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SUMMARY: In the context of Smart Cities, Smart Heritage has emerged as a forward-oriented strategy aimed at 
enhancing the construction, management, accessibility, and sustainability of culturally significant environments. 
Yet, within Smart Heritage discourse, the distinction between basic digital representations and truly responsive, 
sensor-informed systems remains underdeveloped. This study addresses this gap by proposing a machine learning–
enhanced digital twin simulation framework that enables both real-time and anticipatory heritage interventions. 
Using Chinatown Melbourne as an urban heritage case study, five open-access urban datasets, pedestrian 
counting, on-street parking, microclimate conditions, dwelling functionality, and Microlab sensor data (CO₂, 
sound level, and accelerometer), were evaluated, with three integrated into a pilot simulation model. A key 
contribution is the inclusion of a conceptual ‘Heritage Layer’ that overlays cultural significance and symbolic 
meaning across all stages of system logic and design response. The model also incorporates a dedicated machine 
learning layer, trained on full-year 2024 sensor data, to forecast environmental and behavioural triggers such as 
crowd build-up. This predictive capability enables the system to shift from reactive monitoring to proactive design 
interventions aligned with cultural rhythms. A December 2024 simulation validated the frequency and relevance 
of trigger-based activations. Rather than relying on platform-specific code, the framework is designed for 
adaptability across construction informatics environments and heritage precincts globally. Findings demonstrate 
how Smart Heritage systems can bridge environmental sensing, cultural identity, and post-construction evaluation, 
offering a scalable methodology for digitally responsive, culturally attuned urban heritage management. 

KEYWORDS: Smart Heritage, Digital Twin Framework, Urban Sensor, Machine Learning for Heritage Sites, 
Heritage Site Construction Informatics, Environmental Monitoring, Heritage-Aware Design, Chinatown 
Melbourne. 
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1. INTRODUCTION 

The global emergence of Smart Cities has unlocked new possibilities for applying autonomous technologies to the 

built environment, particularly through the convergence of real-time data, automation, and artificial intelligence 

(AI) (Geng et al., 2024b). Within this broader transformation, Smart Heritage has emerged as a critical subdomain, 

extending the ambitions of smart urbanism to the cultural and historical strata of cities. Rather than focusing solely 

on digitisation for archival purposes, Smart Heritage foregrounds the dynamic activation of heritage precincts as 

responsive, data-enriched environments, supporting objectives of cultural sustainability, operational adaptability, 

and civic engagement (Batchelor et al., 2021). Melbourne, internationally recognised for its progressive smart city 

agenda, offers a fertile testbed for exploring Smart Heritage implementations. Its open-access data infrastructure 

provides a wealth of urban datasets capable of supporting heritage-sensitive monitoring and management through 

real-time metrics (Geng et al., 2024a). Yet, despite this technical potential, Smart Heritage remains underdeveloped 

in both theoretical framing and practical application, especially in ways that intersect with the construction sector’s 

increasing emphasis on lifecycle performance, adaptive reuse, and post-occupancy intelligence (Song and Selim, 

2022, Song et al., 2023).  

Concurrently, digital twin (DT) technologies, now firmly embedded in construction informatics, have received 

limited attention within heritage contexts, often seen as a possible outcome of Smart Heritage. While DTs have 

advanced in areas such as HVAC optimisation, asset management, and performance simulation, their potential to 

embed cultural intelligence into data-driven decision-making remains largely unexplored (Song and Selim, 2022, 

Song et al., 2023, Geng et al., 2024a). This paper responds to this gap by proposing a multi-sensor DT simulation 

framework tailored to culturally significant urban precincts in the hope of achieving a Smart Heritage environment. 

As urban heritage sites are often situated within complex, gentrified contexts marked by frequent new construction, 

this study aims to address both heritage preservation and construction-related concerns through the application of 

Smart Heritage strategies. Taking Chinatown Melbourne as a heritage case study in an urban context, the study 

operationalises open access sensor data, including pedestrian counts, environmental conditions, and acoustic 

measurements, to model heritage-responsive interventions that are context-sensitive and construction-informed. 

To further enhance system responsiveness, a DT framework is proposed with a machine learning (ML) layer that 

predicts environmental and behavioural triggers before they occur, enabling anticipatory heritage interventions 

aligned with cultural contexts. This study does not treat DT technology as an end in itself but as an evolving 

cultural infrastructure, a mechanism through which environmental performance, spatial storytelling, and heritage 

values can be co-optimised. By embedding cultural responsiveness into post-construction workflows, the proposed 

framework reframes Smart Heritage as a forward-oriented, operational system integrated across the lifecycle of 

urban heritage environments.  

2. LITERATURE REVIEW 

2.1 Smart Heritage: From Digitisation to Autonomous Responsive Systems 

Smart Heritage has evolved from the foundational practices of digital heritage, such as 3D documentation, GIS-

based mapping, and digital archives, towards more interactive and responsive systems that integrate real-time data, 

AI, and urban informatics. While early efforts emphasised conservation and virtual representation (Song and 

Selim, 2022, Geng et al., 2023a, Borda and Bowen, 2017). There is a growing shift towards systems that are 

operational, participatory, and embedded within smart city infrastructures (Chianese and Piccialli, 2014, Piccialli 

and Chianese, 2018, Alkhafaji et al., 2020, Brusaporci and Maiezza, 2021). This shift reflects an expanded 

understanding of heritage environments, not merely as passive sites of memory but as dynamic urban interfaces 

capable of interaction, adaptation, and co-creation. As Luo et al. (2024) argues, Smart Heritage mirrors the broader 

evolution of smart cities, transitioning from efficiency-centric technologies to culturally responsive infrastructures. 

Similarly, Geng et al. (2023a) highlight how Smart Heritage practices increasingly rely on real-time data to support 

context-sensitive preservation and identity reinforcement. These practices employ tools such as Internet of Things 

(IoT) sensors, mobile interfaces, and DTs to facilitate responsive lighting, soundscapes, and storytelling that reflect 

both environmental and social rhythms (Amato et al., 2021, Capece et al., 2024).  

Scholars have also emphasised the socio-technical nature of Smart Heritage, its capacity to preserve not just 

physical fabric but also intangible cultural narratives (Cook and Hill, 2019). Responsive systems may be designed 

to interact with users through participatory platforms, supporting diverse narratives while ensuring inclusivity and 
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interactivity (Batchelor et al., 2021, Udeaja et al., 2020). Casillo et al. (2022) point to the increasing use of 

environmental metrics, such as air quality and noise levels, to inform heritage design decisions, such as acoustic 

zoning or ventilation optimisation. Against the backdrop of a complex heritage environment, Smart Heritage offers 

a timely framework for adapting cultural sites into forward-looking, data-informed ecosystems. This paper 

contributes to the discourse by operationalising open-access urban data in a DT simulation tailored to Chinatown 

Melbourne as an urban heritage site. By embedding a 'Heritage Layer' into a sensor-based model, the study 

advances Smart Heritage from concept to application, connecting cultural significance with real-time urban 

intelligence. The concept of a ‘Heritage Layer’ proposed in this study refers to a non-automated, cross-cutting 

interpretive component embedded within a digital twin framework. Rather than functioning as a structural layer, 

it provides cultural and symbolic logic that shapes how environmental data is interpreted and how system responses 

are activated (Geng et al., 2024b). It draws on local knowledge, rituals, spatial memory, and socio-cultural 

narratives to contextualise digital outputs. 

