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SUMMARY: Real-Time Locating System (RTLS) using Bluetooth Low Energy (BLE) technology is becoming 

common to assist construction managers in making rational decisions pertinent to productivity monitoring and 

safety management on construction sites. However, there are still several challenges in deploying BLE-based RTLS 

on job sites. This paper proposes an RTLS explicitly designed for construction by satisfying requirements for 

widespread on-site adoption, including cost efficiency, scalability, and accuracy. The main contributions of this 

study are (i) substituting commonly used BLE receivers with BLE beacons; (ii) proposing a modular infrastructure 

placement strategy; (iii) developing localization algorithms using triangulation technique; (iv) post-processing 

the worker’s estimated locations. The experimental results show a localization error of 0.56 (m) and 0.64 (m) in a 

middle-size indoor space when the target is dynamic and static, respectively. This level of accuracy is an 

improvement compared to that reported in the literature and can be considered appropriate for most worker 

tracking applications on construction job sites. Moreover, replacing traditional BLE receivers that are 

smartphones or devices that require electrical wiring with battery-powered BLE beacons, and using the modular 

infrastructure placement strategy improved the RTLS scalability and efficiency in implementation cost and power 

consumption. The impact of environmental conditions, such as the weather availability of metal and construction 

equipment, on the developed RTLS’s performance, must be studied in future works. 
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1. INTRODUCTION 

Sensor-based tracking systems for construction sites can potentially change the business processes on the job sites 

by providing automated data acquisition and analysis for productivity and safety, among other applications (Umer 

and Siddiqui, 2020). Traditionally, on-site monitoring techniques primarily depend on manual processes that are 

time-consuming and error-prone (Park and Brilakis, 2016). However, many state-of-the-art technologies have been 

applied lately to effectively assist construction managers and safety inspectors in making rational decisions 

supporting the management of daily construction activities and site monitoring (Park et al., 2017). Recent studies 

have highlighted that indoor localization applications can effectively manage the worksite (Becerik-Gerber et al., 

2014)(Umer and Siddiqui, 2020). The recent use of Real-Time Locating Systems (RTLS) focusing on the 

geographical mapping of worker locations results in trajectories to quantify the time spent in specific workspaces 

(Umer and Siddiqui, 2020). Hence, construction worker tracking on construction sites allows identification and 

tracking of the workforce to support effective progress monitoring, activity sequence analysis, and productivity 

measurements, as well as enhancing site safety management (Park et al., 2012).  

Several IoT (Internet of Things) technologies are commonly used by indoor tracking solutions, including Bluetooth 

Low Energy (BLE), Radio Frequency Identification (RFID), and Ultra-Wideband (UWB) technologies (Moselhi 

et al., 2020)(Kim et al., 2019)(Costin et al., 2012). Also, there are less commonly used alternatives for indoor 

localization, including embedded sensors, Lidar and laser scanning, high-resolution video camera, digital 

photogrammetry, and WiFi (Umer and Siddiqui, 2020),(Alishahi et al., 2021). The BLE technology-based system 

uses transmitters/receivers attached to the walls or ceilings of indoor environments to estimate the location of the 

target node. A BLE-based system comprises a receiver and transmitter that can wirelessly communicate. The BLE 

receiver is either fixed in a known location or worn by the workers, and it can capture the Received Signal Strength 

Indicator (RSSI) from the beacons to estimate the worker's location (Kunhoth et al., 2019)(Zhuang, 2020). 

BLE is considered the most cost-effective among other IoT-based technologies and appears reasonably accurate 

for many indoor localization applications in the construction domain (Zhao et al., 2019)  (Zhuang et al., 2016). 

Hence, BLE technology is used in this study to develop RTLS. Nevertheless, while BLE solutions have been 

widely explored, they often rely on high-cost AC gateways or smartphone receivers (Park et al., 2017; Li et al., 

2019; Sou et al., 2019). These configurations introduce practical challenges, such as wiring requirements, data 

privacy concerns, and the need for frequent maintenance of personal devices. 

This paper addresses these limitations by proposing one of the first fully beacon-based RTLS implementations for 

construction environments. By using BLE beacons for both reference nodes and worker-worn devices, the system 

eliminates the need for expensive gateways or smartphones, reducing costs and simplifying deployment. While 

prior work such as Park et al. (2017) demonstrated BLE deployments integrated with BIM for worker tracking, 

their system relied on fixed AC-powered gateways and a more static infrastructure layout. In contrast, our proposed 

system uses battery-powered beacons with a modular placement strategy, significantly reducing wiring needs and 

enhancing deployability on evolving construction sites. This makes the system easier to scale, relocate, and 

maintain under real-world construction conditions. 

The main goal of the present paper is to propose the hardware/software infrastructure and analysis models for 

tracking workers on dynamic construction sites. A novel RTLS is proposed, specialized for tracking workers on 

construction sites to address some of the existing gaps with respect to deployability, layout dynamism, and 

accuracy of tracking systems. In this regard, after a review of the literature on the localization techniques and the 

type of devices used in BLE-based RTLS, the gaps are identified, and objectives are set up. Then, the components 

of the proposed RTLS, including infrastructure placement strategy, RSSI-distance model, localization estimation 

model, and estimated locations post-processing models, are introduced. Finally, the details of the experimental 

study and performance of the proposed RTLS are provided. 

2. LITERATURE REVIEW 

Indoor localization has been extensively studied in construction environments to improve safety, resource tracking, 

and operational efficiency. Several technologies, including UWB, RFID, and BLE, have been investigated for real-

time localization. Each technology offers unique capabilities and trade-offs, as summarized in Table 1 which 

provides an overview of RTLS technologies in terms of accuracy, testbed environments, and hardware 

configurations. 
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Table 2: Summary of RTLS technologies in construction environments. 

Authors Technology 

Testbed 

dimensions 

(m × m) Testbed Environment 

Installed 

Devices On-

Site 

Target Object 

State 

Accuracy 

(m) 

(Umer and 

Siddiqui, 2020) 

UWB 40.0 × 55.0 Open outdoor without 

obstacles 

4 UWB 

receivers 

Stationary MAE = 0.18 

(Sadowski et 

al., 2020) 

UWB 13.4 × 9.6 Laboratory with metallic 

surfaces 

4 UWB 

receivers 

Mobile MAE = 0.30 

(Kim and Han, 

2018) 

RFID 30.0 × 30.0 Basement of an ongoing 

apartment 

4 RFID readers Mobile MAE = 1.27 

(Montaser and 

Moselhi, 2013) 

RFID 75.2 m2 Cast-in-place concrete 

building 

24 tags 

RFID 

Mobile MAE = 1.00 

(Mohsin et al., 

2019) 

BLE 10.0 × 5.0 Room with obstacles 12 beacon Stationary MAE = 1.28 

(Park and Cho, 

2017) 

BLE 6.0 × 3.0 Office with obstacles 4 beacon Stationary MSE = 0.70 

 

As seen from the table, UWB technology can provide a high positioning accuracy, with an error of as low as 18 

(cm). The BLE and RFID technologies can also deliver a reasonable level of localization accuracy by assigning 

more devices per unit area on the job sites. Due to the high positioning accuracy of UWB, it is generally used in 

construction activities that require a higher level of positioning accuracy, including critical crane lifts and off-site 

fabrication (Umer and Siddiqui, 2020). Another application of using UWB is construction resource (worker and 

equipment) tracking leading to safety monitoring practices by introducing safety boundaries and danger zones 

(Sadowski et al., 2020). Regarding safety management, RFID technology can also be used to provide decision-

makers with a warning if a worker is in proximity to hazardous areas (Kim and Han, 2018). However, the most 

used application of RFID is the localization of assets to derive knowledge about construction project status 

(Montaser and Moselhi, 2013). Despite its benefits, RFID's reliance on extensive hardware and its susceptibility 

to interference make it less ideal for frequently changing construction environments. 

