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SUMMARY: Bridges and viaducts are critical infrastructure assets, yet their maintenance remains a challenge 

due to aging, increased traffic loads, and insufficient documentation. While Structural Health Monitoring (SHM) 

and Building Information Modelling (BIM) have independently advanced viaduct management, their integration 

is still underexplored. This study proposes a novel framework integrating SHM, BIM, and Artificial Neural 

Networks (ANNs) for comprehensive viaduct management. Field tests, including ambient vibration analysis, were 

conducted to capture the Rio Claro Viaduct’s dynamic behaviour. This information was used for the calibration of 

a finite element model. Simulated damage scenarios were created to train ANNs that use modal curvature damage 

indices for damage detection and severity assessment. The integration of these components into an enriched BIM 

model centralizes data for efficient visualization and decision-making. The framework demonstrated high 

accuracy, with ANNs achieving an average precision of 85% in damage classification and an R² of 0.96 in severity 

prediction. Validation using a decade-separated dataset confirmed the framework’s robustness, showing negligible 

structural deterioration over time. It is intended to provide an intuitive user interface so that asset managers can 

make data-driven decisions, overcoming the limitations of traditional visual inspections. This research attempts to 

bridge the gap between BIM and SHM applications by offering a replicable, efficient solution for infrastructure 

management. 
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1. INTRODUCTION 

Bridges and viaducts are essential infrastructure assets for the economic development of a region, as they support 

logistical routes. Maintaining the integrity of these structures is crucial to ensuring traffic flow and preventing 

significant losses. Subject to operational loads, environmental factors, and traffic accidents, these structures may 

develop damage over time, starting small and growing depending on the structure’s use and the lack of corrective 

maintenance. Asset managers have been adopting structural health monitoring (SHM) systems to ensure safety 

and enable early damage detection in bridges and viaducts (Entezami et al., 2025). These technologies use non-

destructive techniques to identify defects in structures by analysing changes in modal properties, such as natural 

frequencies and vibration modes (Figueiredo & Brownjohn, 2022). Assessing the condition of the structure 

provides valuable information for decision-making on interventions and helps build a database of these assets. In 

this context, information models of these structures serve as an alternative for consolidating data in an interactive 

and accessible way, encompassing both their current condition and historical information. 

The aging of these infrastructures can be aggravated by the action of exceptional loadings, adverse environmental 

conditions and accelerated material degradation, requiring careful monitoring throughout their useful life. 

Mohamed et al. (2023) highlight the loss or fragmentation of essential information, such as original projects, 

inspections, and maintenance records, as a recurring problem, often scattered across paper documents or non-

integrated systems. This gap can be exacerbated by changes in management or technical teams, which can disrupt 

the continuity of documentation history. Without a centralized repository, structural condition assessment can 

become uncertain, compromising decisions and raising maintenance costs (Huang et al., 2024). In this context, the 

use of Building Information Modelling (BIM) platforms, capable of preserving, organizing, and updating their 

database, can play an important role in extending the useful life of assets. 

BIM is a methodology that involves creating and managing detailed, information-rich digital representations of 

built assets, including buildings and bridges. This collaborative approach integrates data and processes in a 

standardized digital environment, facilitating decision-making throughout the project’s lifecycle (Davila Delgado 

et al., 2017). The application of BIM in infrastructure has shown promising results in infrastructure engineering. 

In asset management, works such as (Davila Delgado et al., 2017; Hagedorn et al., 2023; van Eldik et al., 2020) 

concluded that BIM optimizes processes, centralizes information, and enables a holistic view of the infrastructure 

lifecycle, facilitating strategic decision-making. In data management, (Alsharif et al., 2025; Aziz et al., 2017; 

Davila Delgado et al., 2017; McGuire et al., 2016) demonstrated that the methodology provides a unified platform 

for efficiently storing and analysing information, supporting maintenance interventions. 

Structural Health Monitoring systems can enhance infrastructure management by supporting a continuous cycle 

of data collection, analysis, and integration. Using sensors and dynamic testing, these systems periodically gather 

structural condition information, which is then can be used to enrich an information model. This integration of up-

to-date data enables a rapid response to adverse events, greatly improving condition monitoring (Fawad et al., 

2023; Gragnaniello et al., 2024; Kwon et al., 2021; Truong et al., 2023). Furthermore, the adoption of the 

methodology allowed new inspection methods by providing visual and analytical tools that increase the accuracy 

and efficiency of this process (Boddupalli et al., 2019; Deng et al., 2022; Mohamed et al., 2023; Singh & Sadhu, 

2020). 

Digital Twins (DTs) are virtual models that replicate physical assets’ characteristics and behaviour, using data to 

simulate performance and service life (Lu & Brilakis, 2019). Classification varies by data connectivity and 

automation levels. Honghong et al. (2023) distinguish between pre-Digital Twins, which are static models updated 

at intervals, and ideal Digital Twins that continuously ingest real-time sensor data for dynamic insights. In 

infrastructure management, these systems can facilitate early damage detection and more accurate integrity 

assessment (Heykoop et al., 2024). Additionally, they allow testing structural behaviour under various scenarios, 

including extreme loads and environmental changes, enabling identification of critical points and optimization of 

structural performance (Girardet & Boton, 2021; Honghong et al., 2023). 