2.2 Open-Access Urban Data and Sensor Networks 

The integration of open-access urban datasets and sensor networks has redefined how cities understand, monitor, 

and manage their built environments. These systems contribute to the emerging field of urban informatics, where 

environmental sensing and public data availability converge to produce actionable knowledge for governance and 

design (Angelidou and Stylianidis, 2020, Allam and Newman, 2018). In the context of Smart Heritage, this 

convergence enables dynamic interpretations of cultural precincts and supports informed decision-making based 

on real-time conditions. Environmental and behavioural measurements are now frequently collected through 

publicly accessible platforms, transforming once-static heritage precincts into sites of sensor-augmented 

interaction. The Melbourne Smart City Strategy demonstrates how such datasets can be used for adaptive planning, 

real-time navigation, and environmental management. Beyond city-led initiatives, crowdsourced and volunteered 

geographic information (VGI), such as OpenStreetMap and community-sensing platforms, offer a complementary 

layer of insight, particularly in marginalised or under-mapped urban areas (Geng et al., 2024b, Goodchild, 2009, 

Goodchild, 2007, Chakraborty et al., 2015). These developments challenge traditional top-down data regimes by 

fostering decentralised, participatory models of data production and use (Elwood, 2008, Liu et al., 2017). Tools 

such as Open Data Kit and geocoded citizen surveys further this shift by enabling local actors to document 

conditions, participate in planning, and advocate for change (Anokwa et al., 2009).  

The expansion of cloud infrastructure, including services like Google Cloud, has improved access to analytical 

environments, accelerating the development of dashboards, simulations, and AI-driven applications even in low-

resource contexts (Talari et al., 2017). Yet, as Chakraborty et al. (2015) argue, open datasets also carry risks, 

ranging from representational bias to privacy concerns. For example, informal settlements and culturally sensitive 

areas may be misrepresented or omitted altogether, creating planning blind spots. Integrating diverse data sources, 

from satellite imagery and municipal databases to local knowledge and civic complaints, is therefore critical for 

ensuring equitable and inclusive smart systems (Hao et al., 2015). In the current Smart Heritage practices, these 

tools remain underutilised (Geng et al., 2023a). Despite the growing interest in open government data and urban 

sensing, heritage-focused applications often lack the infrastructure or theoretical grounding to incorporate such 

information meaningfully. This paper responds to that gap by proposing a multi-sensor DT framework that links 

open-access data with cultural responsiveness, lifecycle workflows, and participatory heritage governance. 

2.3 Sensor-Based Environmental and Cultural Modelling 

Environmental sensors are increasingly deployed in urban environments to support performance-based design and 

planning. In construction informatics, these sensors inform strategies such as ventilation optimisation, acoustic 

mitigation, and pedestrian flow management (Lenzi et al., 2021, Fan and Loo, 2021, Mitro et al., 2022, García 

Diego et al., 2015). For instance, these sensors are integrated into Heritage-Building Information Modelling (H-

BIM) systems to support conservation-friendly HVAC operations (Casazza and Barone, 2024). IoT-based 

platforms further allow tracking of VOC levels and temperature to monitor material health and microclimate 

stability (Laohaviraphap and Waroonkun, 2024). Sound sensors, meanwhile, enable the mapping of urban noise 

corridors, guiding acoustic zoning and supporting façade retention in mixed-use areas (Klein et al., 2017, Deng et 

al., 2021). Pedestrian sensing technologies, including Wi-Fi probes, UWB tracking, and GPS heatmaps, offer 

granular insights into movement patterns (Fan and Loo, 2021). These data can inform responsive design strategies, 
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from crowd-based cultural programming to quiet zone designation. Within DTs, pedestrian data feed into 

simulations that test user flow, event planning, and spatial activation in heritage spaces. Collectively, these sensors 

offer a foundation for evidence-based spatial programming, where environmental data and cultural heritage use 

converge. However, very few frameworks have integrated them meaningfully within heritage systems. Hence, this 

paper proposes such integration, not as a technical add-on but as a cultural infrastructure, situating sensors within 

both Smart City and heritage paradigms to support co-productive, responsive, and story-rich environments. 

2.4 DT Applications in Construction with Heritage Considerations 

Originally developed for manufacturing and engineering, the concept of the DT has gained traction in the 

Architecture, Engineering, Construction, and Operations (AECO) industries as a means to simulate, monitor, and 

optimise building performance (Jeannot, 2019, Aheleroff et al., 2021). A DT typically comprises a five-layer 

structure: physical (sensor-enabled environment), virtual (data and simulations), control logic (rules and 

automation), application (interventions), and feedback (monitoring and refinement) (Al-Ali et al., 2020). In AECO, 

DTs have become central to post-occupancy evaluation (POE), predictive maintenance, and energy management, 

particularly when combined with IoT, BIM, and AI technologies (Barrientos et al., 2021, Rasheed et al., 2020), 

enable dynamic scenario testing and real-time decision-making, offering insights into façade retrofitting, HVAC 

performance, and space utilisation (Xie et al., 2020, Lydon et al., 2019).  

Lu et al. (2020) and Liu et al. (2021) highlight the capacity of DTs to integrate construction data with environmental 

sensing, creating responsive infrastructures that learn and evolve. However, their application in heritage contexts 

remains underexplored. Several emerging studies advocate for DTs in conservation and adaptive reuse, where 

monitoring environmental stress, occupancy levels, or structural behaviour can guide retrofits and preventive 

maintenance (Dore and Murphy, 2017, Jordan-Palomar et al., 2018, Jouan and Hallot, 2020). Heritage-focused 

DTs, often linked with Heritage-BIM, present an opportunity to embed cultural intelligence into lifecycle planning 

and align post-occupancy insights with historical preservation goals (Khajavi et al., 2019, Guen, 2017). This study 

builds on that literature by operationalising a multi-sensor DT model within an urban heritage precinct. The model 

incorporates a dedicated 'Heritage Layer' to ensure that cultural value informs simulation rules and responses, 

offering a novel contribution to Smart Heritage practice within construction informatics. 