BLE technology has gained significant attention in recent years due to its low cost, energy efficiency, and 

adaptability in dynamic environments. While BLE systems generally have lower accuracy than UWB, their 

scalability and ease of deployment make them ideal for applications that require frequent infrastructure relocation. 

By increasing beacon density or employing advanced signal processing algorithms, BLE can achieve sufficient 

accuracy for many construction applications. 

Building on this foundation, Table 3 delves deeper into BLE-based RTLS studies, highlighting testbed dimensions, 

reference devices, and localization techniques. This table provides a detailed comparison of BLE systems 

developed since 2017, emphasizing the importance of contextual differences in evaluating their performance. Since 

a direct comparison of those systems only based on their accuracy will not be precise due to the contextual 

differences among the experiments, specifications related to the studies’ testbeds and their hardware requirements 

are also considered. The table consists of evaluation metrics including (i) testbed dimensions, representing the 

dimensions of the RTLS coverage area; (ii) type of reference devices, introducing the type of fixed BLE devices 

used as reference nodes in the testbed; (iii) number of the reference devices, showing the number of fixed BLE 

devices used as reference nodes in the testbed; (iv) type of device worn by the target, representing the BLE tracking 

device worn by the worker; (v) accuracy, identified through the localization error of the RTLS; and (vi) localization 

techniques in the RTLS: representing the used localization techniques. 

BLE systems have been applied to various construction scenarios, with several studies demonstrating innovative 

techniques to improve localization performance. For example, Gómez-de-Gabriel et al. (2018) investigated BLE 

beacons for monitoring harness use on construction sites. Their approach utilized RSSI measurements combined 

with Extended Kalman Filters, providing a robust and relocatable solution in dynamic environments. The system 

did not require extensive calibration or external processing support, which is highly beneficial in construction 

settings where frequent infrastructure relocation is needed. However, its precision is still limited by the inherent 

variability of RSSI signals. 
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Dror et al. (2019) evaluated BLE-based worker tracking with two configurations: mobile beacons with fixed 

gateways and fixed beacons with mobile gateways. While the study demonstrated BLE's potential for construction 

sites, it also highlighted challenges in achieving consistent accuracy in dynamic and obstructed environments, 

emphasizing the need for strategic placement of beacons and gateways. Similarly, Bai et al. (2020) proposed a 

low-cost BLE-based indoor positioning system using Raspberry Pis for data collection and processing. The system 

combined trilateration and fingerprinting techniques and employed noise reduction algorithms like Kalman and 

Particle Filters to improve accuracy. Their findings highlighted the critical influence of beacon placement and 

filtering algorithms on localization performance in construction scenarios. Bencak et al. (2022) introduced a 

nature-inspired optimization algorithm for BLE beacon placement, demonstrating improved localization precision 

in warehouse environments. While primarily focused on intralogistics, the findings are adaptable to construction 

sites, where frequent infrastructure relocation and optimization are common. 

Table 4: Summary of relevant related research work. 

Authors 

Testbed 

dimensions 

(m × m) 

Type of reference 

devices 

No. of 

reference 

devices 

Type of devices 

worn by the 

target Accuracy (m) 

Fingerprinting Technique 

(D. Sun et al., 2021) 14.0 × 12.0 AC Gateway 13 BLE Beacon MAE = 0.97 

(Li et al., 2019) 8.0 × 8.0 AC Gateway 4 Smartphone RMSE = 1.00 

(Sou et al., 2019) 7.1 × 4.2 BLE Beacon 9 Smartphone MAE = 1.12 

(Dinh et al., 2020) 25.0 × 15.0 Raspberry Pi & BLE Beacon 13 Smartphone MAE = 1.18 

(X. Sun et al., 2021) 80 m² BLE Beacon 26 Smartphone MAE = 1.23 

(Castillo-Cara et al., 2017) 4.0 × 3.0 BLE Beacon 5 Smartphone MAE = 1.93 

(Taşkan and Alemdar, 

2021) 

14.0 × 11.0 AC Gateway 3 BLE Beacon MAE = 2.58 

Trilateration Technique 

(Huang et al., 2019) 8.8 × 5.6 BLE Beacon 8 Smartphone RMSE = 0.76 

(Baek and Cha, 2019) 8.0 × 3.5 AC Gateway 6 BLE Beacon MAE = 1.78 

(Cantón Paterna et al., 

2017) 

8.7 × 6.2 SBC (Raspberry Pi) 4 BLE Beacon 90% below 1.82 

(Sadowski et al., 2020) 6.0 × 5.5 SBC (Raspberry Pi) 3 BLE Beacon MSE = 2.98 

Despite the advancements in BLE-based RTLS, critical factors in developing such systems for construction sites 

have not been carefully considered. Firstly, the existing BLE-based RTLS relies on mobile phones and Direct 

Current (DC) electronics needing electrical wiring to operate. This reliance can cause interference with the 

construction workflow of job sites and adversely affect workers' hazard recognition (Umer and Siddiqui, 

2020),(Sattineni and Schmidt, 2015). Secondly, previous research studies lack an infrastructure placement strategy 

that is adaptable to construction environments where infrastructure must be relocated frequently. Thirdly, BLE 

technology has not provided an impressive level of accuracy based on the numbers reported in the literature, so it 

may not be suitable for safety-related applications (Umer and Siddiqui, 2020)(Kunhoth et al., 2020). 

However, several gaps remain. BLE signals are highly susceptible to environmental interference, such as metal 

obstructions, multipath effects, and crowded conditions, which reduce reliability (Castillo-Cara et al., 2017); 

(Taşkan and Alemdar, 2021). Existing systems often struggle with frequent infrastructure relocation demands on 

dynamic sites and exhibit inconsistent accuracy due to variations in experimental setups (Baek and Cha, 2019; 

Cantón Paterna et al., 2017). Fingerprinting methods, while accurate, require extensive and costly calibration, 

making them unsuitable for environments with frequent changes (Castillo-Cara et al., 2017). Furthermore, BLE-

based RTLS systems face challenges in dense Bluetooth environments, where high signal variability and 

processing inefficiencies can lead to errors (Huang et al., 2019; X. Sun et al., 2021). Addressing these gaps is 

essential to enhance the performance and deployability of BLE-based RTLS in real-world scenarios. 

To address some of these gaps, in the present study, modular infrastructure and a novel beacon-based tracking 

system are implemented, and algorithms are developed to locate workers on the job site accurately. This 

advancement will be a step forward in adopting RTLS in the construction industry. Cost efficiency, scalability, and 

accuracy are the three primary criteria for developing the system; accordingly, the following objectives are 
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considered for the study. (i) Proposing an RTLS architecture with minimal dependency on wiring and electricity 

outlets; (ii) Developing an algorithm to overcome the limitation of the restricted payload size of a BLE packet that 

allows the receiving beacon to broadcast only three detected transmitters at a time. (iii) Proposing a modular BLE 

beacon placement strategy consisting of repetitive modules similar in size, shape, and device placement. (iv) 

Categorizing the measurements of positions and distances of the transmitter from the receiver and developing a 

localization algorithm for each category. (v) Applying a set of post-processing steps, including filtering techniques, 

on the estimated locations to mitigate the system's incoherent computed locations, and (vi) Investigating the RTLS 

performance for various beacon placements on a human body. It is essential to emphasize that the infrastructure 

proposed in this paper was later used in combination with data fusion techniques for location, body orientation, 

and productivity state detection, to study worker behavior and production monitoring in repetitive construction 

activities (Khazen et al., 2024). While that publication focuses on high-level behavioral and productivity 

monitoring, the present paper details the foundational hardware and software developments of the BLE-based 

RTLS infrastructure that enabled it, with a focus on system design, deployment strategy, and validation under 

dynamic construction conditions. 