While Building Information Modelling (BIM) technologies and machine learning have advanced significantly, a 

gap remains in effectively integrating these tools for structural condition diagnosis. Existing literature has 

concentrated on data collection and visualization from sensors but has failed to explore how artificial intelligence 

algorithms can be applied to extract actionable insights for structural assessment decision-making. A practical 

obstacle that worsens this limitation is the lack of reliable data, reflected updated or missing digital inventories 
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(especially for older structures), discrepancies between actual and design loads, and insufficient records of past 

damage and repairs. These information gaps hinder an accurate assessment of the structure's current condition and 

limit the reliability of predictions about its remaining service life.  

This work proposes and validates a novel framework for structural integrity assessment that uses a pre-Digital 

Twin (pre-DT) as the backbone for integrating experimental, numerical, and data-driven methods within a 

collaborative BIM environment. The objective is to link in-service measurements to predictive diagnostics, so BIM 

model becomes a decision-ready repository for asset management. To achieve this, ambient vibration tests supply 

the viaduct’s modal properties (natural frequencies and mode shapes), which are used to calibrate a finite element 

model. The calibrated model is then used to simulate damage scenarios and build a database of dynamic damage 

indices (modal curvature) at varying degradation levels; artificial neural networks are then trained using this 

database to map modal curvature patterns to locate damage and evaluate its extent. The main contribution is this 

closed-loop framework that integrates field measurements, model updating and simulation-driven ANN training 

with BIM. This approach generates actionable structural condition indicators directly that can be directly used for 

monitoring, risk assessment, and lifecycle decision-making. The framework’s effectiveness and replicability are 

demonstrated through its application to the Rio Claro viaduct, highlighting how BIM can serve as a central hub 

for monitoring and strategic decision-making across infrastructure assets. 

2. THEORETICAL BACKGROUND 

2.1 Damage detection 

In structural health monitoring (SHM), three approaches stand out: data-driven, model-based, and hybrid. Data-

driven techniques employ statistical models on continuous monitoring data to detect changes in any of the 

structure’s primary dynamic variables, usually natural frequencies. The structure’s modal response is affected by 

environmental conditions, such as temperature changes, thus, the major challenge lies in creating algorithms that 

can distinguish whether a detected change was caused by stiffness loss or environmental action (Tibaduiza Burgos 

et al., 2020). The model-based approach uses numerical models or reduced-scale prototypes of the structure to 

simulate different damage scenarios and compare its results to the real scale structure’s reference data (Bagchi et 

al., 2010). Recently, some works have proposed a hybrid approach to structural integrity monitoring (Figueiredo 

et al., 2019; Gordan et al., 2020; Svendsen et al., 2023), in which data and numerical models are used together to 

distinguish between the reference and damaged states. This approach attempts to overcome the disadvantages 

presented by each method when treated as distinct. 

The choice of damage indicator in SHM systems is crucial for reliable damage detection, especially in the presence 

of environmental effects. The model-based and hybrid approaches share the use of damage indicators to identify 

changes in the structure’s modal properties. An accurate damage indicator should be sensitive to structural changes 

caused by damage while being robust against changes due to environmental influences (Simoen et al., 2015). 

Natural frequencies are commonly used as damage indicators because they are easy to measure, although they are 

also significantly affected by environmental changes (Ho et al., 2021; Svendsen et al., 2023). Dynamic damage 

indicators are based on the principle that any alterations in a structure’s physical properties - whether in its mass, 

damping, or stiffness - directly affect its modal characteristics, including natural frequencies and mode shapes. 

The development of a crack within a beam in an assembly leads to a decrease in stiffness. This change influences 

not only the dynamic characteristics of the beam itself but also the overall deformation pattern of the entire 

structure. 

The modal curvature method (MCM) is an established damage index in structural analysis. This method, 

introduced by (Pandey et al., 1991), calculates the second derivative of modal displacement to assess structural 

damage. Its effectiveness has been documented across different bridge types. Studies have demonstrated its 

successful implementation in steel bridges, as shown by (Nick & Aziminejad, 2021). For reinforced concrete 

bridges, multiple researchers have validated its application, including the works of (Abdel Wahab & De Roeck, 

1999; Dilena et al., 2015; Erduran et al., 2021; Sánchez-Aparicio et al., 2015). In one-dimensional applications, 

after the structure is discretized into elements of length ℎ, the modal curvature can be computed using a centered 

difference scheme, as shown in Equation (1). 

𝑘𝑖 = (𝑤𝑖+1 + 𝑤𝑖−1 − 2𝑤𝑖)/ℎ2                
                 (1) 
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where 𝑤𝑖 to represent the modal displacement at position 𝑖. To determine structural damage, the method compares 

the modal curvatures of the structure in both its damaged and undamaged states. This comparison is expressed 

mathematically in Equation (2), where the damage index is calculated as the difference between these curvatures. 

