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SUMMARY: Utilizing tools like laser scanners and photogrammetry to generate point cloud data reshapes Digital
Heritage by facilitating Scan-to-BIM methodologies for 3D models. At point cloud processing stage, integrating
semantic segmentation into Scan-to-BIM workflows allows unstructured spatial information to be translated into
intelligent geometrical classifications that enable data-driven 3D models. AI methods show promising solutions
for Three-Dimensional Point Cloud Semantic Segmentation (3DPCSS), allowing robust creation of parametric
objects in heritage BIM. Despite the advancements in AI-based 3DPCSS, current models often present conceptual
and practical challenges. These limitations stem from heterogeneous data and lack of adaptive algorithms to
capture the geometrical complexities inherent in historic structures. Manual segmentation is often required to add
detail to the simplified geometrical representations that omit the unique features, such as intricate carvings,
creating challenges in efficient modeling. This systematic literature review presents an inquiry into the workflow
of 3DPCSS, from data acquisition and classification stages to 3D model creation, with a case example in an Indian
context. It synthesizes findings from 95 peer-reviewed publications from 2014 to 2024, focusing on the factors
influencing the selection of suitable Al algorithms, including data acquisition, dataset types, complexity of
geometrical elements, and computational tasks. The investigation reveals significant limitations in current
approaches. Transformer-based models demonstrate significant performance degradation when applied to non-
Western architectural geometries despite comparable complexity levels. Furthermore, through a matrix analysis,
we identify four primary phases of algorithmic evolution—from rule-based systems to transformer architectures—
while highlighting the emergence of hybrid approaches that combine geometric primitives with deep learning
refinement. This paper extends the work presented at the Proceedings of the International Conference on Smart
and Sustainable Built Environment (SASBE 2024), New Zealand.

KEYWORDS: Al in cultural heritage, scan-to-BIM, 3D point cloud semantic segmentation (3DPSS), digital
heritage, data-driven 3D modeling.

REFERENCE: Subhadha Battina (2025). Navigating geometric complexity in digital heritage: a review of Al-
based semantic segmentation. Journal of Information Technology in Construction (ITcon), Special issue: 'Smart
and Sustainable Built Environment (SASBE 2024)', Vol. 30, pg. 1707-1727, DOI: 10.36680/j.itcon.2025.070

COPYRIGHT: © 2025 The author(s). This is an open access article distributed under the terms of the Creative
Commons Attribution 4.0 International (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

@ @ ITcon Vol. 30 (2025), Battina, pg. 1707
BY


https://dx.doi.org/10.36680/j.itcon.2025.070
https://dx.doi.org/10.36680/j.itcon.2025.070
https://orcid.org/0000-0002-6100-9258
mailto:sbattina26@gmail.com
https://creativecommons.org/licenses/by/4.0/

1. INTRODUCTION

Digital heritage has undergone a significant transformation with the advent of advanced 3D data-collecting
technologies such as LIDAR (Light Detection and Ranging) with photogrammetric methods (Capolupo, et al 2015,
Yang, et al 2020). These technologies generate high-resolution point clouds that capture intricate geometries and
textures of historic structures. However, translating raw point cloud data into semantically rich 3D models remains
a complex and labor-intensive process, often requiring substantial manual intervention at many stages (Grilli and
Remondino, 2019, Lopez, et al 2018).

In a typical Scan-to-BIM workflow, initial preprocessing stages address critical data quality tasks, including noise
reduction from multi-sensor data integration, registration of point cloud clusters, correcting density variations,
initial classification, etc. (Banfi, et al 2022, Croce, et al 2021). Subsequently, 3D computer vision tasks involve
object detection of building components and semantic segmentation of stylistic elements, mesh creation, and
parametrization for BIM, each requiring customized algorithms to bridge the gap between raw data and the
computational task necessary for the conservation project (Matrone, et al 2020, Pocobelli, et al 2018). This study
investigates state-of-the-art Al algorithms demonstrating significant efficacy in Three-Dimensional Point Cloud
Semantic Segmentation (3DPCSS). The use of Machine Learning (ML) and Deep Learning (DL) approaches for
3DPCSS has succeeded in urban planning, commercial architecture, and robotics, where texture and geometric
regularity simplify feature extraction (Chen, et al 2019, Pierdicca, et al 2020). However, it is hindered by several
limitations in a heritage context. Point clouds for digital geritage introduce unique challenges to existing 3D
computer vision frameworks characterized by non-Euclidean geometry, size-heavy files, stylistic heterogeneity,
and material degradation (Grilli, et al 2017, Pepe, et al 2020, Bruno, et al 2017, Quattrini, et al 2015).