3. PROPOSED REAL-TIME LOCATING SYSTEM (RTLS) 

In the proposed architecture here, the fixed and mobile nodes are the transmitter and receiver, respectively. This 

enables the system infrastructure to be fully wireless (except for the gateways; on average one per every 900m2) 

and independent of smartphones which increases the deployability of the RTLS in the construction domain. The 

system has been designed so that a receiving beacon (transceiver) worn by a worker receives BLE signals from 

the closest three reference beacons on a construction site and transfers them to a cloud database through a gateway. 

This section describes the hardware, software, and algorithms deployed in the proposed RTLS. 

3.1 General Architecture of the System 

The system's communication architecture comprises four main components, i.e., Data Advertisement; Data 

Reception; Data Transfer; and Cloud Computing. The Data Advertisement component comprises transmission 

beacons fixed in the space, the primary function of which is to broadcast radio signals (BLE packets) that cover a 

particular area. The Data Reception component consists of a receiver (R) worn or carried by the workers, which 

captures the packets from the transmitter (T), with an RSSI proportional to their distance, and adds that information 

to the packet. The Data Transfer module is a gateway (G) that transmitted the information (packet) collected by 

the receiver back to a central cloud computing system via WiFi. Last but not least, Cloud Computing stores data 

packets in a database through which the RTLS models process the data (Mohsin et al., 2019). In the proposed 

RTLS, the fixed reference transmitter periodically broadcasts signal data to the wearable receiving beacon through 

the data BLE packet. Simultaneously, upon receiving the beacon BLE advertising packet from the transmitter, the 

wearable receiving beacon read the RSSI value using its radio circuitry. Then, the wearable receiving beacon 

forwards the measured RSSI data encapsulated in a data BLE advertising packet (collected from the transmitter) 

to the gateway. The overview of the communication architecture of the proposed system is shown in Figure 1 (a). 

The developed RTLS algorithms generate three models: (i) RSSI-distance estimation model; (ii) Localization 

estimation model; and (iii) Localization post-processing model. It is noted that the system is to be used for tracking 

workers (and not other objects on the site), with a height typically ranging from 155 to 205 cm. The system provides 

two dimensions (2D) location coordinates of workers. By identifying the floors on which the workers are located, 

using the reference transmitter Identities (ID)s, workers can be then tracked in the 3D space of the job site. 

Furthermore, the system is developed and tested for indoor environments where components of a target building 

(e.g., foundation, slabs) are already erected. Tracking workers in indoor environments is more challenging than in 

outdoor environments due to the absence of Global Positioning System (GPS) signals and line of sight (LoS) with 

orbiting satellites (Kunhoth et al., 2020). 

In line with existing studies, each step of our RTLS development was informed by relevant data and prior research. 

For instance, adopting minimal wiring and smartphone-free receivers stems from the need to reduce on-site 

disruptions (Dror et al., 2019) and interference concerns (Park et al., 2017). Our restricted-payload algorithm 

leverages findings on BLE packet size limitations (Sun et al., 2021), while the proposed modular placement 

strategy aligns with calls for frequently relocatable infrastructures (Bencak et al., 2022; Gómez-de-Gabriel et al., 

2018). The record-correction approach to handle Semi- and Non-logical signals builds on studies addressing RSSI 



 

 

 
ITcon Vol. 30 (2025), Khazen et al., pg. 1382 

fluctuation due to multipath (Cantón Paterna et al., 2017). Finally, incorporating multiple post-processing 

techniques (SMA, ES, Kalman) draws on widely referenced filtering practices in localization (Sou et al., 2019; 

Mackey et al., 2020), ensuring that each key methodology component reflects proven methods or recognized 

industry needs. 

 

(a) Overview of Communication Architecture of the Proposed System. 

 

 

(b) The sub-module. (c) A module composed of 100 submodules and one 

Gateway. 

Figure 1: Overview of communication architecture of the proposed system and plan view of the hardware 

infrastructure. 

3.2 Infrastructure Placement Strategies 

This study proposes a modular placement system consisting of repetitive modules similar in size, shape, and device 

placement to distribute the RTLS infrastructure according to the site layout. The modules perform independently 

and are placed as required for site localization, however, they can be linked to each other to cover the entire 

construction site or zones of interest. Each module has a square shape composed of one gateway placed at its 

center, supporting a certain number of sub-modules. Each sub-module also has a square shape consisting of four 

fixed transmitters placed at its corners. The gateway sensing range constrains the module's size, and the sub-

module dimensions are determined by the maximum distance in which the transmitting beacon can reach the 

receiving beacon and send BLE packets for the RSSI-distance prediction. We completed several experiments to 
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optimize the dimensions of submodules so that they maintain the expected level of accuracy, while minimizing the 

site installation requirements. Based on the results, some of which can be seen in (Khazen et al., 2022), the module 

with a side of 30 m and the sub-model with a size of 3.00 m are proposed. Figure 1 (b-c) illustrates the top view 

of the sub-module and the module. Increasing the density of BLE sub-modules, has been shown to enhance the 

system's accuracy by reducing signal interference and improving the robustness of proximity detection. This could 

be particularly valuable in complex construction environments and congested job sites with severe LoS blockages 

and/or magnetic fields and other forms of noise. 

 

 

 

(a) Possible scenarios for the Semi-logical records. 

 

(b) The processes in the records correction algorithm: (i) Calculating middle points between the third 

transmitting beacon and the other two transmitters (ii) Determining the guide point (iii) calculating the 

distance between the guide point and the transmitter (iv) Predicted transmitting beacon replacement. 

Figure 2: Possible scenarios for the Semi-logical records and the processes in the records correction algorithm. 

 

The collected RSSI measurements with respect to the three transmitters are recorded with their respective 

timestamp that indicates the time it was created. On average, the RTLS generates a record every 1.7 seconds with 

a standard deviation of 0.7 seconds. Since the records sometimes contain transmitters that do not belong to a sub-

module, they can be categorized based on the location of their reference transmitter in a module. This can help 

classify the records based on the concentration level of their transmitters’ position in the module. The more 

concentrated the transmitters of a record are, the more trustable the records will be for the localization model to 

estimate the location of the target node. Thus, based on the level of concentration of the transmitters in records, 

they are categorized as (i) Logical, i.e., a record whose three broadcasted transmitters belong to the same sub-

module, and the maximum allowable distances between the transmitters are equal to or less than the diagonal 
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length of the sub-module; (ii) Semi-logical, i.e., a record that fulfills the ‘Logical’ requirement for the pair of the 

two strongest transmitters, and the scenarios but not the third transmitting beacon; and finally, (iii) Non-logical, 

i.e., a record that belongs to neither Logical nor Semi-logical record. Figure 2 (a) depicts the four possible scenarios 

for Semi-logical records. 