Δ𝑘 = ∑ 𝑘𝑖 − 𝑘𝑖
∗𝑛

𝑖=1                (2) 

where 𝑘𝑖  denotes the undamaged curvature, 𝑘𝑖
∗ denotes the damaged curvature, and 𝑛 represents the number of 

mode shapes considered. The physical meaning of the MCM, as explained by (Pandey et al., 1991), lies in its 

ability to indicate localized changes in a structure due to damage. When a structural element experiences damage, 

such as a crack, it leads to a reduction in its flexural stiffness (𝐸𝐼), which in turn increases the curvature at that 

damaged section. Therefore, the difference in modal curvature between an intact and a damaged structure serves 

as a precise measure of how damage alters stiffness and structural behaviour at specific locations. This change is 

localized, effectively highlighting the area of damage. 

2.2 Model calibration 

Manual model calibration offers greater flexibility to the analyst, allowing for precise and iterative adjustments to 

the model. This approach has demonstrated effectiveness in previous studies (Altunisik & Bayraktar, 2017; De 

Angelis & Pecce, 2023; Oliveira et al., 2025; Talebi et al., 2023). The selection of parameters to be adjusted is 

crucial and depends on the analyst’s expertise, allowing them to make a judicious selection based on real physical 

data and avoid arbitrary adjustments (Brownjohn et al., 2001). Both static and dynamic tests can provide data for 

model calibration. The need for traffic interruption makes static tests, though important for calibrating boundary 

conditions and element stiffness, logistically challenging. On the other hand, dynamic tests, which capture the 

global behaviour of the structure under operational conditions (Simoen et al., 2015), are more commonly used in 

practice (Garcia-Palencia et al., 2015; Malveiro et al., 2014; Ren & Chen, 2010; Svendsen et al., 2022). Few 

studies, such as (De Angelis & Pecce, 2023; Liu et al., 2021; Schlune et al., 2009), have explored the combination 

of both types of tests, despite the potential to enhance model update quality. 

To evaluate the output progress at each step, it is common to compare natural frequencies measured in the field 

against those obtained through numerical calculations. According to Talebi et al. (Talebi et al., 2023) this 

comparison can be quantified using the objective function described in Equation 3: 

𝜀 =
|𝑓𝑖

𝑒𝑥𝑝
−𝑓𝑖

𝑛𝑢𝑚|

𝑓𝑖
𝑛𝑢𝑚                   (3) 

where 𝑖 represents the analyzed vibration mode, while 𝑓𝑖
𝑒𝑥𝑝

 and 𝑓𝑖
𝑛𝑢𝑚 denote the experimental and numerical 

frequency values, respectively. 

In dynamic analysis, the Modal Assurance Criterion (MAC) serves as a key indicator for measuring correlation 

between different vibration mode shapes. As noted by (Allemang, 2002), higher MAC values indicate stronger 

correspondence between the compared modes. The MAC index is mathematically expressed as shown in Equation 

4: 

𝑀𝐴𝐶(𝜙𝑖 , 𝜙𝑗) =  
|𝜙𝑖

𝑇𝜙𝑗|
2

(𝜙𝑖
𝑇𝜙𝑖)(𝜙𝑗

𝑇𝜙𝑗)
                (4) 

where 𝜙𝑖  and 𝜙𝑗  denote the modal displacements associated with vibration modes 𝑖 and 𝑗, respectively, and 𝜙𝑖
𝑇 

and 𝜙𝑗
𝑇 represent their corresponding transposed forms. When analyzing the MAC matrix, the main diagonal 

elements show how each mode correlates with itself, while off-diagonal elements indicate a correlation between 

different modes. For optimal mode separation, the off-diagonal elements should exhibit low values. 

2.3 Machine learning and health diagnosis 

Data driven artificial neural networks (ANNs) learn by processing data through interconnected layers of nodes. 

The workflow begins with input data, which is fed into the first layer (input layer). Each connection between nodes 

has an associated weight, and each node in subsequent layers (hidden and output layers) applies a non-linear 

activation function to the weighted sum of its inputs.  These activation functions introduce non-linearity, allowing 

the network to learn complex patterns.  Common families of activation functions include sigmoid-like functions 

(e.g., logistic, tanh), which squash values to a limited range (often 0 to 1 or -1 to 1), and rectified linear unit (ReLU) 
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families, which are piecewise linear and help mitigate the vanishing gradient problem. This process continues layer 

by layer until the output layer produces a prediction. The difference between the predicted output and the actual 

target value is quantified by a loss function. During training, the network adjusts the weights of the connections to 

minimize this loss. For regression tasks, the output layer typically uses a linear activation function (or no activation 

function), and the loss function often means squared error, aiming for a continuous output. For classification tasks, 

the output layer uses a softmax-like activation function, producing a probability distribution over the classes, and 

the loss function is typically cross-entropy, aiming for a categorical output representing class probabilities. By 

iteratively adjusting weights based on the loss, the network learns to map inputs to outputs, effectively performing 

regression or classification. The remarkable capacity of ANNs to process large datasets and recognize complex 

patterns has led researchers to apply them in structural damage detection and severity assessment (Jayasundara et 

al., 2019; Silva et al., 2016; Svendsen et al., 2023). 

