioned in Section 3.1, the results include noise 

and clutter points. To address this, the Linearity feature is calculated for each point, considering again a sphere 

neighborhood with a radius of 0.25 cm, to detect noise and boundary points between the ceiling, floor, and wall 

elements. Finally, the CCS method is employed to segment the points belonging to individual staircase instances. 

In the proposed pipeline, the maximum neighborhood distance for the CCS method is the only parameter that can 

affect the separation of inclined staircase points and the subsequent digital model reconstruction process, 

specifically in the creation of the digital model for the landing tread elements. Setting a default value for this 

parameter depends on the configuration of the staircases and the distance between the landing treads. During the 

implementation of the algorithm for the test data, the maximum neighborhood distance value is set to 0.5 m and 

the minimum number of points to segment each staircase instance is specified as 2500. These parameter values are 

selected experimentally, and their effect on the results is investigated in Section 4.3.1.    

After separating the staircase instances, the central parts of the staircase points are examined using the 3D point 

density feature. The configuration design for each staircase is then determined. Subsequently, the corresponding 

digital parametric models are selected from the library of parametric prototype models using the configuration ID 

arrays introduced in section 3.2.2. These models integrate various parameters (such as the number of steps between 

landing treads and the dimensions of the geometric properties (including width, depth, and height) and consider 

contextual relations between components. This preserves the semantic relationships between the components of 

the staircase and ensures geometric consistency. To extract optimal parameter values for the digital models and 

make them resemble real-world structures, the selected digital parametric models are fitted to the extracted 

staircase points using the optimization process described in the Section 3.3. Table 3 presents the values of the 

optimization parameters used for creating the parameterized staircase models. 

Table 3: The values of parameters used for the optimization process. 

 Parameters 

Problem Tolerance-X Tolerance-Obj Iterations 

Volumetric digital model fitting 0.0001 0.0001 300 

4.3 Results and Evaluation 

4.3.1 Experimental results on staircase points separation 

To assess the effectiveness of the proposed method for accurate separation of the staircase points, the manually 

annotated ground truth data is compared with the results of the staircase point separation. For each dataset, the 

standard quality metrics of recall, precision, and F-score for the extraction of staircase points from other building 

elements are calculated using equations presented in 13-15 where TP, TN, FP, and FN are True Positive, True 

Negative, False Positive, and False Negative, respectively. 



 

 

 
ITcon Vol. 30 (2025), Mehranfar et al., pg. 1003 

    𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                     (13) 

    𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                     (14) 

    𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                    (15) 

According to the results reported in Table 4, the overall accuracy value for separating staircase points from other 

elements is about 93\%. This underscores the performance of the proposed pipeline for the automatic separation 

of staircase points with any design configuration, including those with rectangular and non-rectangular types. 

However, the overall recall value for separating the staircase points from other elements is about 79\%. This value 

is influenced by multiple factors. Primarily, the filtering process that utilizes the Normal_Z value to separate 

inclined staircase points excludes the points corresponding to the landing tread planes (Figure 12b). This exclusion 

substantially impacts the accuracy. Additionally, the proposed method does not possess the capability to detect and 

separate railing points. These limitations collectively contribute to the relatively low overall accuracy value. 

Among all datasets, OSU Peavy Hall data has achieved the lowest recall value for separating staircase points. This 

is likely due to utilizing stationary 3D scanners to collect data, which result in occlusions in step treads and riser 

parts of the captured point cloud. This problem can introduce errors in calculating the geometric features, 

subsequently resulting in errors in separating and filtering inclined staircase points (Figure 13c). 

Table 4: The results of staircase points separation on building datasets. 

 Precision Recall F1-Score Accuracy 

Dataset other stair other stair other stair  

OSU Peavy Hall 0.82 0.09 0.94 0.02 0.88 0.04 0.79 

TUM Floor E 0.97 0.83 0.98 0.71 0.98 0.77 0.96 

TUM Floor 2 0.96 0.86 0.99 0.55 0.98 0.67 0.96 

TUM Floor 4 0.99 0.92 0.99 0.81 0.99 0.87 0.99 

TUM Entrance 0.99 0.86 0.99 0.78 0.99 0.86 0.99 

Overall 0.94 0.71 0.97 0.62 0.96 0.64 0.93 

  

(a) (b) 

Figure 12: The result of staircase point separation for TUM Floor 4 data: (a) the ground truth for staircase points 

separation, (b) the result of staircase points separation using the proposed method. 