2.5 ML, AI, and Smart Heritage in Cultural Heritage Sites 

The integration of ML and AI into Smart Heritage systems marks a critical progression towards autonomous, 

context-aware cultural infrastructure. While traditional heritage informatics focused on static digitisation or remote 

sensing, recent advances increasingly leverage predictive and adaptive capacities to inform both preservation and 

spatial planning (Altaweel et al., 2023, Luo et al., 2024). AI is now increasingly applied to heritage data for 

classification, anomaly detection, event prediction, and spatial-temporal analysis, enabling both conservation and 

public engagement (Fiorucci et al., 2020). Deep learning techniques, such as convolutional neural networks 

(CNNs), have been used for image recognition in artefact digitisation and monitoring physical degradation in 

historical structures (Matrone et al., 2020, Altaweel et al., 2023). In cultural heritage contexts, AI enables heritage 

sites to be not only observed but also interpreted through behavioural and environmental inputs. For example, 

Casillo et al. (2022) introduced an AI-powered system that predicts stress triggers in heritage environments using 

adaptive models trained on CO₂, sound, and occupancy data. This predictive layer supports proactive interventions, 

especially for vulnerable cultural assets in high-traffic urban zones. Similarly, Matrone et al. (2020) argue for 

“semantically-aware” predictive maintenance in historic buildings by combining knowledge graphs with ML-

based sensor analysis.  

Smart Heritage applications have also expanded towards the use of semantic segmentation and deep feature 

extraction. Semantic segmentation (a computer vision technique that classifies each pixel of an image into 

predefined categories) is used in heritage to identify architectural features, detect deterioration, or map spatial 

functions within complex urban environments (Matrone et al., 2020). These tools help link architectural patterns 

with conservation status, as seen in transfer learning applied to unmanned aerial vehicle (UAV) imagery for looting 

detection in archaeological landscapes (Altaweel et al., 2023). Meanwhile, Geng et al. (2024b) demonstrated how 

real-time sensor data could be used in ML workflows to model context-sensitive heritage activation across urban 

precincts to embed the Smart Heritage concept. A key development is the integration of ML into DT systems. 

Fiorucci et al. (2020) stress the role of semi-supervised models in annotating underrepresented cultural data 
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domains where labelled samples are sparse. The concept of cultural-event-aware DTs, trained to distinguish 

between routine and ritual events, shows promise for transforming cultural triggers into input variables for both 

spatial planning and narrative design (Fiorucci et al., 2020). More specifically, cultural-event-aware’ DTs refer to 

simulation systems trained to differentiate between routine urban patterns and culturally significant events, such 

as festivals or parades. These DTs adjust their activation logic based on the cultural meaning of sensor inputs rather 

than treating all peaks in data equally. While challenges remain around data representativeness and explainability, 

emerging frameworks propose integrating AI with co-creation models, allowing stakeholders to adjust thresholds 

or retrain models based on cultural values rather than pure statistical optimisation. Overall, ML and AI represent a 

new computational frontier for Smart Heritage. They offer scalable and adaptive capabilities while challenging 

practitioners to consider the interpretive layers of cultural space. Future Smart Heritage systems may well rely on 

continual learning models, those that adapt over time to both environmental conditions and evolving cultural 

narratives. 

3. METHODOLOGY  

This study adopts a case study method to develop and test a DT simulation framework tailored for Smart Heritage 

applications. The aim is to integrate multi-sensor urban data with both heritage-responsive and construction-

informatics perspectives. The selected case study, Chinatown Melbourne, is situated within the City of 

Melbourne’s Hoddle Grid and serves as a high-potential testing ground due to its rich cultural identity and dense 

urban sensor network (Anderson, 1990, Chau et al., 2016). Known for its historic architecture, symbolic 

significance, and vibrant street life, Chinatown has in recent years experienced increasing pressures from tourism, 

identity crisis, gentrification, conflicts between stakeholders and evolving public realm needs (Geng et al., 2023b). 

These factors, combined with extensive real-time data on pedestrian movement, air quality, and acoustic 

conditions, position the precinct as a suitable environment for piloting data-driven Smart Heritage strategies.  

3.1 Dataset Collection and Analysis 

This study began by identifying open-access datasets relevant to environmental and behavioural monitoring from 

the City of Melbourne’s data portal. A targeted search was conducted to locate sensor-enabled datasets that could 

support Smart Heritage simulations within culturally significant precincts, such as Chinatown Melbourne. Priority 

was given to datasets that offered proximity to the chosen case study, time-stamped records, enabling integration 

into a rule-based simulation framework. These datasets were then classified according to their applicability to 

heritage-informed urban design and construction informatics objectives, including ventilation design, acoustic 

zoning, and cultural programming, as suggested in the literature review.  

Once selected, the datasets were downloaded and initially processed to conduct descriptive statistical analysis. A 

year-round scan of 2024 data was used to identify contextually meaningful thresholds with a quartile method that 

signalled peak activity or environmental stress, focusing on time-series patterns across sensor types and aligning 

them with culturally significant periods such as weekends, meal hours, and festive dates. These thresholds formed 

the basis of a rule-based logic for system activation. A pilot test using December 2024 data was then conducted to 

assess the frequency and overlap of trigger events under real-world conditions. Python was used for initial data 

cleaning, validation of patterns, scalability testing and automation potential. The results then informed the 

development of a six-layer DT simulation architecture that integrates technical performance with culturally 

responsive heritage interventions to reflect both technical integration and cultural responsiveness.  

3.2 ML and DT Simulation Model Development 

Following the pilot testing of activation thresholds, the study introduced an ML component to enhance the 

predictive capacity of the Smart Heritage system. Table 1 provides a summary of the proposed methodology for 

the DT framework development. Using full-year 2024 sensor data, Random Forest models were trained to forecast 

environmental and behavioural triggers, such as elevated CO₂, sound intensity, and pedestrian flow, before they 

surpassed threshold levels. To validate the predictive models, standard performance metrics were used, including 

accuracy, F1-score, and mean absolute error (MAE). Confusion matrices were also generated to evaluate 

classification performance. Model reliability was tested using five-fold cross-validation, ensuring robustness 

across temporal subsets of the data. These metrics are detailed in the results section (Table 6 and Figure 3). The 

ML pipeline incorporated engineered features such as three-hour rolling averages, cross-sensor relationships, and 
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temporal indicators, enabling the system to operate in both reactive and anticipatory modes. Building on the 

threshold rules and ML outputs, the study established a six-layer DT simulation framework capable of translating 

sensor-derived insights into culturally responsive design actions, including physical, virtual, control logic, ML, 

application and feedback layers. While the six layers provide the structural and functional foundation for real-time 

sensing, prediction, activation, and feedback, a non-structural Heritage Layer can be introduced as a cross-cutting 

conceptual lens. It does not operate through computation or automation but rather guides how data is interpreted 

and acted upon in culturally meaningful ways. This layer can potentially help ensure that cultural meaning, heritage 

collective memory, and community identity inform system logic and design decisions. In the case of Chinatown 

Melbourne, this means recognising traditional festivals, events and key architectural heritage on site. The Heritage 

Layer thus mediates between environmental intelligence and cultural legitimacy, reinforcing the simulation 

framework’s dual aim: to advance operational performance while upholding heritage values. The involvement of 

the heritage layer is thus tested in this study.  