3.3 Software Solutions for Semi- or Non-logical Records 

When a receiving beacon is located in a sub-module, the transmitters of that sub-module are expected to be the 

closest. In practice, however, sometimes receivers capture stronger signals from transmitters farther away than the 

closest ones, generating records with scattered transmitters not necessarily belonging to the same sub-module. This 

can happen due to the ‘multipath’, which strongly affects the propagation of BLE signals and contributes to RSSI 

fluctuations (Cantón Paterna et al., 2017). The result will be Semi- or Non-logical records, which must be reduced 

as much as possible, to avoid confusion for localization algorithms. A novel algorithm is developed to convert 

Semi-logical records to Logical ones and accordingly mitigate the impacts of multipath. Figure 2 (b) shows the 

processes involved in the record correction algorithm.  In order for a Semi-logical record to be converted to a 

Logical one, the third broadcasted transmitting beacon should be substituted with the one which belongs to the 

same module as the other two transmitters. The substitution of the third transmitting beacon is made by applying 

a set of processes on the Semi-logical records. Firstly, the algorithm calculates midpoints (Xh1,Yh1)  and (Xh2,Yh2)  

of the lines connecting the third transmitting beacon (X3,Y3) to the other two (X1,Y1) and (X2,Y2) (see Figure 2 (b)). 

Then, the middle point between the previously found midpoints is calculated (Xm,Ym).  This point acts as a guide 

to specify the approximate area where the third transmitting beacon should reasonably be located. In the next step, 

distances between the guide point and transmitter in the neighborhood (except those already included in the record) 

are calculated. The transmitting beacon whose distance from the guide point is minimum is considered the correct 

third transmitting beacon in the record. In the final step, the correct transmitting beacon replaces the old one by 

keeping its RSSI value. The preserved RSSI value is associated with the old transmitting beacon, which is not 

necessarily the same as the RSSI of the replaced (correct) transmitting beacon. However, this can be used as the 

best approximation for the RSSI value of the replaced (correct) transmitting beacon. The algorithm’s processes are 

shown in Appendix A. 

3.4 RSSI-distance Prediction Model 

For the Locating System to correctly identify the receiving beacon's location, the RSSI values captured from the 

three transmitters must be reliably translated into physical distances. To collect the dataset for training an RSSI-

distance relationship, the receiving beacon was tested at 25 reference points (stations) marked in 25 cm intervals 

on a straight line with a 6.00 m total length. Since, in practice, the workers may keep (or wear) the receiving beacon 

beacons in various orientations or even carry them in their pockets, the experiments were performed for four 

orthogonal orientations of the transmitting beacon with respect to the receiving beacon. The number of RSSI 

records at each station, considering all the orientations, was around 300, and the total number of RSSI records for 

the experiment was 7,531. 

Before training the model, outliers caused by the environmental noise were identified based on their distance from 

their nearest RSSI records and were eliminated from the dataset. Each record is ranked based on its distance to its 

70th nearest neighbor, and the top records in this ranking are considered to be outliers. Based on trial and error, on 

the reference of a Random Forest (RF) model performance, the number of strongest outliers removed per distance 

and from the training set were found as 12 and 300 respectively. Fig. 3 (a) shows the removed outliers as orange 

dots. After that, the RSSI records were normalized through z-transformation since the machine learning ML model 

used in this study for training RSSI–distance relationship (i.e., RF) is distance-based (Iqbal et al., 2018). The 

average and standard deviation (SD) of the values were calculated, and the scaled values were calculated by Z = 

(x – Avg.) / SD, so the average value and the standard deviation of the RSSI values were transformed to 0 and 1, 

respectively. 

While different statistical and machine learning models, including Random Forest (RF), Gradient Boosting 

Decision Tree, Generalized Linear Regression (GLR), and k-Nearest Neighbours (kNN), were tested for training 

the attenuation equation (Details can be found in Khazen et al., 2022), RF model provided the best results in this 

study based on the results of a 5-fold cross-validation. The trained model achieved the Mean Absolute Error (MAE) 

and Root Mean Square Error (RMSE) of 0.507 (m) and 0.671 (m) in RSSI-distance prediction, respectively. 
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3.5 Localization Estimation Model 

The localization estimation model can encounter various scenarios depending on the distances estimated between 

transmitters and the receiving beacon. Hence, the arrangement of circles representing the estimated distance of the 

receiving beacon from the transmitter and the coordinates of the transmitter should be determined first. The 

receiving beacon’s location is calculated through a separate algorithm in the localization model for each possible 

arrangement. Given three estimated distances, i.e., r1, r2, and r3, between the transmitter t1 through t3, and the 

target node (receiving beacon), three circles, i.e., C1, C2, and C3, can be drawn. The center point of these circles 

is the known position of the reference transmitter. Their radii are equal to the estimated distances between the 

target node and the transmitter. To better clarify the localization model, the scenarios, along with their 

corresponding algorithm to estimate the target node's location are discussed separately in the following. 

 

(a) Scatter plot showing the removed outliers. 

  

(i) Scenario (a). (ii) Scenario (b). 

  

(iii) Scenario (c). (iv) Scenario (d). 

(v)  
(b) Scenarios of different arrangements for triangulation. 

Figure 3: Details of the RSSI-distance prediction model and the localization estimation model. 
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3.5.1 Scenario (a) three overlapping circles 

There is an area of overlap among the three circles (Figure 3 (b) - Scenario a). In this scenario, the target location 

is estimated as the centroid of the intersection area, created by the three points P1, P2, and P3 using the following 

formula (1):  

𝐹𝑥 =
𝑃1𝑥 + 𝑃2𝑥 + 𝑃3𝑥

3

𝐹𝑦 =
𝑃1𝑦 + 𝑃2𝑦 + 𝑃3𝑦

3

 (1) 

3.5.2 Scenario (b) two overlapping and one isolated circles 

When only two circles overlap in an area, and the third circle is isolated (Figure 3 (b)- Scenario b); after 

determining the intersection points P1 and P2, the distances (d1 and d2) from the center of the isolated transmitting 

beacon, i.e., h, to the two intersection points are calculated. Then, the final estimated location of the target is the 

point whose distance (to the isolated circle’s center) is shorter.  

3.5.3 Scenario (c) two circles overlapping the third, but not one another 

The scenario is that one circle (C2) intersects with the other two circles (C1, C3), but C1 and C2 themselves do 

not intersect (Figure 3 (b)- Scenario c). The intersection points P1 through P4 are calculated between the circles 

in this scenario. Then, the distances d1 and d2 between the intersection points of the separate circles (C1, C3) are 

calculated by equations (2) and (3). Finally, using equation (4), the midpoint F on the shorter distance (d1) is 

chosen as the final estimated location of the target beacon. 

𝑑1 = √(𝑃4𝑋 − 𝑃3𝑋)2 + (𝑃4𝑌 − 𝑃3𝑌)2 (2) 

𝑑2 = √(𝑃2𝑋 − 𝑃1𝑋)2 + (𝑃2𝑌 − 𝑃1𝑌)2 (3) 

𝐹𝑥 =
𝑃1𝑥 + 𝑃2𝑥

2

𝐹𝑦 =
𝑃1𝑦 + 𝑃2𝑦

2

 (4) 

3.5.4 Scenario (d) Three isolated circles 

In rare cases, there are three short coverage areas whose corresponding circles do not intersect. The arrangement 

of the circles in this scenario is demonstrated in Figure 3 (b)- Scenario d. For this scenario, the target beacon 

constructs a bounding box around each transmitting beacon, where the transmitting beacon is placed at the center, 

and the edge length of the bounding box is twice its estimated distance. The target beacon determines the 

intersection of the boxes, with boundary locations given by 𝑥min, 𝑥max, 𝑦min, and 𝑦max which are calculated from 

equations (5) through (8). Finally, the center point of this intersection box is considered as the estimated target 

location ( 𝑥est and 𝑦est) which are calculated by equations (9) and (10). Since the circles do not intersect in this 

scenario, this technique creates a hypothetical box whose edges are circumscribed by the edges of the transmitting 

beacons' bounding boxes.  