3. METHODOLOGY 

The pre-DT workflow for infrastructure management integrates multi-source data through a systematic process 

(Figure 1). Initially, an infrastructure asset is selected, and comprehensive data, including design specifications 

(structural plans and material details) and field measurements (ambient vibration tests), are aggregated into a 

digital asset inventory. This centralized repository supports three critical parts: a Finite Element (FE) for structural 

analysis, Artificial Neural Networks (ANNs) for structure condition assessment, and a Building Information 

Modelling (BIM) for comprehensive representation and data storage. These components collectively contribute to 

the creation of the pre-DT, which provides a dynamic and data-driven representation of the infrastructure. Finally, 

asset management component utilizes the pre-DT for decision-making, monitoring, and maintenance planning, 

aiming to ensure the structure’s optimal performance and safety. Additionally, a feedback loop from pre-Digital 

Twin to the asset inventory allows continuous updates based on new data and insights. 

 

Figure 1: Complete framework. 

The process involves four key stakeholders: Asset Management Team, Engineering Team, Modelling Team, and 

Data Science Team. The Asset Management Team initiates the process by selecting the assets to be monitored and 

determining maintenance interventions based on their condition. The Engineering Team, which includes 

experimentalists and structural specialists, conducts field tests, verifies design information, and generates periodic 

inspection reports to enhance the BIM model. The Modelling Team, composed of experts in numerical and 

information modelling, oversees the digital transformation by managing asset data requests, developing the BIM 

and FE models, and refining predictive state models to build the pre-DT. Lastly, the Data Science Team is 

responsible for establishing databases and training artificial neural networks (ANNs) to validate and improve 

predictive analytics, supporting the data-driven decision-making. 

The process of pre-DT implementation (Figure 2) begins with the Asset Manager defining the target infrastructure. 

Subsequently, the Modelling Team creates a comprehensive document for the Engineering Team, outlining all 
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necessary information to construct the structure's virtual models. This document specifies: verified actual and 

design measurements, dynamic test-derived modal properties, the structural elements to be analysed, and their 

physical properties. Guided by this scope, the Engineering Team plans and conducts field tests, determining the 

appropriate test types and experimental mesh. Upon completion, they provide the Modelling Team with critical 

data, including natural frequency values, vibration modes, and element compressive strengths. The Modelling 

Team then uses this data to calibrate the structure’s finite element models and Building Information Model (BIM). 

With the calibrated finite element model, the Modelling Team generates simulated damage scenario results, which 

they deliver to the Data Science Team. These results are used to build databases for training and validating 

Artificial Neural Networks (ANNs) that will diagnose structural health. Finally, the pre-Digital Twin is 

consolidated by integrating these tools into the BIM model. The Engineering Team leverages the pre-Digital Twin 

to generate detailed reports that assist the Asset Manager in making informed decisions regarding potential 

interventions. Crucially, the Engineering Team documents all real-world interventions and shares this information 

with the Modelling Team to ensure the pre-Digital Twin remains up-to-date. This iterative process creates a 

continuous feedback loop, ensuring the pre-Digital Twin accurately reflects the asset's current state and enabling 

informed management decisions. 

 

Figure 2: Proposed process map. 

3.1 Asset digital inventory 

The asset’s digital inventory aims to create a comprehensive repository of data and attributes. Its primary goal is 

to facilitate continuous monitoring and efficient management of the asset’s condition thorough the understanding 

of its state, therefore supporting proactive maintenance strategies. The process begins with the development of a 

3D as-is BIM model based on design drawings, where critical attributes and relevant data are integrated. This 

inventory is organized as a database, consolidating all necessary information to enhance the efficiency of bridge 

management. The inventory includes general data and detailed information on design parameters, structural data, 
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maintenance records, and structural condition diagnosis as shown in Figure 3. By serving as a centralized and 

structured repository, the inventory is intended to support effective management and informed decision-making 

for bridge maintenance and inspections. 

 

Figure 3: Asset’s inventory content. 

3.2 Field tests for structural characterization 

The field tests play a key role in populating the structure’s digital inventory. This data can be divided into two 

categories: structural behaviour and structural component properties. With respect to structural behaviour, the tests 

provide information on how the structure responds to external excitation, such as loads or wind effects. The choice 

of structural behaviour tests in practice is contingent upon the availability for traffic interruption (Figure 4). 

Ambient vibration tests, which can be conducted during the structure’s operation, enables the determination of its 

natural frequencies, vibration modes and damping ratio. In contrast, static load tests, which can require traffic 

interruption, provide information on the stiffness of the structural elements and the structure’s boundary conditions. 

The materials tests provide insight on the structural element’s strength. This data affects the estimation of structural 

element's stiffness, which influences dynamic behaviour and updating process of the numerical model. 

 

Figure 4: Field test framework. 
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3.3 Calibrated numerical model 

By the end of the updating stage, the finite element model should accurately reflect the structure’s behaviour as 

measured in the tests. Adjusting the model based on the results of the ambient vibration test requires assessing the 

similarity between the experimental and numerical results in terms of natural frequencies and vibration modes. 