Table 1: Methodological Framework for Smart Heritage DT Simulation. 

Step Methods Data Source Expected Outcomes Theoretical Alignment 

1 Case Study Selection City of Melbourne urban 

heritage records and prior 

literature 

Context-specific heritage site for 

Smart Heritage prototyping 

Case study methodology; 

cultural-technical integration 

2 Dataset Identification 
and Classification 

City of Melbourne open data 
portal, including Micro-

Labs 

Structured dataset matrix 
supporting DT inputs 

Open-data urbanism; Smart 
Heritage data infrastructure 

3 Data Analysis and 

Threshold Definition 

Python-based statistical 

analysis (2024 sensor data) 

Defined rules for Smart Heritage 

activation based on real conditions 

Environmental responsiveness; 

cultural threshold logic 

4 Pilot Testing of Sensor 
Thresholds 

December 2024 hourly 
sensor data 

Evidence of threshold validity; 
identification of multi-sensor 

triggers 

Adaptive urban modelling; 
performance-based heritage 

design 

5 ML for Trigger 

Forecasting 

Full-year 2024 sensor 

dataset + engineered 

features 

Predictive logic for anticipatory 

system activation 

Data-driven urban intelligence; 

AI-enabled Smart Heritage 

6 DT Simulation Model 

Development 

All processed data, 

thresholds, and ML outputs 

Fully integrated DT architecture 

with both rule-based and predictive 

layers 

DT theory; lifecycle-informed 

cultural infrastructure 

4. RESULTS 

This section presents the results of a multi-sensor DT simulation developed to model real-time heritage 

responsiveness using publicly available urban datasets. The aim was to identify key activation thresholds and test 

the responsiveness of the ML system to real-world conditions to justify the proposal of the DT model. The data 

was sourced primarily from the City of Melbourne’s open data platform and focused on Chinatown Melbourne’s 

main street (Little Bourke Street) and southern boundary (Bourke Street).  

4.1 Identification of Available Datasets 

A foundational step in this study involved identifying and assessing open-access datasets relevant to 

operationalising Smart Heritage in Chinatown Melbounre. Five datasets were selected based on their relevance to 

both cultural heritage management and construction lifecycle evaluation within DT frameworks: on-street parking, 

pedestrian counting, microclimate conditions, dwelling functionalities and Microlab datasets (CO2, sound level 

and accelerometer). The microclimate dataset was initially eliminated due to the distance of the sensor to 

Chinatown Melbourne. These datasets were accessed via the City of Melbourne’s open data platform and each 

offers unique insights into how the precinct performs spatially, environmentally, and experientially. Datasets 

related to pedestrian counts, ambient sound and CO₂ were shortlisted based on their data availability consistency, 

sensor location proximity to case study, granularity and spatial relevance to Chinatown Melbourne, and potential 

to inform spatial, environmental, and cultural modelling. Table 2 provides a map of sensor locations and its spatial 

relevance to Chinatown Melbourne. Also, although not all data initially identified were used in this study, Table 3 
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is made to summarise the potential use of these data for Smart Heritage and construction informatics, which can 

inform future studies with similar data types.  

Table 2: Sensor location in relation to Chinatown Melbourne (site highlighted in green). 

Dataset Sensor Location Dataset Sensor Location 

On-Street 

Parking 

 

Dwelling 

Functionality 

 

Pedestrian 

Counting 

 

Microlab Sensor 

(CO2, Sound level 

and 

Accelerometer) 

 

On-Street Parking Data: Originally addressed in the Chinatown Action Plan (1985), the design of the precinct’s 

main street reflects a desired level of congestion, considered culturally symbolic of traditional Chinese urban 

vibrancy. This strategy influenced the widening of streets to accommodate both pedestrian flows and intermittent 

on-street parking. Open-access parking data now enables real-time tracking of bay availability around the precinct. 

Such data is valuable for urban designers and policymakers, who can model temporal zoning strategies, e.g., 

transforming parking areas into al fresco dining zones during evenings or weekends. This dynamic use of space 

promotes operational sustainability while retaining the precinct’s cultural ambiance and liveliness. It also supports 

the adaptive reuse of streetscapes in ways that honour both functional flexibility and symbolic heritage. 

Pedestrian Counting Data: As a key indicator of urban vitality, pedestrian data provides critical insights into 

heritage precinct performance. Given Chinatown Melbourne’s location within the Hoddle Grid, footfall metrics 

help distinguish between incidental passersby and intentional cultural visitors. This differentiation is central to 

designing meaningful Smart Heritage responses. For instance, foot traffic data can inform peak-hour lighting, 

cultural programming, or digital storytelling activations, enhancing tourism appeal and energy efficiency. Targeted 

activation not only increases visitor engagement but also allows cultural institutions to optimise resource 

allocation. In this study, hourly pedestrian data from March 2025 was used as a core input for DT modelling. 

Microclimate Data: Environmental data, particularly temperature, humidity, and solar radiation, is vital for heritage 

site preservation and visitor comfort. Although Chinatown Melbourne currently lacks embedded microclimate 

sensors, proxy data from nearby Argyle Square was analysed to represent broader environmental conditions. Such 

data, if expanded city-wide, could support climate-sensitive design decisions, including shading strategies, 

ventilation design, or misting systems for laneways. When integrated into DT simulations, microclimate data can 

facilitate responsive comfort management, reduce energy use, and enhance material conservation efforts, 

especially important in heritage settings exposed to seasonal stress. 

Dwelling Functionality Data: Current land-use classifications suggest that Chinatown Melbourne is dominated by 

commercial activity, particularly restaurants, with a noticeable lack of buildings designated for cultural or 

community purposes. This imbalance contributes to the precinct’s identity dilution, a challenge faced by many 

Chinatowns worldwide. At present, only basic residential data is available through open-access sources, creating 

a significant data gap in terms of cultural land-use mapping. Expanding these datasets to include mixed-use, 

cultural, and institutional uses would allow policymakers to develop heritage-supportive planning strategies. 
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Identifying these ‘magnet’ functions is critical for maintaining cultural resilience and precinct distinctiveness 

amidst commercial pressures. 