𝑥𝑚𝑖𝑛 = 𝑚𝑎𝑥(𝑥1 − 𝑑1, 𝑥2 − 𝑑2, 𝑥3 − 𝑑3) (5) 

𝑥𝑚𝑎𝑥 = 𝑚𝑖𝑛(𝑥1 + 𝑑1, 𝑥2 + 𝑑2, 𝑥3 + 𝑑3) (6) 

𝑦𝑚𝑖𝑛 = 𝑚𝑎𝑥(𝑦1 − 𝑑1, 𝑦2 − 𝑑2, 𝑦3 − 𝑑3) (7) 

𝑦𝑚𝑎𝑥 = 𝑚𝑖𝑛(𝑦1 + 𝑑1, 𝑦2 + 𝑑2, 𝑦3 + 𝑑3) (8) 

𝑥𝑒𝑠𝑡 =
(𝑥𝑚𝑖𝑛 + 𝑥𝑚𝑎𝑥)

2
 (9) 

𝑦𝑒𝑠𝑡 =
(𝑦𝑚𝑖𝑛 + 𝑦𝑚𝑎𝑥 )

2
 (10) 

To provide clarity on the proposed algorithm, the main steps of the localization estimation process are outlined in 

Appendix B.  
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3.6 Estimated Locations Post-Processing Model 

Reflection and diffraction attributed to the presence of walls and floor (objects) within the indoor environment can 

produce multipath and fading effects, respectively. This can cause distortions in the estimated distances between 

the receiver and transmitter, resulting in noise for the location data of a target node (receiver) (Takenga et al., 

2007). Therefore, the estimated locations are post-processed to minimize the effect of distortions on the location 

of the target node. Two post-processing steps are performed in this study, which will be explained in the following. 

3.6.1 Shifting the estimated location to the strongest transmitting beacon 

The localization model considers the transmitting node whose signal is received with the highest RSSI value as 

the closest and most reliable transmitting beacon for localization. Accordingly, the estimated location of the target 

node will be shifted toward the location of that transmitting beacon. Firstly, the associated pair-wise weights 

between the estimated distances of the target node from the first and second transmitter received with the highest 

RSSI value are computed. It is noted that the RSSI-distance model occasionally predicts the distance between the 

receiving beacon and the transmitting beacon with the highest RSSI value longer than the one with the second-

highest RSSI value. Given the two distances d1 and d2 as the estimated distances between the worker and the two 

transmitters, sorted ascendingly, the weights are calculated as follows: 

𝑤 =
𝑑2

𝑑1
 (11) 

Where 𝑑1 is the estimated distance between the target node and the closest transmitting beacon and 𝑑2 is the 

estimated distance between the target node and the second closest transmitting beacon.  Then, the following 

equations are used to adjust and estimate the final location of the target node for all the scenarios. 

𝑥𝑓𝑖𝑛 =
𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝑋 + 𝑋1 ∗ 𝑤

1 + 𝑤
 

(12) 

𝑥𝑓𝑖𝑛 =
𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝑋 + 𝑋1 ∗ 𝑤

1 + 𝑤
 

(13) 

Where 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝑋 and 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛_𝑌 are the coordinates of the estimated location by the localization model, and 

𝑋1 and 𝑌1 are the coordinates of the location of the strongest transmitting beacon. 

3.6.2 Applying filtering  

After shifting the estimated location to the strongest transmitting beacon, three filtering techniques are applied to 

smooth the locations' calculations. They include Simple Moving Average (SMA), Exponential Smoothing (ES), 

and Kalman Filtering (KF). These techniques are used as KF proved to have enough accuracy, and the other 

techniques (SMA and ES) provided low computation time. However, particle, particle Markov chain, Gaussian 

Sum Filtering, and other variants of Kalman have been deployed in previous studies (Malekzadeh et al., 2020),(Sou 

et al., 2019). 

SMA is the most common filtering algorithm implemented in localization tasks. Despite its simplicity, it reduces 

random noise while retaining a sharp step response (Smith, 1999). A filtered record is calculated as the average of 

values within a symmetric window of size N around that record, where N is the pre-defined size of the window of 

the MA filtering (Mackey et al., 2020). It is given as: 

𝑟𝑒𝑐𝑜𝑟𝑑𝑀𝐴 =
∑  𝑁

𝑖=1 𝑟𝑒𝑐𝑜𝑟𝑑𝑖

𝑁
 

(14) 

The second technique used in this study, ES, is one of the most popular and easy-to-use filtering methods 

(Ravinder, 2016). The basic formula of exponential smoothing is (Ji et al., 2012): 

𝑆𝑡 = 𝛼𝑥𝑡 + (1 − 𝛼)𝑆𝑡−1 (15) 

where 𝑆𝑡 is the smoothed location at time 𝑡, 𝑥𝑡 is the actual observation location at time 𝑡, 𝑆𝑡−1 is the smooth 

location at time 𝑡 − 1, and 𝛼 is the smoothing constant with a domain between 0 and 1. The accuracy of the 

exponential smoothing model mainly depends on the selection of 𝛼. 

The third tested technique was KF, which uses noisy observed data and data with other inconsistencies to estimate 

unknown states by the use of a mathematical model. KF was originally introduced by Kalman to solve the discrete-

data linear filtering problem (Kalman, 1960) and has been used ever since by several studies for localization.  KF 

filter is a standard optimal estimation algorithm based on Bayesian filter theory (Gupta et al., 2021). It has two 
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stages, prediction and update (correction). Firstly, the filter predicts the next state at time  𝑡 based on the current 

state at time (𝑡-1) before the next state is made. The second stage computes a gain value G(𝑡)based on the prior 

noise estimate. It then updates the posterior state and system noise estimations using the latest state observation 

and current gain value (Mackey et al., 2020). In our study, the target node (the location of a worker) is described 

by four parameters (state variables), which can be written in a state vector as follows: 

𝒙 =  [x, x_vel, y, y_vel] 
(16) 

where x and y are the cartesian coordinates of the target node and x_vel and x_vel are the velocities in the x and y 

directions. The (x,y) coordinates are set as the starting location of the target, and the velocity is set to 0 as the 

initial value for our experiment (Cantón Paterna et al., 2017). The dynamics for each of our states in the current 

record "𝑡" as a function of states in the previous record " 𝑡-1 " are given as the following equations: 

x(𝑡) = x(𝑡 − 1) + dt * x_vel(𝑡 − 1) 
(17) 

x_vel(𝑡) = x_vel(𝑡 − 1) 
(18) 

y(𝑡) = y(𝑡 − 1) + dt * y_vel(𝑡 − 1) 
(19) 

y_vel(𝑡) = y_vel(𝑡 − 1) 
(20) 

where dt represents the change in time (time-step), and it is assumed that (x, y) coordinates are updated based on 

the current location and velocity. The formulas can be rewritten in matrix format as: 
x (𝑡) = F × x (𝑡 − 1) (21) 

where: 

𝑭 = [

1 𝑑𝑡 0 0
0 1 0 0
0 0 1 𝑑𝑡
0 0 0 1

] 

(22) 

Besides, the state covariance P indicates how much the state variables influence each other’s values, determining 

the system's dependency on the initial state values. The values of the initial matrix P, i.e.,  (𝑛), indicate the level 

of uncertainty that is considered for the estimated state (in this case, the location estimated by RTLS): 

𝑷 = [

𝑛 0 0 0
0 𝑛 0 0
0 0 𝑛 0
0 0 0 𝑛

] 

(23) 

The measurement matrix H relates the measurements to the states’ variables. z is the measurement vector, and X 

is the states’ variables vector. The H function is used to obtain from the state variables vector x the values (in this 

case, the location) that are being measured (Cantón Paterna et al., 2017): 

𝒛 = [𝑥, 𝑦] 
(24) 

z = Hx 
(25) 

𝑯 = [
1 0 0 0
0 0 1 0

] 
(26) 

This study examined two post-processing variants to smooth the estimated locations, namely ‘mild’ and ‘intense’. 