The majority of the calibration effort focuses on the model’s mass and stiffness, since these are the two main 

variables in the dynamic problem. In this work, the mass was adjusted by varying the asphalt layer’s thickness, 

while the stiffness calibrated by changing the Young’s modulus of the structure’s material.  

3.4 Assessment of structural condition using ANN 

The structural condition diagnosis is performed in two sequential stages, using multilayer perceptron artificial 

neural networks. In the first stage, a classifier neural network analyses the structure and identifies the presence of 

damage, locating it in one of six predefined sections of the longitudinal beams. If damage is detected, the process 

advances to the second stage, where a regressive neural network estimates the severity of the damage identified in 

the previous stage. The architecture and parameters of each of these networks, presented in Table 1, were chosen 

and tuned to balance expressiveness with generalization. Multilayer perceptrons with a small number of hidden 

layers and progressively reduced neuron counts were adopted to capture the nonlinear relation between modal-

curvature features and damage while avoiding over-parameterization. ReLU activations were used in hidden layers 

to speed convergence and mitigate vanishing gradients, softmax was used at the classifier output for stable multi-

class probability estimates, and a linear output was used for the severity regressor to produce unbiased continuous 

predictions. 

Table 1: Artificial Neural Network's Architecture. 

ANN 

Input layer Hidden layers Output layer Training parameters 

Neurons Layers 
Neurons 

per layer 

Activation 

function 
Neurons 

Activation 

function 

Learning 

rate 
Epochs 

Loss 

function 

Damage 

detection 
30 3 15 | 12 | 9 Tanh 7 Sigmoid 0,01 500 

Categorical 

cross entropy 

Severity 

estimation 
30 3 25 | 15 | 5 ReLU 1 Linear 0,002 550 

Mean 

squared error 

Artificial Neural Networks (ANNs) must be trained with a dataset of damage indicators to assess a structure’s 

condition accurately. To ensure reliable results, the training data must be free from noise and interference caused 

by environmental factors such as temperature variations and wind. In this context, dynamic damage indices provide 

a more robust alternative as damage indicator than the primary variables such as natural frequency and vibration 

modes, since they are less sensitive to noise and environmental fluctuations. This enhances the accuracy of damage 

detection and quantification. The dataset is generated by introducing artificial damage scenarios into a calibrated 

finite element model. Introducing damage in a finite element model for these analyses, rather than applying 

physical damage to the actual structure, is usually the only option due to the operational challenges and the risks 

associated with modifying a structure that is in service. In this work, artificial damage is simulated by reducing 

the bending stiffness (𝐸𝐼) in designated sections of the longitudinal beams. 

The modal curvature index is adopted in this study as the input variable for the ANNs. This choice is justified 

because the proposed methodology is based on sporadic field tests rather than having to rely on continuous 

monitoring of the structure, which would allow filtering interferences from environmental effects using statistical 

methods. 

3.5 Integration of BIM and SHM 

The integration proposed in this work involves three key areas: general overview, asset inventory, and structural 

diagnosis. In the first one, a tool is used to display a web dashboard that consolidates reports from all the 

concessionaire’s assets, including information about the location of bridges and viaducts, the main identified 

structural pathologies, and a ranking that orders these structures according to the severity of their deterioration. 



 

 

 
ITcon Vol. 30 (2025), Oliveira & Sotelino, pg. 1645 

Figure 5 describes in detail the general structure of the proposed plugin component. To populate the dashboard, 

asset condition reports are initially obtained, and stored in the Common Data Environment (CDE). Then, these 

reports update a Power BI dashboard, which is then published on the web, facilitating access to information. In 

parallel, a script integrated with the BIM tool interacts with the CDE and the online publication, ensuring data 

visualization and monitoring. 

 

Figure 5: Assets overview code framework. 

The viaduct inventory is divided into two parts: static and inspection data. The static part gathers information that 

remains unchanged or undergoes few changes during the infrastructure’s lifespan, allowing it to be organized in a 

fixed database, accessible through a script. This section covers general, engineering, and structural data, as 

illustrated in Figure 6a, which details the operation of the code responsible for integrating them. This data, like all 

other structural data, is centralized in the CDE. Next, the script gathers and organizes the information, converting 

it to a format compatible with the BIM platform display. It then presents the result in a text window, offering a 

clear and consolidated view of the inventory. Figure 6b shows the operation of the code that displays inspection 

information. This code generates a list of all available inspection reports, which are displayed in a selection 

window, allowing the user to choose a specific report to view. Upon selecting a report, the system opens a new 

window to display the chosen report. This way, users can navigate and view different inspection reports on the 

BIM platform, facilitating the analysis and management of this information. 

 

Figure 6: Code framework for accessing and visualizing a) static and b) inspection data. 

The integration part of the system concludes with a structural diagnosis, executed through three sequential scripts. 