Micro-Labs Sensor Data: As part of the City of Melbourne’s Micro-Labs initiative, temporary sensor installation, 

including CO₂, sound, temperature, and accelerometer sensors, was deployed to assess how emerging technologies 

could enhance public space design and urban responsiveness. These sensors, placed in select urban laneways and 

open spaces, collect real-time environmental and behavioural data relevant to Smart Heritage applications. The 

CO₂ sensors capture ventilation performance and crowd density, while acoustic sensors track ambient soundscapes 

to support acoustic zoning and identity mapping. Accelerometers provide subtle insights into vibrations and human 

activity patterns, which are valuable for identifying public realm usage and stress points. Though not permanently 

installed in Chinatown Melbourne, the Micro-Labs data offers a transferable prototype for precincts with similar 

cultural and environmental dynamics. This type of sensor-rich dataset supports evidence-based spatial 

programming, cultural storytelling, and climate-responsive interventions, aligning with the goals of heritage 

preservation and urban adaptability.  

Table 3: Identified Initial Open Access Sensor Datasets and Their Dual Applications in Smart Heritage and 

Construction Informatics. 

Dataset Smart Heritage Application Construction Informatics Use 

On-Street Parking Dynamic zoning (e.g., al fresco), time-based cultural 

programming 

Streetscape repurposing; off-peak functional 

retrofits 

Pedestrian Counting Time-based activation of events, lighting, and digital 

storytelling 

Public realm planning; pedestrian flow 

modelling 

Microclimate 

Conditions 

Climate-responsive heritage conservation; environmental 

storytelling 

Ventilation planning; material durability 

assessment 

Dwelling 

Functionality 

Cultural identity mapping; detection of underrepresented 

heritage functions 

Land-use analysis; adaptive reuse forecasting 

Urban Sound Acoustic identity zones; sound-responsive storytelling and 
event planning 

Acoustic zoning; façade and buffer design for 
noise mitigation 

4.2 Trigger Identification from Year-Round Sensor Data 

To support robust rule-setting, a full year (2024) of sensor data was analysed to determine statistically meaningful 

thresholds for activating Smart Heritage interventions. Hourly pedestrian, CO₂, and sound datasets, sourced from 

the central Little Bourke Street and the Bourke Street boundary of Chinatown Melbourne, were cleaned and 

processed using Python to reveal recurring patterns and moments of intensified activity or environmental stress. 

These patterns provided the empirical basis for defining responsive thresholds that reflect both cultural activation 

and environmental discomfort. A quartile-based approach was used to determine the third quartile (Q3), 

representing high values, to identify appropriate thresholds and triggers (Figure 1).  

The results show that pedestrian flow displayed a bimodal hourly distribution, with peaks around 12:00–14:00 and 

again from 18:00–21:00, aligning with typical retail and dining hours. While weekday counts remained moderate, 

weekends and public holidays recorded elevated flow, often exceeding the updated Q3 threshold of 984 people per 

hour. These thresholds identify when the precinct becomes socially and commercially vibrant, suggesting strong 

alignment with cultural storytelling or event programming opportunities. CO₂ concentrations surpassed the Q3 

value of 452 ppm most commonly during early to mid-afternoon on warmer days, especially in narrow laneways 

where ventilation is constrained. This pattern signals potential thermal discomfort and the need for responsive 

airflow interventions. Sound levels, particularly the ‘soundAvg’ values, exceeded 43 dBA during the evening 

period, frequently coinciding with the hospitality-driven character of the precinct (Geng et al., 2023b). This 

indicates rising acoustic intensity during cultural clustering and commercial activity, supporting zoning or 

buffering design for both vibrancy and mitigation. 

These Q3-based thresholds shown in Table 4 were not selected to drive constant interventions but rather to mark 

peak moments warranting context-sensitive, culturally meaningful, and environmentally aware responses. They 

also help form the logic for activating Smart Heritage tools within a rule-based DT, linking real-time sensing with 

adaptive urban design. 
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Figure 1: Quartile Distribution and Q3 (Trigger Value) of the Identified Three Datasets. 

Table 4: Sensor Thresholds and Their Interpretive Value for Smart Heritage Activation. 

Sensor Type Threshold Peak Periods Smart Heritage Insight 

Pedestrian Flow > 984 

people/hour 

Weekends, holidays, 12:00–14:00 & 

18:00–21:00 

Signals cultural activity and crowd movement 

for events and storytelling 

CO₂ Concentration > 452 ppm Warm days Indicates environmental discomfort; supports 
responsive ventilation interventions 

Sound Level > 43 dBA Evening values tended to be higher, and 

the variation between evening and 

daytime readings remained modest 

Marks vibrant acoustic zones; informs zoning 

and quiet area design 

Table 5: Trigger Exceedance Interpretation – December 2024. 

Sensor Type Days Exceeded 

(Dec) 

Frequent Peak Hours  Example Smart Heritage / Construction 

Informatics Action 

Pedestrian 

Count 

9 of 31 days 12:00–14:00, 18:00–21:00 Dynamic lighting, pop-up cultural events, 

interactive signage for  construction projects 

CO₂ 

Concentration 

19 of 31 days 13:00–15:00, warm afternoons Airflow design review, vertical greening, 

ventilation retrofits 

Sound Level 11 of 31 days 18:00–22:00 Acoustic zoning, buffer design, noise-tolerant 

programming 

4.3 Pilot Testing of Triggers  

A pilot simulation using Python was conducted using December 2024 sensor data to test the real-world 

applicability of the identified thresholds. This exercise assessed how frequently triggers would activate across 

different temporal scales, providing insights into system responsiveness and confirming practical moments for 

Smart Heritage engagement. Using the Q3 thresholds (CO₂: 452 ppm, Sound: 43 dBA, Pedestrian: 984/hour), 

analysis showed that multiple days throughout December recorded overlapping exceedances across two or more 

sensors (Figure 2). Notable days included December 6, 14, 21, and 24, coinciding with heightened cultural or 

commercial activity. These days emerged as ideal for temporary installations, responsive lighting, acoustic 

interventions, or community-engaged storytelling. 

• Pedestrian counts exceeded 984/hour on 9 out of 31 days, mostly during lunchtime and evening peaks; 

• CO₂ levels were triggered on 19 out of 31 days, showing sustained exceedance during midday hours and 

warm periods; 

• Sound levels surpassed 43 dBA on 11 out of 31 days, especially on hospitality-active evenings, reflecting 

environmental and acoustic intensity. 

Based on the results, Table 5 outlines several potential strategies that can be integrated to support Smart Heritage 
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implementation. Once appropriate strategies are in place, the next objective is to enable real-time responses when 

Q3 thresholds (trigger values) are reached. This represents a key goal for Smart Heritage activation within the 

precinct. Also, this study presents the methodological framework above to guide heritage precincts in identifying 

relevant datasets and establishing trigger conditions. The ML-enhanced DT model developed can further support 

precincts with similar aims by helping precincts identify context-sensitive strategies and implement smart 

strategies in culturally informed ways.  