As mentioned in Section 3.1, the maximum neighborhood distance in the CCS method plays a critical role in 

distinguishing individual staircase instances. For the TUM Floor 2 staircase instance (2), the chosen value for this 

parameter led to errors in segmenting the entire staircase. Specifically, setting the maximum neighborhood distance 

to 0.5 m resulted in over-segmentation  treating each stair flow as a separate staircase (Figure 14a). In general, the 

significance of this parameter depends on the staircase configuration, as well as the position and dimensions of the 

landing treads. 

https://de.mathworks.com/help/matlab/ref/double.plus.html
https://de.mathworks.com/help/matlab/ref/double.plus.html
https://de.mathworks.com/help/matlab/ref/double.plus.html
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(a) (b) 

  

(c) (d) 

Figure 13: Error in separating staircase points in OSU Peavy Hall data: (a) the raw point cloud data, (b) the 

structure of the captured point cloud (including occlusions), (c) the result of the separated staircase points from 

side view, (d) the result of the separated staircase points from top view. 

   

(a) (b) (c) 

Figure 14: The effect of the maximum neighborhood distance parameter value on the result of digital staircase 

model creation for TUM Floor 2 staircase instance (2): (a) separated staircase instances, (b) the result of digital 

staircase model creation using the proposed method, and (c) correct placement of the landing tread elements in 

the reconstructed digital staircase model. 

4.3.2 Experimental results on digital staircase creation 

Figures 15-16 illustrate the result of the model fitting process and the creation of parametric digital staircase models 

using point cloud data. As discussed in Section 3.3, the selection of the appropriate configuration for the parametric 

digital model of non-rectangular staircase structures is based on comparing objective function values obtained by 

testing various mathematical equations. Figure 17 shows the process of fitting various parametric digital models 

and the corresponding objective function values for the TUM Floor E staircase instance (1). In this regard, fitting 

the parametric digital staircase model with a spline curve configuration has achieved the lowest overall objective 

function value compared to other tested configurations of the parametric digital staircase model. Thus, the 

parametric digital staircase model with a spline curve configuration is considered the proper model for representing 

the TUM Floor E staircase instance. 
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OSU Peavy Hall instance (1) 

  

TUM Floor 2 staircase instance (1) 

  

TUM Floor 2 staircase instance (3) 

  

TUM Floor 4 staircase instance (1) 

Figure 15: The reconstructed digital staircase models for the test data using the proposed method (rectangular 

configuration). 

 

To evaluate the performance of the proposed approach for creating digital staircase models, a quantitative 

comparison is made between the parameters of the components (e.g., number of steps, dimensional values, etc.) in 

the reference models and those in the reconstructed digital models. The standard metric of mean error for each 

dataset is presented in Table 5. In addition, for each dataset the distance between the model and the points of the 

staircase is measured. The value indicates the closeness of the reconstructed model to the captured point cloud. 

The overall mean accuracy of about 5 cm in the estimation of dimensional parameters and 87\% relative accuracy 

in estimating the number of steps demonstrate the effectiveness of the proposed method for the automatic creation 

of digital staircase models in the built environment. 
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TUM Floor E staircase instance (1) 

  

TUM Floor 2 staircase instance (2) 

  

TUM Entrance staircase instance (1) 

  

TUM Entrance staircase instance (2) 

Figure 16: The reconstructed digital staircase models for the test data using the proposed method (non-rectangular 

configuration). 