Table 5 shows the parameter values used for the post-processing techniques at each level. 

Table 6: The parameters changed for the post-processing levels. 

Post-Processing Technique Filtering Technique Mild Post-Processing Intense Post-Processing 

Shifting the estimated 

location 
– w (weight) = 0.2 * W w (weight) = 1 * w 

Filtering technique 

Exponential smoothing α (alpha) = 0.3 α (alpha) = 0.8 

Simple moving average neighbors = 20 records neighbors = 6 records 

Kalman 
observation covariance = (5 x 

previous estimated value) 

observation covariance = (2000 x 

previous estimated value) 
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4. RESULTS AND DISCUSSION 

The experimental study and analysis of the proposed RTLS focused on the potential factors that can affect the 

system’s performance, including (i) the post-processing (smoothing) intensity level and (ii) Identifying the ideal 

position of the receiver on the workers. We tested three placements of the BLE beacons on workers, including (i) 

on the hardhat, (ii) on the chest, and (iii) on the wrist.  

The system localization accuracy is examined against the effects of the post-processing techniques/intensity, 

filtering techniques, localization, and placement of the receiving beacon on different human body parts. The 

distance error between the ground truth location and the estimated location is computed using the Mean Absolute 

Error (MAE): 

Error = √(𝑥calc − 𝑥real )2 + (𝑦calc − 𝑦real )2 
(27) 

where 𝑥calc  and 𝑦calc  are the coordinates of the target’s estimated location, and 𝑥Real  and 𝑦Real  are the actual 

coordinates of the target. 

Results were compared versus the benchmark case of placing the receiving beacon on a tripod at the same level as 

the transmitter. Details of the comparative study will be discussed elsewhere. However, the hardhat placement was 

used in this study for tracking workers due to the better Line-of-Sight for the receiver, hence showing closer results 

to the benchmark scenario, as will be explained later in this section. 

4.1 Testbed Environment and System Setup 

An in-lab experiment for analyzing the performance of the developed Locating System was conducted in a 9.00 m 

× 8.60 m area, referred to as the ‘testbed’, where computers, electronic devices, and magnetic fields were present. 

The lab environment provided an open space for testing and creating layouts to help simulate the effect of obstacles 

on the job site (see Figure 4 (a-b)). Two sub-modules, consisting of six transmitters, were deployed in the 

experiment. The receiving beacon, placed on top of a construction helmet, acted as the target node. The 

experimental methodology comprises two scenarios, where the target node is static and dynamic, to obtain a 

reliable system performance evaluation. For the static scenario, 66 reference grid points (stations) located 0.60 m 

apart from one another were marked in the testbed to ensure the target node's exact position while analyzing the 

system's positioning accuracy. The number of records that the receiver captured from the transmitters at each 

station was around 35, and in total, 2,344 records were collected and processed. 

The impact of metal on signal degradation is admitted by the literature (Mohsin, et al. (2019) and Cantón Paterna, 

et al. (2017) among several others) and cannot be ignored. Various metal objects were available in our testbed, 

e.g., see the metallic files in FIG 4 (b), as well as the reinforcement available in the slab and columns, and hence, 

our results are despite the availability of such noise in the test environment. Nevertheless, studying the exact impact 

of reinforcement and other metals commonly available on a construction site requires closer investigations in the 

future, particularly for applications where a high-accuracy localization is crucial.  

As per the dynamic scenario, the receiver captured signals while closed-loop trajectory paths were walked 

continuously at various speeds by the target node, as illustrated in Figure 4 (c-d). Two trajectory patterns were 

considered, and for each of them, the experiment was repeated three times with various speeds to obtain a reliable 

estimation of the system performance when the target node is dynamic. Since the number of turnings included in 

the trajectory pattern (I) is less than that of pattern (II), the target could travel pattern (I) at a higher speed. The 

records generated were 140 and 301 during the trajectory patterns (I) and (II), respectively. The actual records 

generated during the static and dynamic test scenarios are illustrated in Figure 4 (e-g). 

We tested and evaluated the impact of various movement patterns on RTLS accuracy by tracking subjects 

performing different construction activities at varied speeds and body positions, including walking, stationary 

tasks, and transitions between work areas. Through the use of BLE beacons and accelerometers mounted on 

workers, the system captured fluctuations in signal strength due to body movements associated with primary tasks 

such as painting, plastering, and masonry, as well as secondary support activities. While movement patterns do 

introduce signal fluctuations, the RTLS system maintained relatively high accuracy in detecting location and 

identifying productivity states, albeit with some decline during more dynamic tasks. For further details on the setup 

and findings, readers are referred to (Khazen et al., 2024). 
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(a) Placement plan of the devices and the reference points. (b) View of the in-lab testbed. 

 
 

(c) Trajectory pattern (i) considered for dynamic test 

scenario. 

(d) Trajectory pattern (ii) considered for dynamic test 

scenario. 

 

(e) Heat map of the number of records received by the target node (receiver) at each station. 

 

 

(f) Actual locations of the records for the trajectory 

pattern (I). 

(g) Actual locations of the records for the trajectory 

pattern (II). 

Figure 4: Details of the in-lab experiments (the axes of the heatmap and the scatter plots are in grid point (station) 

and meter, respectively). 
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4.2 Effects of the post-processing intensity on the system performance 

This sub-section compares different intensity levels of post-processing on the localization accuracy for static and 

dynamic targets. In order to show the effectiveness of post-processing on the estimated locations, the system was 

also tested on the raw location data, i.e., without shifting the estimated locations and applying the filtering 

techniques. Table 7 shows the impacts of the different strength levels of post-processing on the localization 

accuracy for both experiment scenarios. 

Table 8: Localization accuracy for the experiment scenarios with various post-processing methods. 

Filtering 

Technique 

Applying “Intense” smoothing in post-processing  Applying “Mild” smoothing in post-processing 

Static 

Dynamic 

Static 

Dynamic 

Trajectory 

pattern (I) 

Trajectory 

pattern (II) 

Trajectory 

pattern (I) 

Trajectory 

pattern (II) 

MAE SD MAE SD MAE SD MAE SD MAE SD MAE SD 

Kalman 0.64 0.43 1.85 0.84 1.50 0.99 0.78 0.56 0.66 0.55 0.51 0.43 

Moving Average 0.65 0.44 2.21 1.05 1.81 1.05 0.73 0.46 0.72 0.48 0.56 0.49 

Exponential 

Smoothing 
0.75 0.51 1.05 0.80 1.57 1.07 0.90 0.69 0.99 1.02 0.89 1.03 

Raw Locations 1.04 0.82 1.18 1.12 1.03 0.93 1.04 0.82 1.18 1.12 1.03 0.93 

As shown in Table 9, the least effective filtering technique could improve the accuracy of the raw estimated 

locations by around 28 percent by applying an “intense” smoothing, and the mean error can be reduced to as low 

as 0.64 m using the Kalman filter for the static test scenario. In sharp contrast, applying the Kalman filter's intense 

post-processing increased the mean error by 178 percent. Since the target does not move (for a short time) in a 

static scenario, the filtering techniques could leverage the previous records generated with a similar location, 

resulting in the minimized effect of noisy estimated locations by applying intense smoothing. However, the target 

movement in the dynamic test scenario had a significant negative impact on the effectiveness of applying intense 

filtering. It is evident from Table 10 that applying mild post-processing on the raw estimated locations for the 

dynamic test scenario could reduce the mean error from 1.18 m to 0.66 m and from 1.03 m to 0.51 m for the 

trajectory patterns (I) and (II), respectively. In the best scenario, the “Mild” strength level of post-processing 

achieved a mean error and SD of 0.51 m and 0.43 m, respectively, for the dynamic test scenario.  