 

Figure 2: Trigger Exceedance Summary by Day and by Hour – December 2024. 

4.4 ML for Trigger Prediction and Adaptive Heritage Simulation 

While the threshold-based model confirmed cultural-intensity correlations, predictive models were tested to 

simulate anticipatory interventions, reducing system lag and overactivation. To address this limitation, an ML 

approach was introduced to enhance the predictive capacity of the Smart Heritage DT. Rather than relying solely 

on fixed thresholds, the system incorporates data-driven forecasting to anticipate trigger conditions, thereby 

improving cultural timing, energy efficiency, and operational adaptability. This study developed a supervised ML 

pipeline to predict three types of heritage-relevant triggers: elevated CO₂ levels, increased sound pressure, and 

high pedestrian footfall. Using full-year 2024 sensor data, three separate Random Forest classifiers were trained 

to detect whether a given hour would exceed pre-defined Q3 thresholds. Additionally, regression models were 

developed to estimate the actual sensor values, providing dual interpretive modes: probabilistic trigger detection 

and continuous condition forecasting. 

The feature set for each model included: 

• Direct sensor values (e.g. CO₂ concentration in ppm, average sound level in dBA, pedestrian count per 

hour) 

• 3-hour rolling means to capture temporal trends and local context 

• Cross-sensor predictors (e.g. estimating sound levels from CO₂ fluctuations) 

• Temporal indicators such as hour of day, day of week, and weekend status 

Each model was trained using the full-year 2024 dataset and tested using five-fold cross-validation to ensure 

reliability across different temporal subsets. The training process used scikit-learn’s implementation of the Random 

Forest algorithm, with hyperparameters tuned via grid search to optimise performance. Classification models 
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predicted whether each hour would exceed the identified thresholds, while regression models estimated actual 

sensor values. The validation metrics reported, including accuracy, F1-score, and MAE, demonstrate the models’ 

robustness and predictive utility for Smart Heritage trigger forecasting. This hybrid feature design allowed the 

models to capture both intra-sensor patterns and cross-variable relationships, offering a more nuanced 

understanding of environmental and behavioural conditions in Chinatown Melbourne. Figure 3 presents the 

confusion matrices for the three Random Forest classifiers, illustrating how well the models distinguish between 

trigger and non-trigger conditions across CO₂, sound, and pedestrian datasets. Each matrix shows the count of true 

positives (correct trigger predictions), true negatives (correct non-trigger predictions), false positives, and false 

negatives. 

• The CO₂ model demonstrates a balanced classification performance with low false positives, indicating 

reliable detection of ventilation-related stress. 

• The Sound model shows strong separation between trigger and non-trigger classes, aligning well with 

temporal patterns of acoustic activity in hospitality zones. 

• The Pedestrian model captures high-flow events accurately, reinforcing its value for real-time cultural 

crowd management. 

The diagonal dominance in each matrix indicates strong predictive performance, with minimal false positives or 

negatives across all categories. These results confirm the suitability of the models for real-time or anticipatory 

deployment in Smart Heritage systems. As seen in Table 6, classification matrices (accuracy and F1-score) indicate 

the models’ ability to detect whether thresholds are exceeded, while regression metrics (mean absolute error) 

measure precision in predicting actual values. Feature importance is also shown, highlighting which variables were 

most influential for each sensor target.  

 

Figure 3: Confusion Matrix for Classifier Performance. 

Table 6: Key Classification and Regression Results. 

Key Classification Results Key Regression Results 

Trigger Type Accuracy F1-

Score 

Top Features Variable Model 

Type 

MAE (Mean Absolute 

Error) 

CO₂ Trigger 0.89 0.84 CO₂, sound_from_CO₂, 

CO₂_roll3 

CO₂ (ppm) Random 

Forest 

±14.2 ppm 

Sound Trigger 0.91 0.86 soundAvg, 

ped_from_sound, roll3 

Sound 

(dBA) 

Random 

Forest 

±3.8 dBA 

Pedestrian Trigger 0.88 0.85 Total_of_Directions, 

co2_from_ped, hour 

Pedestrian 

Count 

Random 

Forest 

±71 people/hour 

These results confirm that ML methods can support both quantitative prediction and binary trigger identification, 

offering a dual mode of operation for Smart Heritage interventions. The importance of cross-sensor predictors, 

such as CO₂ readings improving sound predictions, or sound trends helping estimate pedestrian flow, underscores 

the interconnected complexity of urban heritage environments. These relationships are not readily captured by 

threshold logic alone. By embedding this predictive capacity into the DT, the system gains the ability to anticipate 

environmental and cultural thresholds before they are breached, thus supporting pre-emptive interventions, 

reducing false positives, and enhancing responsiveness during peak activity or environmental stress. 



 

 

 
ITcon Vol. 30 (2025), Geng et al., pg. 1325 

4.5 Sensor Contributions and DT Architecture 

Building on the trigger testing and predictive modelling pilots, this section outlines the refined DT simulation 

model developed to operationalise Smart Heritage in Chinatown Melbourne. The model adopts a modular, layered 

architecture that supports both technical integration and cultural sensitivity. It incorporates three categories of 

sensor-derived urban data: pedestrian flow, CO₂ concentration, and ambient sound, which are mapped against both 

threshold-defined rules and ML predictions to enable dynamic and site-specific heritage activation. The system 

architecture has been expanded to include six core layers and one cross-cutting heritage layer. As Table 7 shows, 

these layers progress from real-world sensing to cultural response and post-intervention feedback, and now also 

include an ML layer that enables probabilistic forecasting of triggers based on temporal and cross-sensor inputs. 

 

Table 7: DT Layers Developed with Cross-cutting Heritage Layer. 

Heritage Layer (cross-cutting): Conceptual interpretive lens ensuring cultural legitimacy and symbolic coherence; operates across all 

layers; embeds cultural logic into sensor interpretation and system behaviour; distinguishes cultural significance in heritage sites. 