 

Despite the low recall value for separating the points of the stairs in the OSU Peavy Hall data, the proposed method 

estimated the parameters of the corresponding digital staircase model with 10 cm precision. Also, considering the 

significant presence of clutter and obstruction in the TUM Entrance data, the proposed parametric modeling 

approach created a parametric digital staircase model with consistent geometry. This underscores the capabilities 

and advantages of the proposed top-down approach, which utilizes the parametric modeling process to create 

detailed digital models with consistent geometry. 
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(a) (b) (c) 

 

Figure 17: Fitting various parametric digital models to the TUM Floor E staircase instance (1) points, (a) spline 

curve configuration, (b) circular curve configuration, (c) rectangular curve configuration, and (d) the comparison 

between the corresponding optimization process and overall objective function values. 

Table 5: Accuracy evaluation of digital model reconstruction (the values for the reported parameters in the table 

are all in cm). 

Dataset OSU TUM F(E) TUM F(2) TUM F(4) TUM Entrance 

Steps:      

Width 20 3 5 5 5 

Depth 2 1 4 5 2 

Height 1 1 2 3 2 

Number of Steps 91.6% 94.4% 92% 86.2% 73.46% 

Landing treads:      

Width 20 - 4 5 - 

Depth 5 - 2 5 - 

Overall accuracy 10 2 3 5 3 

Model to Points 8 35 13 2 16 

One of the critical factors influencing the accuracy of the reconstructed digital staircase model is the accuracy of 

separated staircase points. The proposed bottom-up approach for separating inclined staircase points relies on 

geometric features, such as Normal_Z component and Linearity. However, the accuracy of calculating these 

geometric features within a specific neighborhood depends on the staircase's inherent geometry and configuration, 

and the environment. In certain cases, using diverse materials, components, or specific design choices can 

introduce errors in calculating the exact geometric feature values. These inaccuracies can lead to errors in correctly 

separating the inclined staircase points, which in turn affects the overall accuracy of the digital model 
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reconstruction. Although the parametric modeling approach can handle noise and gaps in the data, the ultimate 

accuracy of the resulting digital model is still contingent on the quality of the input data and the extent of errors 

present. Figure 18 illustrates the histograms of the recall values achieved in separating the stair points and the 

accuracy of estimating the dimensional parameters and number of steps. According to Figure 18b, there is a linear 

relationship between the accuracy of estimating the dimensional parameters and the recall value in separating 

staircase points. Specifically, as the recall value for separating staircase points decreases, the error in estimating 

the dimensional parameters increases. 

Table 6: Quantitative comparison of the results between proposed parametric modeling approach and the data-

driven model reconstruction algorithm. 

Method Number of Steps Parameters Points to Model 

data-driven 93% 8 cm 9 cm 

Proposed approach 87% 5 cm 15 cm 

 

(a) 

 

(b) 

Figure 18: The Evaluating the impact of achieved recall value for separating staircase points on the accuracy of 

estimating the dimensional parameters and the number of steps: (a) histogram of the recall value and the accuracy 

of estimating the number of steps, (b) histogram of the recall value and accuracy of estimating the dimensional 

parameters. 
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4.3.3 Selection of the optimization method 

This section presents a quantitative comparison between the selected Nelder-Mead optimization algorithm and 

particle swarm optimization (PSO) for minimizing the objective function in the model-fitting process (Kennedy 

and Eberhart, 1995). Figure 19 shows the histogram of the overall objective function values, digital model 

reconstruction accuracy, and processing time required to fit the digital staircase model for the OSU Peavy Hall 

dataset using various swarm sizes in the PSO. 

Although PSO is a well-established meta-heuristic algorithm, the performance comparison revealed that Nelder-

Mead offered comparable objective function values with lower computational costs. As shown in the histogram, 

increasing the swarm size in PSO slightly improved the objective function value. However, the computational time 

grew disproportionately without a corresponding gain in digital model reconstruction accuracy. This makes the 

Nelder-Mead method particularly advantageous regarding computational efficiency, especially for model-to-point 

fitting problems with time and resource constraints involving datasets ranging from thousands to millions of points. 

Furthermore, the formulated optimization problem is more localized than global, due to prior knowledge of the 

feasible parameter ranges (e.g., step height and depth) derived from domain engineering expertise. This domain 

knowledge effectively constrains the search space, making the problem better suited to local optimization methods, 

such as Nelder-Mead, rather than requiring a global search. 