As depicted in Figure 7a, the analysis script initiates the diagnostic workflow. First, it retrieves the most recent 

modal curvature data, captured during ambient vibration tests and stored in the Common Data Environment (CDE), 

and processes it using two pre-trained neural networks. The localization network detects the presence and location 
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of structural damage. If damage is identified, the severity identification network evaluates its intensity. These 

results are compiled into a diagnostic report, which states whether damage exists, specifies the affected structural 

element, pinpoints its location, and quantifies its severity. Next, the incorporate function (Figure 7b) integrates 

this report into the digital structural model. Using shared parameters, the function updates longitudinal beam model 

groups by assigning two key properties to the relevant elements: presence of damage and damage severity. These 

parameters are linked to specific structural members via their unique IDs, ensuring traceability. Finally, the results 

function (Figure 7c) generates an intuitive 3D view that visually highlights elements requiring attention. This view 

dynamically adjusts element appearances based on their shared parameter values, applying filters to emphasize 

compromised areas. Accessible online, the visualization supplements the manager’s final report with actionable 

insights into structural health. 

 

Figure 7: Structure diagnosis code overview. 

The results related to the structural condition of the elements are integrated into the BIM model, enabling the 

generation of a report intended for the asset Management Team. This report displays all structural elements using 

a color-coded classification system that reflects the degree of degradation of each component. Structural conditions 

are categorized into four levels: undamaged (green), slightly deteriorated (yellow), highly deteriorated (purple), 

and potentially hazardous (red). Based on this report, which integrates SHM inspection data and the intervention 

history stored in the model, the manager can decide whether to carry out corrective maintenance, including it in 

the planned project schedule. 

4. CASE STUDY 

4.1 Structure and tests description 

The Rio Claro-Viaduct is located in the city of Rio Claro, over the SP-340 highway. Situated in an urban area, the 

viaduct plays a crucial role in the region’s infrastructure, serving as one of the main access routes to cities in the 

western part of the state of São Paulo, Brazil, particularly connecting to São Carlos (Figure 8). 
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Figure 8: Rio Claro-Viaduct. 

Constructed in the 1980s, this reinforced concrete viaduct boasts a robust structural design. It comprises two main 

girders, five transverse beams connecting them, and four supporting piers. Two bracing beams enhance the 

columns stability, while the deck provides the roadway surface. The structure terminates on both ends with wing 

walls that anchor it to the surrounding earth slopes. Spanning 32.1 meters in length and 13 meters in width, it 

traverses three spans and is laterally secured by New Jersey barriers (Figure 9). 

 

Figure 9: Structure measurements (in meters). 

Two key factors motivated the choice of this viaduct for the case study. First, researchers had access to dynamic 

measurements taken ten years earlier, carried out by Gómez Araújo et al. (2019) in 2014, enabling a thorough 

assessment of how the structure’s behaviour may have changed over this extended period. Second, since this 

viaduct shares design characteristics with many other bridges on Brazilian highways, the study’s findings have 

broad applicability for evaluating similar infrastructure. 

4.2 Field tests findings 

The Rio Claro Viaduct’s modal properties were determined by ambient vibration testing, which measures the 

structure’s dynamic response to natural excitations such as wind and traffic. Accelerometers were installed at thirty 

strategically selected locations to record vibration time histories. This extensive experimental mesh enables a 

robust measurement of mode shapes, and consequently its use to damage detection task. The signals were 

processed with modal-identification techniques, notably Enhanced Frequency Domain Decomposition (EFDD), to 

extract natural frequencies, mode shapes and damping ratios. Because no artificial excitation is required, this 

method is especially well-suited for assessing structures in operation. Further details on the measurement layout 

and post-processing are discussed in (Oliveira et al., 2025). 

The results from the 2014 ambient vibration test, illustrated in Figure 10, identified four distinct vibration modes 

with frequencies at 5.6Hz, 10.5Hz, 14.1Hz, and 19.3Hz. The second and fourth modes exhibited the highest 

damping coefficients, suggesting enhanced energy dissipation at these frequencies. While the first and second 

vibration modes displayed similar patterns, the third and fourth modes each showed unique characteristics. The 

modal shapes demonstrated increasing complexity in sequence, confirming effective data post-processing. These 

experimental measurements of natural frequencies (𝑓𝑒𝑥𝑝) and damping ratios (𝜙𝑒𝑥𝑝) were subsequently used to 

fine-tune the numerical model. 
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Figure 10: 2014 ambient vibration test results. 

The study examined the structural behaviour at the component level, following the procedure outlined in Figure 

4. Concrete girders’ characteristic compressive strength (𝑓𝑐𝑘) was estimated using impact-hammer testing. An 

experimental grid was applied to the two longitudinal beams, showing characteristic strengths of 39.7 MPa and 

45.0 MPa for the left and right stringers, respectively (Oliveira et al., 2025). These values were subsequently used 

to update the numerical model, the next stage of the framework. 

 

Figure 11: Numerical mode shapes. 

4.3 FE model update 

The finite element (FE) model construction began with design information. A model using quadratic solid elements 

for all structural elements was developed. This model was then manually updated by adjusting material properties, 

such as the concrete elasticity modulus and asphalt layer thickness, and boundary conditions to better match the 
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structure’s actual dynamic behaviour, as captured through field tests. The calibration process used experimental 

natural frequencies and mode shapes as references, with error metrics and the Modal Assurance Criterion (MAC) 

guiding the adjustments until the numerical results closely aligned with experimental data. The final values adopted 

for materials properties and boundary conditions can be found in Oliveira & Sotelino (2025). 