As per the static test scenario, a heatmap was produced to show the localization error of the static test experiment 

(under intense Kalman). The 66 grid points in the heatmap denote the test stations in the testbed. Regarding the 

dynamic test scenario, scatter plots of the distance error of the target’s estimated locations in both trajectory 

patterns were created. Figure 5 (a) shows the heatmap of MAE of the estimated locations at each station, and 

Figure 5 (b-c) provides the scatter plots demonstrating the system's precision in the coverage area. As seen in 

Figure 5 (a), except for four test stations, the MAE of the rest of the stations is equal to or less than 1.00. The 

results shown in Figure 5 (b-c) conclude that the errors are uniformly distributed in the testbed except for the areas 

around the turn points. Hence, the system's accuracy does not have a bias toward a specific area of the testbed, 

including sub-module edges or areas close to the transmitters. 

4.3 Discussion and Recommendations for Construction Sites 

Based on the cost of deployment, the man-hours requirement for installing the RTLS infrastructure, the processing 

time, and the level of accuracy achieved, the authors conclude that deploying the proposed BLE-based RTLS is 

feasible for tracking workers on construction job sites. Deploying BLE beacons as the reference and tracking BLE 

devices help to minimize the interference to the workflow and safety implications resulting from cables of the 

wired sensors, and it also makes the RTLS infrastructure more resistant to fall damages. Since the location data 

are not collected nor transferred through the worker's smartphone, the data privacy issue is resolved in the 

developed RTLS. This issue is regarded as the most critical concern by workers in the adoption of tracking devices 

on job sites.  

To further assess the resilience of the RTLS in the job site, future studies should involve experiments with 

reinforced concrete (RC) components such as columns, walls, and slabs in the testbed to simulate metal 

interference commonly encountered on construction sites. By positioning transmitters and receivers near the 

column, the setup could quantitatively evaluate the signal degradation and accuracy impact due to metal barriers. 
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Additionally, it would be valuable to investigate the effects of magnetic fields generated by metal components on 

BLE signal transmission and localization accuracy. Sensing and measuring these fields and using the readings as 

additional training data could provide insights into how magnetic interference influences the BLE tracking system, 

and beyond that can enable modification methods to the attenuation equation, based on the level of magnetic fields 

sensed on the site. While the accuracy of current RTLS fits general applications such as automated workspace 

monitoring and contact tracking among workers (for applicants as in pandemics); such improved tracking 

techniques can add a significant value for use cases that require a higher level of accuracy. 

 

(a) Heatmap of MAE for the estimated locations at each station. 

 

 

(b) Scatter plots of the system's precision in 

Trajectory pattern (i). 

(c) Scatter plots of the system's precision in 

Trajectory pattern (ii). 

  

(d) Estimated locations – beacon on the tripod. (e) Estimated locations – beacon was on the hardhat. 

 
 

(f) Estimated locations – beacon was on the chest. (g) Estimated locations – beacon was on the wrist. 

Figure 5: Details of the experimental results. 
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Moreover, various intensity levels of the post-processing were found to be efficient for different applications, 

depending on the level of the worker’s movement that each application requires monitoring. For instance, 

productivity assessment of crews involved in static operations, e.g., masonry work, carpentry welding, plastering, 

etc., requires an intense level of smoothing. Since the workers are not being relocated in short intervals, the filtering 

techniques can take advantage of their previous states’ records to interpret their current state, which minimizes the 

error in the estimated locations. By contrast, mild smoothing is necessary for applications associated with workers’ 

dynamic behavior, such as safety-related applications, including the deployment of safety alert systems for 

hazardous zone avoidance when approaching dangerous areas on the job site. A combination of mild and intense 

smoothing will be efficient for other applications in which the workers are both static and dynamic, such as 

automated workspace identification. As per the filtering type, Moving Average is the ideal alternative for safety-

related applications due to its acceptable performance 95% of the time, and the shorter computation time than 

others, which will be essential for deploying real-time solutions. Although the Kalman filter roughly outperforms 

other filtering techniques in this study's evaluation metrics, it takes a significantly higher computation time, making 

it less appropriate for safety management applications than the Moving Average. However, the Kalman filter can 

be deployed successfully for productivity monitoring applications, including path planning and workspace 

identification. 

For a successful RTLS deployment on the job sites, the following recommendations are made to enable a proper 

setup: (i) deploy the sub-module on the boundary of the area of interest (no need for a buffer area outside the target 

zone); (ii) distribute the sub-modules according to the site layout and keep on changing the position of the sub-

module as the layout of the construction site changes during the project; (iii) consider the minimum size of the 

sub-module that is the maximum distance in which the transmitting beacon can send BLE packets reliably for 

RSSI-distance prediction throughout the localization. While the dimensions provided in this paper for the sub-

modules reflect the maximum distances (given the hardware and software specifications of the system), in practice 

there are no limitations in lowering such dimensions, particularly when the site congestion or Non-Line-of-Sight 

(NLoS) issues challenge the RTLS accuracy; (iv) keep the transmitters at a minimum of height that is equal to the 

average of the worker’s height, i.e. 2, or more in order for the beacons to have LoS with one another (increasing 

the height beyond that results in a shorter sub-module size); (v) turn the orientation of the transmitters towards the 

ground to provide an evenly transmission coverage area (particularly for job sites with many obstacles). Compared 

with recent studies, the developed RTLS outperforms them based on various performance metrics. The processing 

is relatively fast (nearly real-time); on average, the system generates a record every 1.7 seconds with a standard 

deviation of 0.7 seconds. The processing time for estimating a worker’s location for 2,160 records is about 6.5 

seconds. The low cost of devices is one of the essential advantages of the proposed system. As of 2022, the cost 

of system devices is estimated at $14 CAD for each transmitting beacon ($120 per 900 Sq.m); about $50 CAD for 

each receiving beacon (one per worker); and $150 CAD for each gateway (one per 900 Sq.m). Substitution of the 

commonly used reference devices (that cost as high as the gateways of the proposed RTLS) with affordable BLE 

transmitting beacon helped to reduce the RTLS implementation cost significantly. Compared with the literature 

(Li et al., 2019; Dinh, et al. 2020; Sun, et al., 2021a, among others), the proposed RTLS has been considered a 

superior solution in terms of costs on large construction sites that require a significant number of reference devices 

for RTLS. 

The findings from this work offer implications for both researchers and practitioners. In terms of research 

contributions, this study validates that a system built entirely on beacons, eliminating the need for smartphones or 

complex gateway infrastructure, can effectively reduce both implementation costs and physical wiring 

requirements while enhancing on-site privacy protection. The developed record-correction algorithm, combined 

with adjustable smoothing parameters, establishes a methodological foundation that researchers can build upon to 

address various challenges, such as harsh environmental conditions, significant multipath interference, or 

applications demanding higher precision, including safety-critical operations. From an implementation 

perspective, this system provides construction management teams with an economical and minimally disruptive 

solution for workforce tracking that maintains data privacy without requiring workers to carry personal devices. 

