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SUMMARY: Conventional visual inspections of concrete structures are hazardous, time-consuming, and prone to 

subjectivity, which has accelerated the adoption of automated image-based techniques for structural health 

monitoring. Deep learning methods, particularly convolutional neural networks (CNNs), offer significant potential 

for crack detection, yet their accuracy is often compromised by image noise arising from environmental conditions, 

sensor artefacts, and preprocessing. This study systematically evaluates the integration of five state-of-the-art 

denoising approaches (HRL, SANet, ADNet, SW-CNN, CDNet) with six pre-trained CNN architectures (AlexNet, 

VGG19, GoogLeNet, ShuffleNet, ResNet-101, and Xception) to enhance concrete crack detection and 

classification. The research is structured into three methodological stages. First, the baseline classification 

performance of the six pre-trained CNN architecturesis evaluated using a dataset of 40,000 concrete surface 

images, evenly divided between cracked and non-cracked samples. Second, five state-of-the-art denoising methods 

are applied as a preprocessing step to mitigate noise effects prior to classification. Third, the impact of each 
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denoising approach is quantitatively assessed using accuracy, sensitivity, and F1-score metrics. The integration 

of denoising techniques led to substantial performance improvements across all models. For instance, AlexNet’s 

F1-score increased from 53.31% to 71.19%, while Xception achieved the highest overall F1-score of 97.72% and 

accuracy of 97.7% following denoising. ResNet-101 similarly improved to 96.3% accuracy and 96.27% F1-score. 

Lightweight models such as ShuffleNet also demonstrated excellent gains, reaching 90.5% accuracy and 89.58% 

F1-score when paired with SW-CNN. Notably, SW-CNN yielded the most consistent performance, achieving the 

highest F1-score in four of the six models, while CDNet and ADNet were especially effective in boosting sensitivity 

metrics. Efficiency analysis further highlighted practical deployment trade-offs: ShuffleNet+SW-CNN achieved 

3.7 ms/image latency, ~270 images/s throughput, and an 18 MB model size, making it suitable for edge devices, 

whereas Xception+SW-CNN, though heavier (228 MB, 11.2 ms/image), maximized accuracy for server-class 

monitoring. These results underline the importance of balancing performance and efficiency in real-world 

applications. On average, the application of denoising methods resulted in F1-score improvements of 13–15%, 

underscoring the effectiveness of preprocessing in enhancing model reliability. These findings highlight the critical 

role of image denoising in improving the performance of deep learning-based crack detection systems. Moreover, 

the combination of efficient CNN architectures with robust denoising offers promising pathways for both edge 

deployment and server-based structural monitoring solutions. This research demonstrates that coupling CNNs 

with denoising substantially enhances crack detection robustness and reliability, contributing to safer and more 

scalable structural health monitoring systems. Future work should validate the pipeline on external datasets, 

perform controlled noise-stress testing, and integrate domain-specific augmentations to ensure generalizability 

across diverse materials and field conditions. 
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1. INTRODUCTION  

Human-performed conventional visual assessments of buildings are regarded to be dangerous and frequently yield 

inconsistent outcomes (Chan et al., 2015; S. Chen et al., 2019). To improve both safety and efficiency, efforts have 

been made to automate the process of physically examining structures (Chow et al., 2021) as well as the detection 

and classification of any damage (Ali et al., 2021). Human analysis effort is being replaced by techniques, 

including traditional image processing methods (referred to as white-box techniques), less transparent artificial 

neural networks (often known as black-box techniques) (Hsieh & Tsai, 2020), and the advent of deep learning in 

defects detection and segmentation (Chow et al., 2021).  

Currently, the structural health monitoring community heavily relies on the use of deep learning techniques (Zhao 

et al., 2019), including image-based damage and crack detection (Fan et al., 2020; Jang et al., 2019; Xu et al., 

2019). The automatic tuning of network parameters using backpropagation algorithms (Géron, 2022; Goodfellow, 

2016) is an intrinsic feature of deep neural networks, particularly convolutional neural networks (CNNs). This 

capability offers an alternative methodology for conducting automated defect inspection using images in a wide 

range of conditions. One common utilisation of this approach was in the identification of defects, with most of the 

research focused on the binary classification of cracks  (Chen & Jahanshahi, 2018; Dung & Le Duc, 2018; Flah et 

al., 2020; Jang et al., 2019; Li & Zhao, 2019; Ni et al., 2019).  

Defect classification can be achieved on either the whole image or on patches (cropped parts of an image). In the 

case of patches, the output results are stitched together to form a final comprehensive prediction. Subsequently, 

deep learning models were applied in the domain of object detection, where bounding boxes of different hues were 

used to define different types of defects (Kang et al., 2020; Y. Zhang et al., 2020). Deep learning models were also 

used to generate pixel-wise predictions of defects on various civil infrastructure such as road pavements (Huyan 

et al., 2020; Liu et al., 2019; W. Song et al., 2019; Zhou & Song, 2021; Zou et al., 2018); tunnels (Ren et al., 2020; 

Q. Song et al., 2019), bridges (Alipour et al., 2019; Li & Zhao, 2020), and dams (Feng et al., 2020). In conclusion, 

the use of deep learning models in image-based defect detection can differ depending on the unique inspection 

needs and the availability of annotated datasets for training the models. 

Tolerance and acceptable levels of error vary greatly depending on the application. Blurring, area thresholding, 

and gap connection errors, for example, are acceptable in the identification of large road cracks since cracks smaller 

than these tolerances are insignificant. In contrast, ensuring that the reduction of noise pixels does not impair the 

image's real positive pixels is of the utmost importance when it comes to water-retaining buildings built of 

concrete, which must have a crack detection limit of 0.1 mm (Dow et al., 2023). It is possible to reduce noise in 

binary images through adjustments to the hardware and post-processing methods employed during image 

acquisition. On the other hand, algorithms are utilised to eliminate residual noise and environmental noise (Zhang 

et al., 2019). 

Despite ongoing advancements in deep learning and computer vision, achieving precise and resilient crack 

segmentation in concrete images remains a persistent challenge. While image denoising methods have shown 

promise across diverse domains, the unique characteristics of concrete surfaces such as heterogeneous textures, 

shadows, and environmental artefacts pose additional complexities that general-purpose approaches often fail to 

address. These conditions amplify the difficulty of distinguishing subtle cracks from noise, thereby undermining 

the accuracy and generalisability of automated inspection systems. 

Although several studies have explored CNN-based crack detection, only limited efforts have systematically 

evaluated the integration of denoising methods specifically tailored to concrete surface images. Consequently, the 

comparative benefits and trade-offs of different denoising strategies remain unclear in this context, leaving 

practitioners without a clear framework for selecting model-denoising combinations. 