Additionally, metaheuristic swarm-based algorithms, such as PSO, etc., require careful tuning of hyperparameters 

such as swarm size, inertia weight, and cognitive and social coefficients. The optimal configuration of these 

parameters can vary significantly between different datasets or problem scenarios, introducing an extra layer of 

complexity and potential for overfitting. 

Nelder-Mead, being a local search method, has fewer hyperparameters to adjust, making it more straightforward 

and less sensitive to changes in problem-specific configurations. Despite the flexibility of PSO and other meta-

heuristics in global search applications, Nelder-Mead’s simplicity, automation, and efficiency in solving this 

specific problem justifies its selection. Therefore, Nelder-Mead can provide a higher level of automation with 

minimal user intervention. Considering the algorithm’s stability in convergence, the required time for model-

fitting, and the number of hyperparameters, Nelder-Mead is selected, while other optimization algorithms can also 

be utilized. 

 

Figure 19: Evaluating the impact of the selected optimization algorithm on model fitting step: a quantitative 

comparison of overall objective function values, reconstruction accuracy, and the processing time required to fit 

the digital staircase model. 
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4.3.4 Comparison with other methods 

In this section, a quantitative comparison is conducted to evaluate the performance of the proposed method in 

creating a digital staircase model from point cloud data compared to other algorithms developed for this purpose. 

This involves comprehensively examining our proposed parametric modeling approach compared to a solid data-

driven method. After separating the inclined staircase points and individual staircase instances, the data-driven 

method employed for this purpose requires separating the stair tread of each step using RANSAC plane fitting 

algorithm (Figure 20a). Next, the 3D bounding box fitting algorithm is utilized to extract the dimensional values 

of each step (Figure 20b). The implemented algorithm is tested on all building point clouds in this study and the 

resulting digital models are compared with the corresponding digital models. This involves a comparison of the 

parameters of the corresponding reconstructed elements present in both digital staircase models. 

  

(a) (b) 

  

(c) (d) 

Figure 20: The results of creating a digital staircase model for TUM Floor 4 data using the data-driven approach 

and the proposed parametric modeling approach include: (a) separated staircase points, (b) separation of stair 

tread planes using the data-driven method, (c) creation of the digital staircase model using the bounding box fitting 

algorithm, and (d) creation of the digital staircase model using the proposed parametric modeling method. 

According to the results reported in Table 6, the implemented data-driven algorithm can create digital staircase 

models with an overall accuracy of 94\% in estimating the number of steps and a mean distance value of 9 cm for 

the model to points distance. However, the method has achieved a lower accuracy in estimating the value of the 

model parameters, with a mean error of 8 cm. As can be seen in Figure 20, the effectiveness of solid data-driven 

algorithms, such as the fitting of boundary boxes, depends on the quality of the data and often results in errors in 

estimating the dimensional parameters of the models and in creating digital models with inconsistent geometry. 

Addressing these issues requires the use of various thresholds and assumptions to correct the geometry and 

improve consistency between different parts of the models. Nevertheless, due to the use of a parametric modeling 

approach, the proposed method can consider the semantic relationships between different parts of the digital 



 

 

 
ITcon Vol. 30 (2025), Mehranfar et al., pg. 1011 

models, which helps manage poor data quality and ensures the creation of digital staircase models with consistent 

geometry.  

Table 7 compares the key features of the proposed method with those of five state-of-the-art methods developed 

for the automatic creation of digital staircase models. This comparison explores various aspects and potential 

contributions of the proposed method, such as its robustness and generalizability for creating digital staircase 

models.  

According to Table 7, most of the developed methods are capable of creating parametric digital staircase models. 

However, these methods mainly adopt a bottom-up reconstruction approach and are typically limited to staircases 

with rectangular configurations. Most bottom-up approaches use RANSAC plane fitting or the Region Growing 

method to segment staircase points from point cloud data (Table 8). While these methods are effective, they often 

require manual calibration and parameter tuning for different environments, which limits their level of automation. 