Layer Function Sensor Data Inputs Smart Heritage / Construction Application 

1. Physical 

Layer 

Real-world sensing 

through heritage 
streetscape infrastructure 

CO₂ sensors, sound 

sensors, pedestrian 
counters 

Captures environmental and social conditions from 

Chinatown Melbourne’s public realm 

2. Virtual 

Layer 

Time-series simulation and 

visualisation 

CSV-formatted datasets 

integrated via Python 

scripts 

Enables live tracking, historical pattern analysis, and sensor-

based modelling 

3. Control 

Logic Layer 

Threshold detection and 
rule-based activation 

CO₂ > 452 ppm, Sound > 
43 dBA, Pedestrian > 

984/hour 

Defines when and where Smart Heritage interventions 
should be triggered 

4. ML Layer Probabilistic prediction of 

future trigger events using 

AI models 

Rolling averages, time-

of-day, sensor cross 

features 

Enhances anticipatory capability, avoids overactivation, 

supports adaptive decision-making, and works with 

upcoming/existing constructions in complex urban 
environments 

5. Application 

Layer 

Cultural and spatial 

intervention mechanisms 

Combined sensor triggers 

(threshold or ML-based) 

Activates heritage precinct storytelling, dynamic lighting, 

zoning overlays, acoustic buffering, and ventilation 

strategies 

6. Feedback 

Layer 

Post-intervention 

monitoring and design 

evaluation 

Trigger logs, 

environmental metrics 

Supports iterative refinement of design strategies and post-

occupancy assessment 

 

The results of this study show that the Heritage Layer mediates between raw sensor outputs and meaningful cultural 

action by embedding local knowledge, symbolic meaning, and spatial identity into the simulation process. For 

example, while a 75 dBA sound spike might be interpreted as noise pollution in a commercial district, the same 

signal during a festival performance may reflect desirable vibrancy within a cultural heritage context. This 

interpretive nuance is critical for ensuring the cultural legitimacy and contextual appropriateness of any system-

activated intervention. The parameter values used in this study, CO₂ > 452 ppm, Sound > 43 dBA, and Pedestrian 

Flow > 984 people/hour, were selected through a combination of quartile-based statistical analysis and validated 

predictive modelling. These thresholds serve as proof of concept, demonstrating what is feasible, adaptable, and 

meaningful for the Chinatown Melbourne context. However, they are not fixed. The framework is designed to be 

transferable to other urban heritage precincts, where different sensor types (e.g., temperature, humidity, light, air 

pollutants), cultural narratives, and governance needs may call for alternative indicators or thresholds. 

In cities with richer datasets or evolving heritage narratives, this model can be further enhanced through: 

• Integration of additional environmental variables (e.g., flood risk, air pollution); 

• AI-based clustering for cultural programming opportunities; 

• Stakeholder co-design of narrative triggers; 

• Proposed construction sites/ period and the scheduling of cultural/heritage events; 

• Public engagement interfaces for feedback loops. 

 



 

 

 
ITcon Vol. 30 (2025), Geng et al., pg. 1326 

Overall, this DT simulation framework advances the Smart Heritage agenda by combining real-time sensing, 

predictive intelligence, and culturally informed control logic. Its modular structure, incorporation of an ML Layer, 

and grounding in a Heritage Layer enable both technical robustness and cultural resonance. This positions the 

model as a scalable and transferable framework for adaptive, data-informed urban heritage management across 

global contexts. 

5. DISCUSSION 

5.1 Interpreting Sensor Roles in Smart Heritage and Construction Informatics 

The findings from the DT simulation highlight the distinct yet complementary roles that different urban sensors 

can play in both Smart Heritage activation and construction-informed planning, both vital for complex urban 

heritage sites. As Table 8 presents, each data stream: pedestrian count, CO₂ level, and ambient sound, provides a 

discrete layer of spatial intelligence that becomes more powerful when integrated within a culturally contextualised 

framework. These sensors, while operationally embedded in urban infrastructure, transcend their original technical 

purposes by acting as mediators between cultural narratives and environmental performance. Pedestrian data 

reflects rhythms of cultural engagement, peak communal gatherings, and temporally dynamic zones of heritage 

activation. CO₂ levels not only indicate air quality but become proxies for crowd density and ventilation efficacy, 

linking occupant comfort to the symbolic health of shared spaces. Sound levels, similarly, offer insight into the 

acoustic identities of streetscapes, supporting distinctions between festive, high-energy areas and quieter reflective 

zones essential to cultural storytelling. Together, these datasets inform responsive design decisions across multiple 

scales, from temporary installations and interactive wayfinding to long-term HVAC calibration and façade 

retrofitting (Geng et al., 2024b, Song and Selim, 2022, Luo et al., 2024). In Smart Heritage contexts, this 

interdisciplinary synthesis allows for the creation of 'living heritage systems' that are both operationally efficient 

and culturally expressive. 

Table 8: Sensor Contributions to Smart Heritage and Construction Informatics. 

Sensor Type Smart Heritage Role Construction Planning Implication 

Pedestrian 

Count 

Crowd-based storytelling; dynamic precinct 

zoning 

Wayfinding analysis; façade engagement; responsive public realm 

design 

CO₂ Level Environmental storytelling; cultural 

atmosphere 

HVAC optimisation; airflow and material sustainability strategies 

Sound Level Acoustic identity; quiet vs. active zone 

mapping 

Acoustic façade design; noise buffering; adaptive spatial 

programming 

The inclusion of ML further advances the interpretive capacity of sensors by transforming them from reactive 

triggers to predictive agents. Rather than responding only to threshold breaches, the system can anticipate them, 

allowing interventions to be deployed preemptively. This enhances both the functional agility of the DT and its 

alignment with cultural temporality, for instance, forecasting crowd build-up before a community ritual begins. By 

embedding learning models that adapt over time, the framework also introduces a dynamic form of heritage 

governance, where cultural and environmental rhythms evolve in tandem. As Smart Heritage systems evolve, 

explainable AI becomes essential to ensure transparency, avoid cultural bias, and build trust among heritage 

custodians and community stakeholders. These insights extend Smart Heritage beyond static documentation or 

one-time interventions, revealing its potential to act as a live cultural infrastructure. By integrating heritage values 

with responsive environmental and behavioural feedback loops, sensor data becomes a shared language across 

cultural, spatial, and technical disciplines. This reconceptualisation of sensors, as both technical instruments and 

cultural indicators, encourages new modes of stakeholder collaboration between heritage professionals, urban 

designers, and construction informatics specialists. In doing so, the DT framework becomes not only a tool for 

monitoring or simulating built environments but also a platform for activating and co-authoring urban memory 

and future resilience. 

5.2 Reframing the DT as Cultural Infrastructure 

Rather than treating the DT as a neutral technical artefact, this study reconceptualises it as a form of cultural 

infrastructure, a dynamic platform that integrates environmental intelligence with heritage-specific values 
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throughout the lifecycle of the built environment. The proposed six-layer DT architecture, comprising the Physical, 

Virtual, Control Logic, ML, Application, and Feedback layers, ensures real-time responsiveness and system 

adaptability. However, it is the addition of a Heritage Layer, conceptual rather than architectural, that distinguishes 

this model for Smart Heritage applications. Acting as a transversal layer, the Heritage Layer intersects each stage 

of the system to embed cultural logic into the data interpretation and decision-making process. Importantly, this 

approach moves beyond abstract digitisation to engage directly with the architectural and urban form of heritage 

precincts. Sensor data is not only interpreted for functional metrics but also situated within the spatial and symbolic 

register of the built environment. For example, a pedestrian spike during a Lunar New Year parade in the case 

study Chinatown Melbourne is recognised not merely as crowd density, but as a moment of heightened cultural 

expression shaped by the spatial choreography of laneways, thresholds, and public squares. Similarly, acoustic 

data near historic façades or temple courtyards is analysed not only in decibels but also in terms of how 

architectural materiality and morphology amplify or soften cultural resonance. Unlike prior Smart City or heritage 

digitisation initiatives that focus primarily on archival modelling or structural monitoring, our framework 

integrates a predictive ML layer with an interpretive Heritage Layer to support anticipatory, culturally 

contextualised responses. Previous DT studies in construction informatics typically prioritise energy performance 

or structural analysis; in contrast, this study emphasises environmental storytelling, crowd-responsive design, and 

cultural rhythm alignment. This dual-layer approach distinguishes our work as both technically adaptive and 

culturally embedded. 