The system's flexibility in smoothing intensity allows project teams to fine-tune their monitoring approach based 

on specific needs – whether that's real-time safety monitoring requiring rapid updates or longer-term productivity 

analysis benefiting from more stabilized data. The developed RTLS represents an advancement for the construction 

industry, offering a practical solution that successfully balances cost-effectiveness, measurement accuracy, and 

operational adaptability within the dynamic nature of construction environments. 
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5. CONCLUDING REMARKS 

Tracking workers and objects on construction job sites is essential for various applications, including safety, 

progress monitoring, on-site coordination, and geographical mapping of worker locations and trajectories. The 

main goal of this study was to design a Real-Time Locating System for construction job sites by considering the 

aspects affecting the system deployability in the construction domain, including portability, affordability, 

scalability, and localization accuracy. Unlike traditional Bluetooth-based RTLS, in which smartphone or wired 

devices are included in the system architecture, this study uses wireless beacons as fixed and target nodes; hence 

there is no wiring except for the gateways. Furthermore, the modular infrastructure placement strategy proposed 

here proved the RTLS scalability and efficiency in terms of cost and power consumption. The strategy can be 

particularly beneficial in distributing the RTLS infrastructure according to the site layout to minimize the effects 

of NLOS between the transmitters and the receiver. The system also demonstrates no bias toward a specific 

coverage area and achieved, 90% of the time, an error of less than 1.17 for the test scenarios. Accordingly, the 

main contributions of this work can be summarized as (i) proposing an RTLS architecture with minimal 

dependency on wiring and electricity outlets; (ii) developing an algorithm and configuring receiving and 

transmitter to minimize the effect of signal interference caused by a network of transmitters; (iii) categorizing the 

measurements of positions and distances of the (fixed) transmitter from the (moving) receiver and developing 

localization algorithms for each category; and (iv) examining the performance of various post-processing 

mechanisms on the estimated locations to find the best solutions for mitigating the system's incoherence in 

computed locations when the target is static and dynamic. 

Although this study highlights the feasibility of deploying BLE beacon technology as an RTLS, it has a few 

limitations that require further investigation. Firstly, since the experiments are conducted in a laboratory 

environment, the effect of distractions and noise, which generally exist in a construction environment, is 

minimized. Although the reference beacons are placed according to the layout of a building (e.g., walls, columns), 

the system might be vulnerable to the presence of movable obstacles (e.g., workers, equipment) in the RTLS 

coverage area due to the violation of LoS. Secondly, the body position of the worker wearing the receivers is 

assumed to be almost vertical in this experiment. The assumption can be valid for tracking workers in most 

activities; however, if the work involves physical movements of the worker’s head, the accuracy of the RTLS could 

be affected due to the NLoS between the receiver and transmitters. Reducing the size of sub-modules of the 

tracking infrastructure can offer a potential solution in such cases. Thirdly, as per the filtering techniques, newer 

versions of Kalman filtering can be tested for location data post-processing in future research. Last but not least, 

the impact of various beacon configurations on the battery life is a practical factor for deployment that requires 

investigation. 
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APPENDIX A: SEMI-LOGICAL TO LOGICAL RECORD CONVERSION 

ALGORITHM 

 

 

Input : Records =
{user_id, Distance1, X1, Y1, Distance2, X2, Y2, Distance3, X3, Y3, timestamp }//the 

collected records  
Output : Records =

{user_id, Distance1, X1, Y1, Distance2, X2, Y2, Distance3, X3, Y3, timestamp }  
Process 1 : Define: //initial the mid-points of the lines connecting the strongest and second 

strongest transmitting beacons to the third transmitting beacon 

             ℎ1 (x)=  
(X1+X3)

2
 , ℎ1 (y)=  

(𝑌1+𝑌3)

2
  

             ℎ2 (x)=  
(X2+X3)

2
 , ℎ2 (y)=  

(𝑌2+𝑌3)

2
 

 
process 2 :  Calculate: //initial the mid-point between the points of h1 and h2 

             𝑚𝑥 =  
(𝑋ℎ1+𝑋ℎ2)

2
 , 𝑚𝑦 =  

(𝑌ℎ1+𝑌ℎ2)

2
  

 
Process 3 : Define: // initial the eligible transmitting beacons 

            𝑇𝑟𝑖 ! = (𝑇𝑟1 & 𝑇𝑟2 & 𝑇𝑟3), (I ∈ R) 

Calculate: // calculate the distance between m and all the transmitting beacons 

   𝑑𝑖  =  √(𝑚𝑥  − 𝑇𝑟𝑖(𝑥))
2

+ (𝑚𝑦 − 𝑇𝑟𝑖(𝑦))
2
 

Judge: //determine the transmitting beacon whose distance is shorter 

           If   𝑑𝑖 >   𝑑1 >  𝑑2> … >  𝑑𝑛  , (n ∈ N) 

                 Select 𝑇𝑟𝑖  
Process 4 : Replace: // substitute the third transmitting beacon with the newly selected 

transmitting beacon 

(𝑇𝑟𝑖 <=> 𝑇𝑟3)  
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APPENDIX B: PSEUDO-CODE FOR LOCALIZATION ESTIMATION MODEL 

Input : r1, r2, r3 : Estimated distances from transmitters t1, t2, t3 

(t1_x, t1_y), (t2_x, t2_y), (t3_x, t3_y) : Coordinates of transmitters 

Output : (x_est, y_est) : Estimated coordinates of the receiving beacon 

Process : Begin 

  // Scenario (a): Three Overlapping Circles 

  If Circles C1, C2, and C3 Overlap Then 

      Calculate Intersection Points (P1, P2, P3) 

      x_est = (P1_x + P2_x + P3_x) / 3 

      y_est = (P1_y + P2_y + P3_y) / 3 

  EndIf 

 

  // Scenario (b): Two Overlapping and One Isolated Circle 

  If Only Two Circles Overlap Then 

      Calculate Intersection Points (P1, P2) 

      d1 = Distance from isolated circle center to P1 

      d2 = Distance from isolated circle center to P2 

      If d1 < d2 Then 

          (x_est, y_est) = P1 

      Else 

          (x_est, y_est) = P2 

      EndIf 

  EndIf 

 

  // Scenario (c): Two Circles Overlapping the Third, but Not Each Other 

  If Two Circles Overlap a Third, But Not Each Other Then 
      Calculate Intersection Points (P1, P2, P3, P4) 

      d1 = Distance(P3, P4) 

      d2 = Distance(P1, P2) 

      If d1 < d2 Then 

          x_est = (P3_x + P4_x) / 2 

          y_est = (P3_y + P4_y) / 2 

      Else 

          x_est = (P1_x + P2_x) / 2 

          y_est = (P1_y + P2_y) / 2 

      EndIf 

  EndIf 

 

  // Scenario (d): Three Isolated Circles 

  If No Circles Overlap Then 

      x_min = max(t1_x - r1, t2_x - r2, t3_x - r3) 

      x_max = min(t1_x + r1, t2_x + r2, t3_x + r3) 

      y_min = max(t1_y - r1, t2_y - r2, t3_y - r3) 

      y_max = min(t1_y + r1, t2_y + r2, t3_y + r3) 

 

      x_est = (x_min + x_max) / 2 

      y_est = (y_min + y_max) / 2 

  EndIf 

 

  Return (x_est, y_est) 

End 
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