Furthermore, the creation of geometric models in these approaches heavily relies on data-driven techniques such 

as α-shapes or rectangular shape fitting. Given the complexity of indoor environments, occlusion and clutter, these 

data-driven methods face challenges in accurately representing geometric models and simulating topological 

relationships between components. Additional post-processing steps are usually required to adjust parameters, 

often using the mean of the extracted dimensions, which can introduce geometric inaccuracies.  

Unlike conventional data-driven approaches, our proposed hybrid bottom-up, top-down approach incorporates 

domain engineering knowledge in the design and construction of staircases along with geometric feature 

calculation, allowing for segmenting the staircase instance with any configuration and design within various 

environments. The proposed model reconstruction method also employs parametric modeling concepts combined 

with an optimization process. This enables the creation of high-quality parametric digital staircase models with 

accurate semantics and proper relationships between components. Due to the flexibility of the parametric modeling 

approach in handling challenges such as noise and gaps in the data, the proposed reconstruction method achieves 

a high level of automation and robustness, without the need for parameter adjustment or additional post-processing 

steps. The proposed method can be used for all staircase instances in the built environment (rectangular and non-

rectangular configurations) that follow the parametric modeling principles in their construction. 

Table 7: Comparison of key features of the proposed method with five state-of-the-art methods. 

Method Proposed pipeline 
Parametric 

modeling 

Model 

fitting 

Non-rectangular 

configuration 

Schmittwilken et al., (2009) Top-down, Bottom-up ✓ × × 

Schmittwilken and Plumer., (2009) Top-down ✓ ✓ × 

Sanchez and Zakhor., (2012) Bottom-up ✓ ✓ × 

Li et al., (2018) Bottom-up ✓ × × 

Yang et al., (2019) Bottom-up ✓ × ✓ 

Ours Top-down, Bottom-up ✓ ✓ ✓ 

Table 8: Comparison of staircase detection and modeling steps across the state-of-the-art methods. 

Method Staircase detection Model reconstruction 

Schmittwilken et al., (2009) 

Detect the planar patches using RANSAC, 

and classify them with CRFs based on local 

and semantic context 

Applying an attribute grammar and AND-

OR tree parsing to guide reconstruction 

using geometric and structural constraints 

Schmittwilken and Plumer., (2009) 
Estimate the normal vectors to define and 

classify the candidate regions 

Use RANSAC for model selection, guided 

by an attribute grammar to encode object 
symmetry, composition rules, and 

geometric constraints 

Sanchez and Zakhor., (2012) 

Use the Principal Component Analysis 

(PCA) with normal vector calculation to 

segment points based on angle threshold, 
followed by Region Growing to improve 

the segmentation results 

Use RANSAC to fit the geometric model 

and extract the parameters 

Li et al., (2018) 

Extract the staircase points using Normal 

Distribution Transformation (NDT) 

RANSAC method, followed by Region 
Growing to improve the segmentation 

results 

Use RANSAC to fit the geometric model 

and extract the parameters 
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Yang et al., (2019) 

Use the hierarchical semantic definition of 

indoor spaces to label floors and slabs, and 

separate the connecting staircase points 

between them 

Use α-shapes method to extract the 

boundary points of stair steps, followed by 
post-processing to adjust the parameters 

Ours 
Knowledge-based staircase point 

separation using geometric features 
Parametric model fitting using 

optimization  

5. DISCUSSION 

This paper presents a novel pipeline for the automatic creation of parameterized digital staircase models from raw 

laser scan point clouds. The result of the implementation of the proposed method across various indoor staircases 

with different configurations and designs demonstrates its effectiveness in creating coherent digital models with 

notable robustness and adaptability. The proposed method aligns domain knowledge in the design and construction 

of staircases with the parametric modeling approach, allowing for the consideration of different degrees of freedom 

to model a wide range of staircase models in the real world. The proposed hybrid bottom-up and top-down 

approach facilitates the effective integration of low-level geometric features with high-level semantic modeling, 

thereby enhancing both the consistency and interpretability of the resulting models. 