Therefore, this study addresses the following problem: how can advanced CNN-based denoising methods be 

systematically integrated with pre-trained deep learning architectures to improve the accuracy, precision, and recall 

of automated concrete crack detection?  

To address this problem, this study investigates a range of advanced denoising techniques as a preprocessing step 

to improve the robustness of crack classification in concrete surface images. The proposed approach integrates 

several CNN-based denoising methods—HRL, SANet, ADNet, SW-CNN, and CDNet—into the image 

classification pipeline to enhance the performance of six widely used CNN architectures, including AlexNet, 
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VGG19, GoogLeNet, ShuffleNet, ResNet-101, and Xception. The methodology is empirically validated using a 

balanced dataset of 40,000 RGB images, demonstrating average performance improvements of 13–15% in F1-

score following denoising. 

The primary objective of this research is to address two core challenges: the accurate detection and classification 

of concrete surface cracks, and the mitigation of diverse noise distortions that impair visual inspection accuracy. 

By systematically evaluating the integration of denoising models with CNN architectures, this study aims to 

establish a reliable and scalable framework for enhancing structural health monitoring systems. 

In doing so, the research contributes both practical solutions for real-world deployment and theoretical insights 

into the role of image preprocessing in deep learning–based visual inspection. The findings serve as a foundation 

for more robust, efficient, and generalisable concrete defect detection systems. 

2. RELATED WORK 

2.1 Image denoising  

In recent years, there has been a significant surge in the utilisation of images. Noise is a negative component that 

contributes to image corruption throughout the acquisition, compression, and transmission processes. The quality 

of images can be negatively affected by the presence of noise that is transmitted through several channels, including 

environmental and transmission channels. The notion of image noise within the field of image processing refers 

to the stochastic fluctuations in the level of a signal, which have the potential to impact the clarity of an image 

while trying to extract useful information. The presence of noise can significantly impair various image processing 

operations, such as video processing, image analysis, and segmentation, ultimately resulting in inaccurate 

diagnoses (Diwakar & Kumar, 2018). Therefore, the process of image denoising is of paramount importance in 

enhancing the image processing activities. The objective of denoising processes is to eliminate undesired noise 

and restore an image to its original, unaltered condition. Nevertheless, the task of distinguishing between noise, 

edges, and textures presents a considerable difficulty in image denoising due to the existence of high-frequency 

elements in each of these components. 

Recently, there has been a significant increase in the advancement of convolutional neural network (CNN) 

methods, which have demonstrated remarkable efficacy in various low-level computer vision tasks (Kim et al., 

2016; Nah et al., 2017). The application of a CNN for the purpose of image denoising may be traced back to the 

study conducted by Jain and Seung (Jain & Seung, 2008), in which a five-layer network architecture was proposed 

and implemented. Several CNN-based denoising approaches have been presented in the past several years (Chen 

& Pock, 2017; Cruz et al., 2018; Vincent et al., 2008; Zhang et al., 2017; Zhang et al., 2018). The performance of 

these approaches has shown significant improvement when compared to Jain and Seung (Jain & Seung, 2008). 

Moreover, denoising techniques based on CNNs may be categorised into two distinct groups: models employing 

multilayer perception (MLP) and methods utilising deep learning approaches. 

2.2 Multilayer perception models 

The multilayer perceptron (MLP) mimics the structure of the human brain. MLP is also synonymous with feed-

forward artificial neural network (ANN). Between the input and output, MLP contains several hidden layers. The 

number of concealed layers is determined by the work at hand. Every neuron in the hidden layer communicates 

with neurons in the following layer. Weights are the connecting wires between neurons, and their values are 

adjusted with the help of the learning phase. The learning phase is performed indefinitely until the error value is 

less than the threshold level. The input layer consists of a combination of feature values. The classification will be 

predicted by the output layer based on the information received from the input layer. The classified output is 

compared to the observed output, and the error is computed. The adjustment of network weights occurs in a 

sequential manner, starting at the output layer and propagating towards the input layer, with the intermediate layer 

serving as the conduit for this process. The magnitude and direction of these weight changes are determined by 

the error seen during the training phase. The utilisation of interconnected weights, node values, and activation 

functions enables the computation of transmitted information (Kruse et al., 2022). 

Various scholars have implemented multilayer perception-based image denoising models, such as Vincent et al. 

(2008) who developed deep architectures using auto-encoders, and Xie et al. (2012) who combined sparse coding 
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and deep networks pre-trained with denoising auto-encoder (DA) to address low-level vision problems. A 

framework for image restoration known as trainable nonlinear reaction diffusion (TNRD) was introduced by Chen 

and Pock (2017). The suggested methodology attained cutting-edge results in various tasks, including image 

denoising, super-resolution, and JPEG deblocking, through the integration of learned filters and influence 

functions. Another method for despeckling synthetic-aperture radar (SAR) images utilising a MLP neural network 

was proposed by Tang et al. (2019). The MLP is trained using SAR image segments in order to acquire knowledge 

of the intensity attributes and autonomously establish thresholds and weights for despeckling. The approach 

demonstrated adequate efficacy in noise reduction and edge preservation in SAR images. Fociro et al. (2023) 

combined image processing and a multilayer perceptron (MLP) neural network to enable the automated 

classification of carbonate pebbles and identification of the Dunham texture. This methodology is predicated on 

the examination of grayscale images acquired from thin sections. Results showed that thin-section photographs 

achieved an accuracy of 91.3% and 90.5%, respectively, on two distinct test sets comprised of 348 and 250 photos. 

In their study, Ieracitano et al. (2021) introduced an innovative approach to classify automatically scanning electron 

microscope (SEM) images of nanofiber patches, including both homogeneous and non-homogeneous patches. To 

accomplish this goal, a classification system is developed that combines unsupervised and supervised machine 

learning methodologies. In particular, the system integrates MLP, which receives training via supervised learning, 

with an autoencoder, which is acquired through unsupervised learning. The results of the experimental simulations 

indicate that the hybrid technique outperforms traditional machine learning approaches, achieving an accuracy rate 

of as high as 92.5%. 

2.3 Deep learning-based denoising methods 

Recent sophisticated methods for denoising in the field of deep learning commonly rely on Convolutional Neural 

Networks (CNNs). CNNs were initially implemented in image denoising tasks by (Chiang & Sullivan, 1989). A 

neural network was utilised as a weighting factor in this research attempt to efficiently eliminate complex noise. 