Figure 11 shows the final numerical mode shapes, while Figure 12 displays a comparison between natural 

frequencies obtained numerically and experimentally. The differences between the numerical and experimental 

frequencies were 5% or less, indicating a good correspondence between the two. 

 

Figure 12: Model update results. 

 

Figure 13: Experimental x Numerical MAC. 

Figure 13 shows the Modal Assurance Criterion (MAC) matrix, applied to compare the mode shapes obtained 

experimentally and numerically. The values along the main diagonal of the matrix, all equal to or greater than 0.9, 

indicate a high degree of similarity between the mode shapes obtained after the calibration of the numerical model 

and the corresponding mode shapes obtained in the ambient vibration test. The proximity of the values adjacent to 

the main diagonal suggests a strong correlation between the first and second mode shapes. However, the 4.9 Hz 

difference between the natural frequencies of these two modes indicates that they correspond to distinct vibration 

modes. The near-zero values in the other off-diagonal positions demonstrate that the other mode shapes are 

independent. Based on all these results, it can be concluded that the calibration process was effective, resulting in 

a high similarity between the dynamic behaviours of the numerical and experimental models. 
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4.4 ANNs performance 

Figure 14a and Figure 14b present the confusion matrices for the damage detection neural networks during the 

validation and training stages, respectively, using the modal curvature index as input. In these matrices, the vertical 

axis represents the true damage states, while the horizontal axis indicates the predicted states. The main diagonal 

consists of true positives, indicating accurate model predictions. Off-diagonal values denote incorrect predictions. 

Class 0 represents undamaged scenarios, and classes 1 through 6 represent the six sections of the longitudinal 

girders. A slight deficiency is observed in predicting damage in the first and third sections of the longitudinal beam, 

evidenced by a small number of false negatives. Nevertheless, the model demonstrates robust overall performance, 

achieving approximately 91% accuracy across all damage classes, alongside 91% precision, 93% recall, and a 91% 

F1-score. 

 

Figure 14: Damage detection network a) Validation b) Training. 

The regression Artificial Neural Network (ANN) model demonstrated strong predictive performance, achieving 

an R² value of 0.92. This indicates that the model accounted for 92% of the variation in the data. Figure 15 presents 

a scatter plot of predicted versus real values, which confirms this accuracy, since the majority of data points cluster 

closely around the perfect fit line, suggesting high prediction reliability. However, a slight spread is observed, 

particularly for higher values, indicating potential areas for further model refinement. 

 

Figure 15: Damage severity networks performance. 

4.5 BIM-SHM tools integration 

The integration presented in section 3.5 was carried out through the PyRevit extension in a BIM model developed 

in Autodesk Revit. PyRevit enables the execution of Python extensions within the BIM environment, provided 

they follow a previously defined folder structure. As illustrated in Figure 16, this structure requires that the main 
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folder, called .extension, contains all the extension content, organized into two subfolders: .lib, which includes the 

Python libraries used by the scripts — such as TensorFlow and Scikit-Learn for machine learning, and Numpy and 

Pandas for matrix operations and dataframe manipulation — and .tab, which contains all the extension tab 

components, organized in .panel type subfolders. Additionally, each extension function must be in a.pushbutton 

folder, which includes the Python script and the icon displayed in the graphical interface. The integration carried 

out in this work resulted in the SHM tab creation (Figure 17), divided into three panels: Asset Overview, Bridge 

Inventory, and Structural Diagnosis. 

 

Figure 16: PyRevit fold structure. 

 

Figure 17: SHM tab overview. 

The Assets Overview panel directs the user to an online dashboard with information about other managed assets 

(Figure 18). This dashboard provides a clear, visual summary of bridges and viaducts conditions, highlighting key 

issues such as joint deterioration and other concrete pathologies. By linking directly to a BIM platform via a 

PyRevit .urlbutton, the engineering team can seamlessly switch between the model and the dashboard, ensuring 

real-time updates and a single source of information. This integration enables collaboration among stakeholders, 

quicker identification of critical issues, and efficient resource allocation, ultimately improving the long-term 

management and maintenance of infrastructure assets. 

Access to the viaduct inventory, available in the second panel of the SHM tab, is organized into specific buttons 

for general, engineering, structural, and inspection history. The first three options display the information in a 

single window (Figure 19a), while the inspection history button opens an initial screen for selecting the desired 

report before viewing the content (Figure 19b). This part of the integration enabled the use of the BIM model as a 

digital and centralized information repository. With all data concentrated in a single environment, decision-making 

becomes more agile and precise. 
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Figure 18: Assets Overview dashboard. 

 

Figure 19: Viaduct’s a) General data window and b) Inspection history windows. 

The third panel is dedicated to structural diagnosis. The analysis button applies two pre-trained neural networks 

to identify damage and evaluate its severity. The results of this analysis are compiled into a report, which is stored 
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in the Common Data Environment (CDE). To perform the analysis, an input file containing modal curvature data, 

experimentally collected from 30 points on the viaduct, must be available in the CDE. The incorporate button 

allows the report’s findings to be integrated into the BIM model, updating the design properties of both intact and 

damaged longitudinal beams. This process ensures the pre-DT remains up-to-date and enhances the information 

model (Figure 20). Additionally, the report tool aggregates data from all girders, generating a color-coded 

visualization of the model. This visualization, accessible online, provides the manager with a clear and 

comprehensive overview of the structure’s current condition. 