This repositioning transforms the DT from a reactive monitoring tool into a context and spatial-aware system that 

understands how architectural elements, such as arcades, shopfronts, rooflines, or surface textures, mediate cultural 

behaviours. It could enable planners, designers, and heritage professionals to distinguish between functionally 

busy periods and symbolically significant moments, supporting interventions that are both materially grounded 

and culturally attuned. These may include responsive lighting schemes that accentuate façade ornamentation 

during festivals, zoning overlays that protect quiet courtyards from commercial encroachment, or real-time 

storytelling prompts aligned with spatial landmarks. By aligning urban morphology and spatial performance with 

cultural heritage and community memory, the model fosters hybrid heritage practices that integrate environmental 

management, architectural identity, and place-based storytelling. The layered logic of the DT also permits multi-

scalar adaptation, allowing triggers to scale from street-level microclimates and edge conditions to precinct-wide 

strategies for mobility, zoning, or amenity distribution. In doing so, it reimagines Smart Heritage not just as a 

technological overlay, but as an architectural and urban intelligence system capable of sustaining the spatial 

legibility, experiential richness, and cultural continuity of historic environments. 

5.3 Practical Implications 

While the DT model developed for Chinatown Melbourne is tailored to a specific urban and cultural context, the 

underlying principles align with emerging directions in Smart Heritage. Globally, cities are beginning to explore 

sensor-enabled heritage districts, often focusing on digitisation overlays or structural monitoring (Agapiou et al., 

2015). However, few of these initiatives have integrated environmental responsiveness with cultural programming 

to the degree proposed in this study (Geng et al., 2023a). The combination of CO₂, sound, and pedestrian data 

within a rule-based simulation framework presents a novel contribution, bridging Smart City objectives with 

heritage curation and post-occupancy design feedback. This approach offers a transferable methodology for 

culturally significant urban precincts transforming, where safeguarding identity must be balanced with complex 

urban contexts, involving commercial adaptation, proposed constructions and climate resilience. The model’s 

strength lies in its capacity to quantify behavioural and environmental thresholds while preserving the symbolic 

and performative character of place. In doing so, it provides a replicable logic for urban managers seeking to align 

real-time data with long-term cultural stewardship. 

From a stakeholder perspective, the implications are equally significant. By relying on open-access datasets and 

low-barrier tools, the framework enables local governments, heritage practitioners, and community groups to 

collaboratively prototype Smart Heritage responses. This decentralises technical control and promotes a 

participatory governance model where activation strategies are co-defined, tested, and iteratively refined by 

diverse actors (Geng et al., 2024b). Transparency is enhanced as sensor thresholds become shared indicators of 

cultural rhythm and environmental stress, interpretable across institutional and community domains. Crucially, the 

model treats sensor data not merely as technical inputs but as cultural artefacts, vehicles for encoding memory, 

meaning, and everyday use. This redefinition empowers cultural stakeholders, not just engineers or planners, to 
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shape how smart city systems perceive and respond to heritage. The use of ML opens new opportunities for cities 

to build DTs that continuously learn from sensor data and adjust activation logic according to shifting community 

behaviours, environmental change, and event cycles. This ability to adapt over time supports sustainable heritage 

practices and ensures that interventions remain culturally attuned and operationally relevant. In doing so, Smart 

Heritage is reframed not only as a technological innovation but as a civic infrastructure for negotiating spatial 

identity, sustainability, and public storytelling in real time.  

6. CONCLUSION  

This study offers a practical demonstration of how Smart Heritage can be materially advanced through the use of 

publicly available urban datasets within a DT framework tailored for urban heritage with dual consideration of 

construction informatics. By integrating pedestrian, CO₂, and sound data from Chinatown Melbourne, the research 

develops a multi-sensor simulation capable of triggering context-sensitive heritage interventions. The DT is 

structured across six layers, including a novel Heritage Layer, which links real-time environmental inputs with 

cultural significance and spatial logic. This model not only enhances heritage curation but also contributes to post-

construction intelligence, supporting informed decision-making in precinct design, retrofitting, and spatial 

programming. Its key innovation lies in translating open-access data into actionable cultural and operational 

insights, positioning Smart Heritage as an embedded operational layer in the built environment lifecycle. In doing 

so, it broadens the scope of construction informatics to include cultural responsiveness and the sustainability of 

urban identity. As cities face increasing challenges from digitisation, densification, and diversification, Smart 

Heritage, augmented by DT systems, emerges as a compelling pathway towards more responsive, inclusive, and 

enduring cultural environments. With a transferable methodology framework and a DT model, this study lays a 

foundation for future models that fully integrate behavioural, environmental, and cultural metrics into the design, 

management, and evolution of heritage precincts. By incorporating ML for predictive trigger detection, the 

framework moves beyond reactive monitoring to enable anticipatory heritage responses, paving the way for 

continuously learning systems that evolve with both environmental data and cultural rhythms. While the 

framework shows strong practical potential, several limitations remain. Its scalability depends on the availability 

and coverage of urban sensor data, which may vary by city. ML outputs may also reflect biases in training data, 

especially in culturally diverse contexts. Finally, using public space sensor data raises privacy concerns that require 

thoughtful governance in real-world applications. Future research should investigate how communities and 

heritage managers can co-train models, refining activation logic through cultural feedback and participatory 

sensing. 
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APPENDIX 

GLOSSARY 

AECO Architecture, engineering, construc IoT Internet of things 

AI Artificial intelligence MAE Mean Absolute Error 

BIM Building information modelling ML Machine learning 

CNN Convolutional neural networks POE Post-occupancy evaluation 

CSV  Comma-separated values SoundAvg Sound average 

DT Digital twin UAV Unmanned aerial vehicle 

GIS Geographic information system UWB Ultra-wideband 

GPS Global positioning system VGI Volunteered geographic informaiton 

H-BIM  Heritage-building information modelling VOC  Volatile organic compounds 

HVAC  Heating, ventilation and air-conditioning  MAE Mean Absolute Error 
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