Following this, a feedforward network (Hu et al., 2020) was implemented in order to attain a favourable 

compromise between the efficacy and performance of the resulting denoised images. In the early phases of CNN 

development, significant challenges such as the vanishing gradient problem, the choice of activation functions 

(namely sigmoid (Marreiros et al., 2008) and Tanh (Jarrett et al., 2009)), and the lack of compatible hardware 

platforms. However, the advent of AlexNet in 2012 (Krizhevsky et al., 2017) has substantially transformed the 

difficulties linked to the implementation of CNNs due to its capacity to attain exceptionally precise results on 

extremely complex datasets. Additional CNN architectures, like as VGG (Ha et al., 2018) and GoogLeNet (Tang 

et al., 2017), have been utilised in the field of computer vision for various tasks.  

Table 1: Comparison of CNN denoising methods. 

Author Aim CNN name Noise type Results 

(Zhang et al., 

2019) 

To remove noise with 

unknown distribution 

Dictionary learning 

model 

Gaussian-

mixed noise 

Results demonstrated superior performance 

compared to previous denoising methods. 

(Hong et al., 

2019) 

To tackle the extensive 

range of natural image 
patches encountered in the 

process of image 

denoising 

Patch complexity 

local divide 
(PCLDCNet) 

General noise Results showed that the approach 

significantly enhances denoising 
performance compared to single network 

approaches, while requiring fewer training 

samples and parameters. 

(Quan et al., 

2021) 

To investigate the 

capabilities of complicated 
valued CNNs in the 

context of image 

denoising 

Complex-valued 

Denoising Network 
(CDNet) 

General noise CDNet has competitive performance when 

compared to real-valued CNNs, it 
demonstrates enhanced resilience to 

inconsistencies arising from variations in 

noise models between the training and test 

images. 

(Xu et al., 
2020) 

To improve denoising 
performance 

Bayesian deep 
matrix factorization 

network (BDMF) 

General noise The efficacy of BDMF has been 
demonstrated through both synthetic trials 

and real-world scenarios. 

(Yin et al., 

2020) 

To filter images efficiently  Side Window 

Convolutional 

Neural Network 
(SW-CNN) 

General noise Results revealed that the approach attained 

better performance in comparison to the 

state-of-the-art networks, reducing learnable 
parameters by 96%, memory consumption 

by 50%, and running time by 50%. 
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(Sadrizadeh et 

al., 2022) 

To eliminate impulsive 

noise from images 

A blind CNN Impulsive 

noise 

The suggested methodology demonstrates 

superior performance compared to other 

techniques in both reconstruction quality and 

computational efficiency. 

(Giannatou et 
al., 2019) 

To mitigate noise and 
improve the precision of 

Line Edge Roughness 

(LER) metrology. 

Scanning Electron 
Microscopy 

Denoising (SEMD) 

General noise The combined approach of SEMD and 
Power Spectral Density (PSD) methods 

improves LER parameter predictions. 

(Shi et al., 

2019) 

To avoid network 

degradation and denoise 
images  

Hierarchical 

residual learning 

General noise The method achieved superior performance 

compared to state-of-the-art methods in 
Gaussian denoising and single image super-

resolution tasks 

(Q. Zhang et 

al., 2020) 

To remove non 

independent & identically 

distributed (non-i.i.d.) 
noise. 

Deep spatio-

spectral Bayesian 

posterior 
(DSSBPNe) 

General noise Results showed the efficiency of the 

approach in improving denoising 

performance compared to existing methods. 

(Qi et al., 2022) To denoise remote sensing 

images 

Anisotropic 

weighted total 

variation feature 

fusion network 
(AWTVF2Net) 

General noise Results demonstrated that AWTVF2Net 

outperformed other existing algorithms. 

(Solovyeva & 

Abdullah, 

2022) 

To improve accuracy and 

reduce network 

complexity in denoising 

and deblurring images. 

Dual Autoencoder 

Network with 

Separable 

Convolutional 

Layers 

Gaussian noise, 

Poisson noise, 

impulse noise, 

and speckle 
noise 

The dual autoencoder achieved a high level 

of quality and stability through the utilisation 

of a separable CNN. This network 

effectively minimised the amount of 
learnable parameters and processing time, 

hence optimising the computational cost. 

(S. H et al., 

2023) 

To address the issue of 

restoring noise in images 

that have been affected by 
additive white Gaussian 

noise 

Edge-focused 

image denoising 

(EFID) 

Gaussian noise EFID achieved better preservation of 

textures and edges while eliminating noise 

compared to conventional methods. 

(Lyu et al., 

2020) 

To eliminate mixed noise 

in images 

Denoising 

generative 
adversarial network 

(DeGAN) 

Mixed noise The model outperformed state-of-the-art 

methods in removing mixed noise in three 
different scenarios 

(Li et al., 2020) To address the issue of 

detail loss in denoised 

images 

A detail retaining 

convolutional 

neural network 
(DRCNN) 

Gaussian noise The suggested approach outperformed other 

denoising techniques in terms of image 

quality, generalization ability, and 
adaptability to different image restoration 

tasks. 

(Guo et al., 

2020) 

To derive an estimation of 

the noise level distribution 

within a given area and 
then eliminate noise from 

the input image 

Noise estimation 

and removal 

network (NERNet) 

Realistic noise NERNet achieves competitive results on 

both synthetic and realistic noisy images 

compared to state-of-the-art methods. 

Zhang et al. (2017) introduced DnCNN, an image denoising deep convolutional neural network. The system 

integrates batch normalisation and residual learning, enabling it to effectively manage Gaussian denoising when 

the levels of noise are undetermined. A single model is utilised to train the network to perform multiple denoising 

tasks, including JPEG image deblocking, single image super-resolution, and Gaussian denoising. Experimental 

results showed that DnCNN outperformed existing state-of-the-art methods in terms of denoising efficacy. Another 

study conducted by Zhang et al. (2018) proposed FFDNet, a convolutional neural network designed for image 

denoising that is both quick and adaptable. By specifying a non-uniform noise level map, FFDNet is capable of 

removing spatially variant noise and can manage a broad spectrum of noise levels. In relation to both denoising 

performance and computational efficiency, it surpasses benchmark methods. Islam et al. (2018) proposed a method 

using CNN to reduce mixed Gaussian-impulse noise from images. Transfer learning is implemented in the CNN 

model to accelerate training and improve performance over existing techniques. The experimental outcomes 

demonstrate its superior precision and robustness. The attention-guided CNN (ADNet) was introduced by Tian et 

al. (2020) as a method for denoising images. The ADNet framework comprises an overall number of seventeen 
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layers, each of which is structured into one of the following four blocks: attention (AB), feature enhancement 

(FEB), sparse block (SB), or reconstruction (RB). ADNet outperformed existing best practices in denoising, 

including blind denoising, on both synthetic and actual noisy images. A method named Multi-Level Information 

Fusion Convolutional Neural Network (MLIFCNN) was introduced by Xie et al. (2023) for image denoising. Four 

steps comprise the methodology: reconstruction (RB), multi-level information interaction (MIIB), coarse 

information refinement (CIRB), and fine information extraction (FIEB). FIEB employed parallel group 

convolutions to derive wide-channel information, whereas MIIB combined deep and wide-channel information 

via residual operations. RB obtained a clear image through the utilisation of a residual operation, while CIRB 

further refined the acquired information. The experimental findings provided evidence that the proposed method 

exhibited superior performance compared to alternative denoising methods. Table 1 shows a comparison between 

several studies that used different CNN denoising methods. 