 

Figure 20: Incorporate button result. 

4.6 System tests 

Two tests were conducted using the developed system developed for the Rio Claro Viaduct. The first aimed to 

evaluate the neural network's ability to make predictions for data not used during their training. To this end, a new 

dataset was generated from the same numerical model but with different damage levels and distributions than those 

considered previously. The second test aimed to verify the full end-to-end functionality of the system. In this test, 

data from a second field experiment, conducted ten years after the first, were used. Note that the data was collected 

at the same thirty points on the viaduct. 

 

Figure 21: a) Classification performance b) Regression performance. 

Figure 21 shows the neural network's results applied to the new dataset. Compared to the validation results, a slight 

drop in performance (5%) is observed for the adopted metrics (precision, recall, and F1-score) in the detection and 

localization ANN (Figure 21a). This variation is understandable, given the greater dataset diversity. Even so, the 
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accuracy rate remains above 85%. The neural network responsible for assessing damage severity also maintains 

the previous performance, with a coefficient of determination (R²) of 0.96 (Figure 21b). The mean absolute error 

of 0.005 is significantly smaller than the smallest difference in damage intensity present in the test data (0.02), 

indicating high prediction accuracy. These results demonstrate that the networks are able to generalize and do not 

suffer from overfitting. 

The modal curvature used in the final benchmark was derived from the mode shapes obtained during the ambient 

vibration test conducted in 2024. These results were used as input to the proposed system, which is integrated to 

the BIM model, the output indicated no damage presence in the Rio Claro Viaduct longitudinal girders. The report 

generated from this result is shown in Figure 22 showing that the asset has preserved its structural integrity after 

the 10-year period. 

 

Figure 22: Structure condition report. 

 

Figure 23: Natural frequencies comparison. 
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Figure 23 compares the post-processed natural frequencies from the ambient vibration tests carried out in 2014 

and 2024. It can be noted that the natural frequencies remained relatively constant over the ten years, varying by 

an average of 1%, indicating that the analysed structure did not experience significant changes in its stiffness. This 

confirms results obtained from the developed system's result. 

5. CONCLUSION 

This research successfully developed and validated a novel framework for structural integrity assessment that 

leverages a pre-Digital Twin to integrate experimental field data, numerical modelling, and artificial neural 

networks within a collaborative BIM environment. To reach these objectives, the work addressed several key 

challenges in viaduct management, ranging from acquiring and applying reliable data to integrating assessment 

tools with the structure’s maintenance records. 

The case study of the Rio Claro Viaduct demonstrates the framework’s potential. Field tests provided accurate 

dynamic characteristics, which were used to fine-tune the finite element model. Simulated damage scenarios 

enabled the training of ANNs that effectively correlated modal curvature indices with the extent and location of 

structural degradation. The detection and localization network maintained high performance, achieving over 85% 

accuracy even when tested on a dataset with varied damage levels, while the damage severity network yielded an 

R² of 0.96 with minimal mean absolute error. The framework successfully processed experimental data collected 

ten years apart, correctly identifying no structural deterioration in the viaduct, a conclusion validated by the 

minimal change in natural frequencies over time. These results affirm that the integrated system is not only accurate 

and replicable but also capable of supporting structural health monitoring and informed decision-making for 

infrastructure managers. 

The proposed framework combines field data, numerical models, and predictive analytics in a Building 

Information Modelling environment using PyRevit. This unified three key structural health monitoring 

components, namely characterization of structural behaviour, model-based diagnostics, and data-driven 

prognostics using artificial neural networks. By centralizing this information, the pre-DT enables intuitive 

visualization, accurate structure’s condition updates and reliable decision-making. The case study demonstrated 

the framework’s replicability by using BIM's inventory and dynamic inspection data to address problems in 

existing SHM systems, such as fragmented historical records. The system automatically locates and quantifies 

damage, connecting theoretical models with practical insights by directly updating BIM elements with damage 

information. This integration improves data visualization and reporting, which can lead to effective maintenance 

planning decisions. 

The current implementation focuses on damage to beam elements, extending the approach to other structural 

components (e.g., joints, foundations) would enhance its comprehensiveness. Automation of data ingestion and 

model updating could further reduce manual intervention and improve scalability of the framework. Finally, 

integrating real-time sensor data could transition the pre-Digital Twin into a dynamic Digital Twin, enabling 

continuous monitoring and even more responsive management. These directions will increase robustness and 

operational readiness while preserving the framework’s advantages as a BIM-based decision support tool. 

Overall, the research successfully bridges a gap between traditional SHM methods and modern digital asset 

management by merging BIM with advanced analytics. The demonstrated replicability and robustness of the 

framework underscore its potential to enhance the efficiency and reliability of infrastructure management 

practices. Future works could explore an expansion of the framework to other types of infrastructure, damage 

varieties or implement automation in part of the proposed method. 
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