The automation achieved by the pipeline significantly reduces the need for manual intervention, promises 

significant progress in the field of "Scan-to-BIM" and automatic creation of digital building models from raw point 

clouds . Moreover, the method’s reliance solely on XYZ coordinates, without requiring intensity, RGB, or other 

auxiliary data, broadens its applicability across diverse scanning technologies and operational environments. Its 

capability to handle large, unstructured point cloud datasets of varying quality further underscores its potential for 

practical applications across various domains such as architectural modeling, heritage documentation, and facility 

management. 

5.1 Limitations 

Despite careful consideration, the proposed method for the automatic creation of digital staircase models from 

point cloud data presents certain limitations that may affect its applicability to a broader range of staircases with 

different configurations and designs. 

The proposed method leverages domain engineering knowledge in the design and construction of staircase 

structures within the built environment to separate inclined staircase points within the point cloud and subsequently 

design a library of parametric staircase instances. In this context, the principles used in the design of parametric 

staircase instances are based on standard considerations in most of the investigated staircase instances. Specifically, 

the design of parametric staircase instances assumes regularity within each stair flight, such as consistent step 

height, width, and depth. While this assumption holds for many common staircase types, it may not be valid for 

non-standard or architecturally unique designs, potentially limiting the generalization of the method. As mentioned 

in Section 3.1, staircase structures can be designed according to both utilitarian and architectural functions, and 

their geometric design and inherent properties can differ from these standards. Therefore, the proposed method, 

and specifically the designed parametric models, can only be implemented for building projects that adhere to 

standard design.  

The evaluation of the proposed approach has been conducted on eight publicly available datasets, each representing 

different staircase geometries, configurations, and design complexities. These datasets encompass a diverse set of 

examples, including varying numbers of landings, irregular forms, and occlusion levels. However, they primarily 

reflect real-world staircases that adhere to standard construction principles. While the method has demonstrated 

robust performance across these cases, further evaluation under more challenging and non-standard conditions is 

essential to fully understand its limitations and generalizability. 

The proposed method cannot be effectively evaluated on staircases constructed from fully transparent materials, 

such as glass. Due to the inherent limitations of laser scanners in capturing transparent surfaces, such structures 

typically produce incomplete or noisy point cloud data, posing a significant challenge for accurate digital model 

creation. 

Furthermore, the proposed method for separating staircase points can only segment points corresponding to step 

surfaces. This hampers the ability to create a digital staircase model with a high level of detail as it neglects other 

components such as handrails, outer stringers, and etc. 
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Also, as mentioned in Section 5.3, the proposed method still has limitations in accurately segmenting staircases 

with two or more landing treads and in connecting stair flows. Addressing this limitation will require the 

development of novel approaches for separating inclined staircase points and landing tread planes. 

6. CONCLUSION 

This paper presented a novel hybrid bottom-up and top-down approach for the automatic creation of digital 

staircase models with different configuration designs from dense laser scan point clouds. 

In contrast to conventional data-driven approaches that rely on traditional point cloud processing methods, the 

proposed method leverages domain engineering knowledge in the design of staircase structures to separate inclined 

staircase points. It also integrates this knowledge with the advantage of parametric modeling to consider semantic 

relationships between components and formulate their interactions. This improves the geometric consistency of 

the digital model and helps overcome prevalent obstacles and challenges, such as noise and clutter, during model 

fitting and in estimating the optimal values for element parameters. 

The test results on eight distinct staircase instances with different configurations and geometric designs 

demonstrate that the proposed approach can automatically generate parameterized digital staircase models with a 

mean absolute error of 5 cm in estimating model parameters. This can enrich the level of development and level 

of detail in existing digital building models and provide further processing possibilities for improved decision-

making for facility management tasks, redesign and etc. 

Despite careful consideration and promising results, the proposed method cannot model all components attached 

to staircase instances. Additionally, the method faces challenges with staircase instances constructed using glass 

and mirror materials since laser scanner beams do not accurately reflect off these surfaces, thus generating clutter 

and noise. This, in turn, poses difficulties in calculating geometric features and subsequent staircase point 

separation steps. 

Further research should look into improving the accuracy of separating staircase components by testing novel 

approaches, such as AI semantic segmentation models, and enhancing the level of detail in the reconstructed digital 

staircase model by modeling other components, such as handrails, outer stringers, and similar elements. 
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