Furthermore, there is a significant lack of high-quality training datasets, especially in India, with substantial
diversity in architectural styles (Dore and Murphy, 2017, Kazado, et al 2019). This data deficit and limitations
require reliance on manual intervention or primitive shape approximation in automated 3D modeling workflows,
eliminating unique and intricate features on the surface of the historic structure. For instance, conventional Al
models, such as convolutional neural networks (CNNs), often fall short in recognising the multi-scale nature of
heritage buildings, where <5 cm intricate carvings coexist with a 30 m structural span, leading to erroneous
modeling outputs (Aryan, et al 2021, Tommasi, et al 2016). These errors may be more significant when the heritage
site consists of multiple structures across a landscape. Voxel-based CNN architectures face inherent limitations in
processing fractal-like geometries (Xu, et al 2018), such as those found in Hoysala temple pillars with 16/32-
pointed lathe-turned designs due to their constrained cubical grid representations. Point cloud processing using
mono-Al or rule-based algorithms face critical bottlenecks in handling intricate architectural elements like
latticework carvings and fractal-like patterns in Indian architecture (Alshawabkeh, et al 2020, Previtali, et al 2014).
This gap emphasizes the need for adaptive frameworks that hybridize Al with customized rules optimized for the
specific algorithmic performance required for the conservation objectives.

This paper examines Al-driven semantic segmentation approaches for 3D point cloud data within the digital
heritage domain, specifically for buildings exhibiting geometric complexity. The investigation uses a dual
framework synthesizing Kitchenham's Systematic Literature Review architecture with PRISMA protocol
implementations, ensuring methodological validity and procedural transparency. Primarily, the work presents a
multi-dimensional comparative analysis of 95 peer-reviewed investigations through a systematic matrix evaluation
framework, quantifying algorithmic efficacy across multiple parameters, including data modality integration,
architectural complexity factors, sensor technology dependencies, classification paradigms, and performance
metric distributions. This evaluation aligns with the paper's contribution, offering a multidimensional lens to
compare Al methods across heritage-specific parameters such as data modality, architectural complexity, and
performance.

Additionally, the contribution comprises a critical curation of over 40 benchmark datasets with heritage modeling
relevance, contextualizing their limitations through statistical analysis of geographic distribution, stylistic
representation, and methodological constraints, with particular emphasis on the systematic underrepresentation of
non-Western architectural morphologies such as those manifested in the Indian subcontinent (Banfi, 2020, Fai, et
al 2011). Unlike earlier surveys (e.g., Grilli and Remondino, 2020, Pritchard, et al 2021) that primarily focused on
European contexts or generic 3DPCSS workflows, this review advances the discourse by situating algorithmic
progress within the geometric and cultural complexity of non-Western heritage, particularly Indian temple
architecture. This paper demonstrates how stylistic heterogeneity, fractal geometries and religious symbolism
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challenge models trained on rectilinear datasets, thereby providing a heritage-calibrated positioning absent in
previous surveys. Thirdly, the research traces the evolutionary trajectory of segmentation algorithms from
traditional ML frameworks through graph-neural architectures to transformer-based foundation models,
elucidating how emergent hybrid approaches better handle complex 3D surfaces that mix flat and curved areas,
especially when conservation projects need to analyze features at different scales (Wang, et al 2019, Guo, et al
2020). Finally, the investigation identifies critical gaps encompassing domain or multiple style adaptation
mechanisms, interpretability frameworks, and future research directions. This is explained further in Section 5 of
the paper. By strategically aligning computational innovations with heritage conservation imperatives, this
investigation delivers a scholarly synthesis and a comprehensive epistemological framework for advancing the
computational documentation of architectural heritage with appropriate cultural sensitivity and technological
sophistication (Logothetis, et al 2015, Stylianidis, et al 2016). The overall Al-enhanced Scan-to-BIM workflow
for heritage data is illustrated in Figure 1. Understanding these limitations is critical to identifying how Al methods
must evolve to address the advancements in the acquired data and to target conservation requirements specific to
heritage segmentation.