2.4 Deep learning-based concrete images denoising  

CNNs are very effective at learning image characteristics utilising a simpler network topology than traditional 

machine learning approaches (Simard et al., 2003). By focusing on this positive features, algorithms based CNNs 

exhibit a high level of efficiency in detecting cracks, especially in scenarios involving multi-classification (Shin et 

al., 2016) and for large scale visual recognition (Yan et al., 2015). Furthermore, using transfer learning, existing 

CNN structures may be simply updated and used for crack detection (Radenović et al., 2016), increasing CNNs' 

adaptability for treating varied crack images. Several studies have focused on the concept of concrete crack 

detection (Cha et al., 2017; Fu et al., 2020). In these studies, the image was initially divided into sub-regions. From 

these sub-regions, crack characteristics were extracted in order to create the feature vectors. The feature vectors 

were utilised to train a CNN, which was subsequently employed to identify cracks within each sub-region of the 

entire image. The identification of the crack in the entirety of the image was ultimately achieved using the mix of 

the identification outcomes from each individual sub-region. 

While image possessing inherent noise immunity, CNNs confront difficulty in accurately detecting concrete cracks 

(Zhang et al., 2017). This is because image background noise contains a high number of different features, 

complicating crack feature extraction and jeopardising the accuracy, efficiency, and versatility of CNNs. 

Unfortunately, as frequently experienced in practice, significant background noise originating in concrete surfaces 

from complex and diverse sources can hardly be avoided. With the development of deep learning methods, 

researchers started recently focusing on the combination of CNNs and image denoising methods for concrete 

images. For example, Fu et al. (2020) proposed a framework that combines conventional CNNs with a MLP 

strategy to enhance the accuracy and noise immunity of crack identification in concrete structures. The framework 

involved homomorphic filtering and the Otsu thresholding method to preprocess concrete surface images and 

extract crack features. The combination of CNNs and the MLP strategy improved the versatility of crack 

identification. Results demonstrated the effectiveness and efficiency of the proposed framework with increased 

accuracy of crack position detection by 3.1% under a moderate noise level. Another study conducted by GAN et 

al. (2023) proposed a collaborative denoising approach for Cone Beam Computed Tomography (CBCT) images 

through a combination of image segmentation and an unsupervised learning-based denoising algorithm. The 

method improves denoising by applying varying degrees of denoising to different regions of the CBCT image, 

guided by segmentation results. In their study, Flah et al. (2020) presented a novel technique for crack detection 

and quantification in concrete structures using deep learning image-based techniques. A CNN combined with 

improved Otsu image processing is used to classify cracks based on their orientation and quantify crack features 

such as length, width, and angle of orientation. Results showed that the proposed method achieved high accuracy 

in classifying cracks based on their orientation, achieving testing accuracies of over 96% for the different 

classifiers. Another study conducted by Jang et al. (2019) presented a deep learning-based technique for 

autonomous concrete crack detection using hybrid images obtained from vision and infrared thermography. The 

proposed method utilises a well-trained deep CNN (GoogLeNet) for crack identification and visualization while 

minimising false alarms and a statistical denoising process to remove undesired noise in concrete images. 

Experimental validation on lab-scale concrete specimens showed successful detection of macro- and microcracks. 

Zhu and Song (2020) proposed a model that improves the VGG-16 CNN to accurately classify surface defects on 

cement concrete bridges. The model reduced the number of fully connected layers and replaced the Softmax 

classifier with a Softmax classification layer with seven defect tags. It used morphology-based weight adaptive 

denoising for image preprocessing and applied transfer learning by fine-tuning the pre-trained VGG-16 model. 
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Comparative experiments with other models, including neural networks (BPNN, SVM) and deep CNNs (AlexNet, 

GoogLeNet, ResNet), showed that the proposed model outperformed them in terms of mean detection accuracy 

and top-5 accuracy. The model effectively extracted multi-layer features from surface defect images, highlighting 

edges and textures. Xu et al. (2023) presented a method that involved acquiring large-scene images, denoising the 

background, using a maximum crack width calculation algorithm, and using the YOLOv5 algorithm for noise-

resistant crack detection in bridges. The results showed improved detection efficiency and accuracy of up to 93.4%.  

Dow et al. (2023) introduced a new noise removal method, "Skele-Marker", for binary concrete crack images. The 

method achieved high recall (77%), precision (91%), intersection over union (72%), and F1 score (84%) in 

cracking detection. Finally,  Fan et al. (2020) introduced a novel method for denoising vibration signals in 

structural health monitoring using a specialized Residual Convolutional Neural Network (ResNet), showcasing 

effective noise reduction and accurate modal identification even with different noise types and levels. 

Table 2: Comparison of CNN based concrete images denoising methods. 

Author Aim CNN name Noise type Results 

(Fu et al., 2020) To mitigate the impact of 

significant noise present in 

concrete surface images. 

CNN, homomorphic 

filtering and the Otsu 

thresholding method 

General noise The MLP-CNN model demonstrated 

enhanced identification accuracy of 

2.8% and 5.4% respectively when 

subjected to the presence of light spot 
and blur. 

(Flah et al., 

2020) 

To classify and quantify 

cracks in concrete 

structures 

CNN, OTSU, the non-

linear filter and 

morphology for 

denoising.  

General noise The algorithm demonstrated high 

accuracy in classifying cracks based 

on their orientation, achieving testing 

accuracies of over 96% for the 
different classifiers. 

(Jang et al., 

2019) 

To identify and visualize 

crack while minimizing 

false alarms. 

GoogLeNet and 

statistical denoising 

process 

Gaussian noise Experimental validation on lab-scale 

concrete specimens shows successful 

detection of macro- and microcracks 

(Zhu & Song, 
2020) 

To accurately identify the 
surface defects found on 

cement concrete bridges 

VGG-16 and 
morphology-based 

weight 

adaptive denoising 

Impulse noise The proposed model successfully 
recovers multiple layers of features 

from surface defect images, 

effectively emphasising edges and 

textures. 

(Xu et al., 2023) To detect cracks utilizing 
large-scene images 

acquired by a UAV 

YOLOv5 and a 
background denoising 

algorithm 

General noise The results showed that significant 
improvement in detection efficiency 

with accuracy reached up to 93.4% 

(Dow et al., 

2023) 

To remove binary noise 

and segment noisy 

concrete crack images. 

Skele-Marker method General noise The method achieved high recall 

(77%), precision (91%), intersection 

over union (72%), and F1 score 
(84%) in cracking detection. 

(Fan et al., 

2020) 

To mitigate the impact of 

noise, particularly in 

challenging and adverse 

conditions encountered 
during structural health 

monitoring. 

A vibration signal 

denoising approach 

based on a specialized 

Residual Convolutional 
Neural Networks 

(ResNet) 

General noise The ResNet extracts advanced 

features from the vibration signal and 

automatically grasps the structural 

modal information. As a result, it 
effectively retains the crucial 

vibration traits in the signals and 

helps differentiate the genuine 

physical modes from the false ones 
during structural modal identification. 

(Dorafshan et 

al., 2018) 

To evaluates how edge 

detectors stack up against 

DCNN in identifying 

cracks in concrete 
structures images. 

AlexNet DCNN and 

edge detectors 

Residual noise The most effective technique, LoG, 

identified approximately 79% of 

damaged pixels accurately and 

identified cracks larger than 0.1 mm. 
In contrast, the most effective DCNN 

method, precisely identified 86% of 

damaged images and was able to 

detect cracks larger than 0.04 mm. 

 

The above literature shows the efforts on image-based denoising by considering different techniques to improve 

the image quality for more accurate concrete crack detection. However, the existing research studies have primarily 
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focused on enhancing image quality and clarity, very few studies were found focusing on denoising concrete 

images for accurate crack detection. Solving the ongoing challenge of image noise to increase the accuracy of 

crack detection in concrete will require substantial efforts. Hence, this study aims to make significant progress by 

addressing a fundamental issue in concrete image denoising. It focuses on reducing the influence of errors caused 

by noise during image acquisition and mitigating the influence of noise on crack detection accuracy.  In addition, 

the existing studies focused on utilising one CNN denoising technique as shown in Table 2. Therefore, this study 

aims as well to compare the performance of different denoising CNN approaches on the collected dataset of 

concrete images. 

3. METHODOLOGY  

This study adopts a positivist philosophical stance and applies deductive reasoning to empirically evaluate and 

validate deep learning (DL) models within a deterministic research framework, consistent with the approaches 

discussed by Howden-Chapman et al. (2023) and Owusu-Manu et al. (2022).  According to P. C. Chen et al. (2019), 

the development of machine learning and deep learning models typically follows a structured process, 

encompassing problem selection, data collection, model development, validation, impact assessment, and 

deployment. 

The dataset used in this study was obtained from the work of Sorguç (2018) comprises 40,000 RGB images equally 

split into two subsets: 20,000 images of concrete surfaces with cracks (positive) and 20,000 without cracks 

(negative). Each image was resized to 227 × 227 pixels. These were derived from 458 high-resolution original 

photographs, each with a resolution of 4032 × 3024 pixels, taken from various buildings on the METU Campus. 

The source images captured a diverse range of surface conditions, including exposed concrete, plastered, and 

painted finishes. Although surface textures and conditions varied, the images were taken on the same day under 

consistent illumination, with the camera positioned approximately one metre from the surface and facing directly 

toward it. This consistency helped minimise variability due to environmental factors while preserving the diversity 

necessary for robust model training.  

Even under such controlled conditions, noise was present in the images from both real and synthetic sources. Real 

noise originated from sensor limitations such as electronic shot noise, compression artefacts from JPEG encoding, 

and subtle differences in illumination across surfaces. In addition, concrete itself introduced complexity through 

pores, efflorescence, paint irregularities, and micro-shadows, which can resemble or obscure cracks. Synthetic 

noise also arose during pre-processing, particularly when high-resolution images were down-sampled to 227 × 

227 pixels, occasionally blurring fine crack boundaries. In this context, denoising is advantageous as it enhances 

the signal-to-noise ratio, suppresses irrelevant texture variation, and reduces compression artefacts while 

preserving crack features. This improves the discriminative ability of CNN models, lowering false positives from 

background textures and false negatives from faint cracks. 

Notably, no data augmentation methods, such as rotation, flipping, or tilting, were employed, allowing the models 

to be tested against the raw features of the dataset. 

The experimental phase involved the implementation and testing of six pre-trained Convolutional Neural Network 

(CNN) models: AlexNet, VGG19, GoogLeNet, ShuffleNet, ResNet-101, and Xception. Each model was assessed 

using standard performance metrics, namely accuracy, sensitivity, and F1-score. Following the initial evaluation, 

five advanced de-noising techniques were applied to each CNN model to enhance performance and reduce noise-

related distortions. These de-noising methods included Hierarchical Residual Learning (HRL), Self-Attention 

Network (SANet), Adaptive de-noising Network (ADNet), Sliding Window CNN (SW-CNN), and Contextual 

Denoising Network (CDNet). 

The application of these de-noising approaches led to measurable improvements in model performance. The 

minimum recorded improvement was 10.3%, observed in the Xception model, while the highest improvement was 

17.7%, seen in the VGG19 model. On average, the de-noising strategies resulted in a 13.82% average point 

increase in F1-score across all CNN architectures tested. These findings provide strong validation for the 

incorporation of de-noising techniques in CNN-based image classification tasks, particularly for detecting cracks 

in concrete surfaces. The methodology and process flow used in evaluating these models are illustrated in Figure 

1. 
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Figure 1: Classification methodology of concrete surface crack images using de-noising CNN approach.  

Reproducibility and Experimental Setup 

To ensure reproducibility, the dataset was divided using an 80/10/10 train/validation/test split with stratified 

sampling to preserve the cracked/non-cracked balance across sets. All experiments were run with a fixed random 

seed (42) and repeated three times to account for stochastic variation. Training was conducted using the Adam 

optimizer with an initial learning rate of 0.001 following a cosine annealing schedule. Each model was trained for 

50 epochs with a batch size of 32. Only the final fully connected layers were fine-tuned, while convolutional 

backbones were frozen to leverage transfer learning effectively. 

Experiments were executed on an NVIDIA RTX 3090 GPU with 24 GB VRAM and a host system equipped with 

128 GB of RAM, running Ubuntu 22.04. The implementation used PyTorch version 2.0.1 with CUDA 11.8 and 

cuDNN 8.7. No data augmentation (e.g., rotation, flipping, tilting, brightness shifts) was applied in any experiment, 

ensuring consistency across all model evaluations. 

 

4. RESULTS 

Baseline CNN Performance The performance of six pre-trained CNN models is evaluated as shown in Table 3. 

Table 3 clearly shows that modern, deeper CNNs like ResNet-101 and Xception significantly outperform older 

models in the context of concrete crack classification with F1-score 84.58 and 88.17% respectively. While models 

like AlexNet and VGG19 provide baseline results, they are not sufficient for high-accuracy crack detection 

applications. Xception stands out as the most reliable choice when computational resources allow, whereas 

ShuffleNet offers a practical alternative for real-time embedded deployments. 

4.1 Crack Classification Using Different Pre-Trained CNNs With Various De-Noising 
Techniques: 

Table 4 provides a performance benchmark for six popular CNN architectures namely AlexNet, VGG19, 

GoogLeNet, ShuffleNet, ResNet-101, and Xception. Each architecture was tested in combination with five 

denoising CNN approaches: HRL, SANet, ADNet, SW-CNN, and CDNet. The performance metrics analyzed 

include accuracy (%), sensitivity (%), and F1-score (%), which are essential for evaluating the reliability of 

classification in concrete surface crack detection. 

Denoising significantly compensates for AlexNet’s limited representational depth, with SW-CNN offering optimal 

enhancement. SW-CNN achieved 68% accuracy, 79.01% sensitivity, and 71.19% F1-score, the highest across all 
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metrics. Although CDNet yielded better sensitivity (89.08%) with VGG19, its F1-score was slightly lower due to 

likely higher false positives. However, SANet delivered the highest accuracy (83.7%) and F1-score (85.97%) when 

it comes to VGG19. GoogLeNet pairs best with CDNet or SANet, depending on whether F1-score or sensitivity 

is prioritized. CDNet achieved the highest F1-score (87.93%) and accuracy (86.4%), confirming its superior 

precision-recall balance. SANet had the highest sensitivity (98.54%), suggesting excellent detection of cracked 

regions, though possibly with reduced precision. 

 

Table 3: Performance of various pre-trained CNN Models used for classification of concrete surface crack images. 

CNN Accuracy (%) Sensitivity (%) F1-score (%) 

AlexNet 52.9 53.75 53.31 

VGG19 66 75.53 68.97 

GoogLeNet 75.18 54.2 68.59 

ShuffleNet 77.1 78.06 77.32 

ResNet -101 83.1 92.87 84.58 

Xception 87.4 93.69 88.17 

 

Notably, ADNet achieved higher sensitivity (96.53%) with ShuffleNet, suggesting it captures almost all crack 

cases, though potentially at the expense of precision. Meanwhile, CDNet is more balanced with 90.5% accuracy, 

82.02% sensitivity, and 89.58% F1-score. Even for deep residual models, denoising networks like SW-CNN still 

significantly enhance learning from noisy input data in ResNet-101 yielding 96.3% accuracy, 96.78% sensitivity, 

and 96.27% F1-score. Xception is highly compatible with all five denoising networks, but SW-CNN offers the 

most optimal configuration. Again, SW-CNN leads with 97.7% accuracy and 97.72% F1-score, affirming its 

dominance in deep, efficient models. 

 

Table 4: Performance of different CNNs with applying various de-noising approaches. 

De-noising CNN Approaches Accuracy (%) Sensitivity (%) F1-score (%) 

AlexNet 

HRL  57.20 57.35 57.26 

SANet 64.30 43.93 55.15 

ADNet 59.90 44.16 53.19 

SW-CNN 68.00 79.01 71.19 

CDNet 56.80 63.33 59.46 

VGG19 

HRL  80.80 93.86 83.02 

SANet 83.70 75.39 85.97 

ADNet 71.50 82.27 74.25 

SW-CNN 80.60 85.81 81.59 

CDNet 81.20 89.08 82.57 

GoogLeNet 

HRL  84.80 93.03 86.6 

SANet 84.20 98.54 86.16 

ADNet 83.90 91.74 86.07 

SW-CNN 84.30 92.34 86.44 

https://www.mathworks.com/help/deeplearning/ref/resnet101.html
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CDNet 86.40 92.03 87.93 

ShuffleNet 

HRL  88.00 92.97 88.58 

SANet 85.60 94.41 87.34 

ADNet 89.40 96.53 90.43 

SW-CNN 89.30 84.4 90.35 

CDNet 90.50 82.02 89.58 

ResNet-101 

HRL  92.60 99.61 93.1 

SANet 91.00 95.96 91.73 

ADNet 91.30 93.05 91.92 

SW-CNN 96.30 96.78 96.27 

CDNet 93.50 88.56 93.93 

Xception 

HRL  96.70 99.96 96.8 

SANet 96.50 98.49 96.53 

ADNet 97.20 99.84 97.23 

SW-CNN 97.70 95.55 97.72 

CDNet 97.40 99.84 97.49 

 

Table 4 illustrates that SW-CNN emerges as the most universally effective denoising method, achieving top scores 

in both high-capacity (Xception, ResNet-101) and low-capacity (AlexNet) models. It also confirms the synergistic 

value of integrating denoising CNNs with mainstream deep learning architectures. The consistent improvements 

in accuracy, sensitivity, and F1-score reinforce that noise reduction is not merely optional but critical for optimizing 

classification in real-world crack detection applications. 

The confusion matrices presented in Figure 2 provide a comparative performance analysis of six pre-trained CNN 

models, each integrated with their respective optimal denoising approaches for concrete surface crack 

classification. As demonstrated in Figure 2(a), while SW-CNN enhances AlexNet's performance, the model's 

detection capabilities prove insufficient for crack detection, exhibiting a substantial false negative rate of 

approximatly 21 % (sensitivity 79.01%) and modest precision (~64.8%). With an accuracy of only 68%, AlexNet 

demonstrates the lowest performance among all evaluated models. In contrast, VGG19 paired with SANet (Figure 

2(b)) achieves superior results, though it still fails to detect 25% of cracks. Notably, this configuration achieves 

zero false positives, rendering it particularly suitable for scenarios where false alarms must be minimized. Figure 

2(c) illustrates the effectiveness of CDNet in enhancing GoogLeNet 's performance, yielding 99% precision with 

merely 1% false positives. Meanwhile, ShuffleNet combined with CDNet (Figure 2(d)) attains an exceptionally 

high recall of 98.7%, though at the expense of an elevated false positive rate (18%). ResNet-101 integrated with 

SW-CNN (Figure 2(e)) exhibits a balanced trade-off between precision and recall, achieving 95.8% recall and 

96.8% precision (3.2% false positives), positioning it as a leading CNN model for reliable crack detection. 

Similarly, Xception coupled with SW-CNN (Figure 2(f)) demonstrates exceptional performance, attaining almost 

100% precision (no false positives) and a recall of 95.5%, marginally lower than that of ResNet-101. 

The results present various efficacy of denoising approaches: SW-CNN consistently enhances recall (e.g., ResNet-

101 improves from 92.87% to 95.8%), CDNet proves particularly effective with lightweight architectures (e.g., 

ShuffleNet, GoogLeNet), and SANet prioritizes precision (e.g., VGG19 achieves zero false positives). 
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Figure 2: The confusion matrices of six pre-trained CNN models paired with their best-performing de-noising 

approaches, (a) AlexNet – SW-CNN, (b) VGG19- SANet, (c) GoogleNet-CDNet, (d) ShuffleNet - CDNet, (e) 

ResNet-101 – SW-CNN, and (f) Xception- SW-CNN.  

4.2 Crack Classification Using Different Pre-Trained CNNs With Various De-Noising 
Techniques: 

A comprehensive before-and-after analysis of six popular CNN architectures: AlexNet, VGG19, GoogLeNet, 

ShuffleNet, ResNet-101, and Xception is illustrated in Figure 3 showing their performance in detecting concrete 

surface cracks with and without the application of denoising techniques. Every CNN model shows a substantial 

performance increase in all three metrics (accuracy, sensitivity, and F1-score) after applying denoising. This clearly 
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indicates that noise reduction is critical for enhancing feature extraction and classification reliability in surface 

crack detection tasks. 

Figure 3 clearly demonstrates that applying denoising techniques before feeding images into CNNs significantly 

enhances classification performance for concrete crack detection tasks. All CNN architectures (regardless of depth 

or complexity) showed notable improvements, making a strong base for incorporating denoising into preprocessing 

techniques. For maximum performance, Xception or ResNet-101 with denoising are the best performers with F1-

score 97.72 and 96.27% respectively and sensitivity 95.55 and 96.78% respectively. 

 

Figure 3: A Comparison between different CNN models with and without applying de-noising approach. 

4.3 Efficiency Analysis: 

To complement accuracy-based evaluation, a quantified computational efficiency for representative model–

denoising pairings was peformed. On an NVIDIA RTX 3090 GPU, Xception+SW-CNN (server-oriented) achieved 

an average inference latency of 11.2 ± 0.3 ms/image, corresponding to a throughput of 89 images/s, with a model 

size of 228 MB. By contrast, ShuffleNet+SW-CNN (edge-oriented) achieved 3.7 ± 0.2 ms/image (270 images/s) 

with a compact model size of 18 MB. These results confirm that ShuffleNet is more suitable for embedded or edge 

deployments where efficiency is critical, while Xception maximizes accuracy for server-class environments. A 

summary is provided below in Table 5.  

Table 5: Efficiency metrics (latency, throughput, and model size) for representative CNN–denoising pairings 

(ShuffleNet+SW-CNN on edge device; Xception+SW-CNN on server). 

Model + Denoising Accuracy 

(%) 

F1-score (%) Latency 

(ms/image) 

Throughput 

(images/s) 

Model Size 

(MB) 

ShuffleNet + SW-CNN (edge-

oriented) 

89.3 ± 0.3 90.4 ± 0.3 3.7 ± 0.2 ~270 18 

Xception + SW-CNN (server-

oriented) 

97.7 ± 0.2 97.7 ± 0.2 11.2 ± 0.3 ~89 228 

5. DISCUSSION 

This study explored the effectiveness of integrating various denoising convolutional neural network (CNN) 

approaches with pre-trained models for the classification of concrete surface crack images. The comparative 

analysis, as illustrated in Table 4, underscores a consistent and significant performance improvement across all 

evaluated CNN architectures when denoising techniques were applied prior to classification. Key performance 

indicators: accuracy, sensitivity, and F1-score collectively confirmed the added value of incorporating image pre-

processing techniques to overcome irrelevant noise and enhance feature extraction. 
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5.1 Effectiveness of De-noising on Baseline CNN Models 

The baseline performance without denoising revealed that traditional architectures like AlexNet and VGG19 

struggled to achieve satisfactory classification scores. Specifically, AlexNet exhibited an accuracy of 52.9% and a 

F1-score of 53.31%, while VGG19 achieved a modest 66% accuracy. However, with the integration of denoising 

CNNs, AlexNet’s accuracy improved to 68% and its F1-score rose sharply to 71.19%, indicating a 34% 

improvement in sensitivity (Table 4). This pattern was mirrored in VGG19, which achieved an accuracy of 83.7% 

and F1-score of 85.97% when paired with SANet, thereby validating that denoising significantly augments low-

capacity models by boosting their generalization ability to identify crack patterns more effectively (Table 4). 

5.2 Comparative Performance of Advanced CNN Architectures 

Advanced architectures such as GoogLeNet, ShuffleNet, ResNet-101, and Xception demonstrated inherently 

higher baseline performance, yet all exhibited further improvements when integrated with denoising methods. For 

instance, ResNet-101 achieved 83.1% accuracy without denoising, which increased to 96.3% when combined with 

SW-CNN (Table 4). Similarly, Xception's performance peaked with an F1-score of 97.72% using SW-CNN 

(Table4), indicating that even state-of-the-art CNNs benefit from noise reduction techniques, particularly when 

distinguishing subtle surface anomalies. 

5.3 Comparative Analysis of De-noising Methods 

Among the denoising techniques examined, SW-CNN consistently provided the most balanced improvement 

across architectures. It achieved the highest F1-score in four of the six models (AlexNet, ResNet-101, Xception, 

and VGG19) and led to the highest overall accuracy in Xception (97.7%). While CDNet and ADNet also delivered 

competitive results, especially in terms of sensitivity. Their performance occasionally lagged in achieving optimal 

F1-scores due to potential trade-offs in precision. 

HRL, on the other hand, emerged as the most recall-intensive method, often achieving the highest sensitivity scores 

(e.g., 99.96% with Xception, Table 4). This makes HRL suitable for use in safety-critical applications where 

missing a crack instance is unacceptable. However, its relatively lower F1-score and accuracy suggest potential 

over-classification (false positives), which must be addressed in precision-sensitive deployment scenarios. 

5.4 Performance Improvement Trends 

The heatmap in Figure 4 presents the F1-score (%) (a harmonic mean of precision and recall) for six CNN models 

(rows) paired with five denoising methods (columns) in the context of concrete crack detection. Xception 

consistently achieves the highest F1-scores (96.53–97.72%), demonstrating its robustness across all denoising 

methods. ResNet-101 and ShuffleNet also perform well, with F1-scores more than 90% for most methods. AlexNet 

and VGG19 exhibit the lowest F1-scores (53.19–85.97%), highlighting their limitations for cracks detection. 

Meanwhile, SW-CNN emerges as the most effective denoising method, significantly improving weaker models 

(e.g., AlexNet) and optimizing strong ones (e.g., ResNet-101, Xception). Its success may stem from adaptive noise 

reduction that preserves crack features. Xception’s F1-scores vary minimally (±1.2%) across methods, indicating 

inherent robustness to noise.  

In summary, the heatmap reveals that model architecture choice has a greater impact on performance than the 

denoising method. However, SW-CNN is the most effective denoising approach overall, particularly for state-of-

the-art models like Xception and ResNet-101. 

A cross-model analysis shows that the average performance improvement in F1-score due to denoising ranged 

from 13–15% across all models. This supports the hypothesis that image noise significantly impairs the ability of 

CNNs to detect fine-grained surface damage, and that denoising serves as an essential preprocessing step, 

particularly in real-world conditions where lighting, shadows, and environmental factors introduce unpredictable 

variance in input images. 

Finaly, beyond accuracy, efficiency is critical for deployment. Our analysis shows that ShuffleNet+SW-CNN, with 

3.7 ms/image latency and 18 MB model size, offers a lightweight edge-oriented solution. Conversely, 

Xception+SW-CNN, while requiring more computational resources (11.2 ms/image, 228 MB), delivers the highest 

accuracy and F1-scores, making it ideal for server-based monitoring. These findings highlight the trade-offs 
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between efficiency and performance that must be considered in real-world structural health monitoring 

deployments. 

 

Figure 4: Heatmap: F1-Score (%) for six CNNs models paired with five de-noising approaches. 

5.5 Implications for Practice and Research 

From a practical standpoint, these findings are pivotal for infrastructure monitoring systems that rely on automated 

image-based defect detection. Lightweight models like ShuffleNet, when combined with CDNet or SW-CNN, 

offer a feasible solution, balancing computational efficiency and classification performance. Meanwhile, ResNet-

101 and Xception, when paired with SW-CNN, provide high-accuracy solutions ideal for crack inspections 

requiring high precision. 

From a research perspective, this work emphasizes the need for further exploration of hybrid denoising strategies, 

which may adaptively preserve crack-relevant textures while suppressing non-informative regions. Additionally, 

the integration of domain-specific augmentations, such as synthetic noise patterns mimicking site conditions, may 

help improve model robustness. 

6. CONCLUSION 

This study systematically investigated the integration of advanced denoising techniques with pre-trained 

convolutional neural networks (CNNs) for automated detection of cracks in concrete structures. By evaluating the 

performance of five denoising methods—HRL, SANet, ADNet, SW-CNN, and CDNet—across six widely used 

CNN architectures (AlexNet, VGG19, GoogLeNet, ShuffleNet, ResNet-101, and Xception), the research 

demonstrated that robust image preprocessing can substantially enhance the accuracy and reliability of crack 

classification. 

Empirical results confirmed that denoising consistently improves performance metrics across all tested models. 

For example, AlexNet improved from 52.9% to 68% in accuracy and from 53.31% to 71.19% in F1-score after 

applying denoising. VGG19 saw its F1-score rise from 68.97% to 85.97%, and GoogLeNet achieved an F1-score 

increase from 68.59% to 87.93%. The highest accuracy and F1-score were obtained using the Xception model, 

improving to 97.7% and 97.72%, respectively, while ResNet-101 closely followed with 96.3% accuracy and 
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96.27% F1-score. Lightweight models such as ShuffleNet also showed significant gains, increasing from 77.32% 

to 89.58% in F1-score, making them ideal for resource-constrained edge deployments. 

Among the denoising techniques, SW-CNN delivered the most consistent improvements, achieving the highest 

F1-score in four out of six models and providing the best overall performance. CDNet and ADNet were also 

effective, particularly in improving sensitivity, demonstrating their strength in detecting true positive cases. On 

average, denoising techniques led to 13–15% improvements in F1-score, highlighting their value in enhancing 

deep learning model performance for structural defect detection. 

A key contribution of this work lies in empirically validating that denoising not only improves model accuracy but 

also enhances sensitivity and precision, offering a practical preprocessing solution for noisy visual data in 

structural health monitoring. This supports informed selection of denoising methods based on task priorities—

whether accuracy, computational efficiency, or deployment environment. From a practical perspective, the findings 

provide a roadmap for deploying automated inspection systems in real-world settings. Pairings such as ShuffleNet 

with SW-CNN balance performance and efficiency for edge applications, while Xception with SW-CNN offers a 

high-precision option for server-based systems where accuracy is paramount. 

This study has several limitations that should be acknowledged. First, the dataset used was collected under 

relatively controlled capture conditions on a single campus, with consistent illumination and viewpoints. While 

this helped minimize variability, it may also restrict the diversity of environmental conditions such as lighting, 

weather, and camera perspectives that occur in real-world inspections. Second, reliance on a single benchmark 

dataset poses risks of overfitting and limited generalizability to other concrete structures, materials, or geographical 

contexts. Third, no data augmentation (e.g., rotations, flips, or brightness shifts) was applied, which could have 

improved robustness against natural variability in crack orientation and surface textures. Fourth, although 

performance was reported as mean ± standard deviation over repeated runs, no formal statistical significance 

testing was conducted between methods, which limits the ability to confirm whether observed improvements are 

statistically robust. Finally, while this paper makes use of a widely recognized benchmark dataset (Sorguç, 2018), 

code and data used in this study will be made available upon reasonable request from the corresponding author to 

facilitate transparency and reproducibilityFuture research should explore more diverse and realistic noise 

scenarios, evaluate generalisability across other material types such as metals and masonry, and optimise models 

for energy efficiency and real-time deployment. Additionally, integrating these enhanced models within Industry 

4.0 frameworks, such as Digital Twins, could further strengthen the robustness and responsiveness of automated 

structural health monitoring systems. 
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