SCAN-TO-BIM FOR HERITAGE STRUCTURES
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Figure 1: Workflow of Scan-to-BIM: Three-Dimensional Point Cloud Semantic Segmentation (3DPCSS) with Al

1.1 3D computer vision for heritage data: collection, integration, and processing

Computer vision generally recognizes target objects in a 2D, or 3D scene based on their specific geometric or
material attributes (Yang, et al 2024). However, in heritage scan-to-BIM workflows, several authors have
emphasized a more granular taxonomy of 3D computer Vision that begins with the data acquisition and
preprocessing as foundational stages, followed by segmentation and classification as core tasks of the pipeline.
For example, Banfi, et al (2019) begin their workflows with data acquisition using terrestrial laser scanning or
photogrammetry, capturing the intricate geometries of building facades. According to Croce, et al (2021), the
primary vision tasks are classified into six categories: registration, segmentation, classification, 3D object detection
and tracking, compression, and completion (Tychola, et al 2024). This structured approach is echoed by Camuffo,
et al (2023) and Fregonese, et al (2023), who detail the process of making a 3D computer vision model for a BIM
platform starting at the stage of data collection itself. Unlike other domains like robotics, autonomous driving, and
urban modeling, the personnel collecting data must have an overview of Scan-to-BIM's entire workflow, including
handling technical tools and processing and conservation objectives. They should know the best locations for
acquiring sequential, comprehensive, high-quality point cloud clusters that effectively support generating accurate
3D models. A typical heritage site for documentation is a complex, dynamic environment composed of spatial
elements with semantic and geometric information, such as land, vegetation, water, and buildings. Digital
documentation presents several advantages over conventional methods by providing quick, cost-effective, precise,
and non-invasive procedures that ensure robust interpretation.
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In the earliest stages of the scan-to-BIM workflow, 3D point cloud acquisition faces fundamental challenges,
including unavoidable noise and shadows in complex architectural spaces that increase digitization costs and time.
Preplanning is required to minimize noise, light variations, and movement whenever possible. Architectural
elements exhibit geometric features that require macro (site scale), micro (details), and miso (building scale)
representation, with highly decorated elements posing multi-scale segmentation difficulties. Hence, point clouds
in cultural heritage demand high-density sampling to capture the intricacies of surface details in complex
geometries, including non-planar curves, irregular shapes, and textures.

Tangible digital heritage data comes from single or multi-sensor equipment (Yang, et al 2023). However, in most
cases, it combines three types of data (Zhang and Fassi, 2024). One-dimensional data: data from accelerometers,
gyroscopes, and temperature sensors. Two-dimensional data: Images, including photographs, drawings,
spectrograms, thermal imaging, etc., and Three-dimensional data consisting of Point cloud clusters from LiDAR
or Photogrammetry (Pepe, et al 2022, Pierdicca, et al 2020, Matrone, et al 2020, Croce, et al 2021). Generally,
different types of inputs require specific data-analyzing tools and feature extractors. However, in heritage
documentation, data acquisition is complex in most cases, necessitating the integration of data types (Pocobelli,
et al 2018, Quattrini, et al 2015). For example, GNSS data combines images and semantics (Murphy, et al 2009,
Alshawabkeh, et al 2024).

When such large files integrate with point clouds, larger volumes of data are required, demanding extensive
computational resources for storing and processing (Yang , et al 2023, Wang et al., 2024). Sometimes, the sheer
size of the point cloud is often beyond the capacity of commercially available registration software (Pan, et al
2024). Raw Point cloud data from data gathering tools such as LIDAR scanners and photogrammetry consists of
millions of points representing spatial information of surface geometry. Each point consists of spatial coordinates
(%, y, z) and attributes such as color, surface normals, and time stamps. (Liu and Mohd, 2024, Pepe, et al 2022).
However, this information in raw form comes as an unorganized dataset where points are stored in no implicit
array that connects them. Preprocessing this data is essential to improve data quality and structure, which involves
downsizing, reducing noise, fixing registration or alignment errors, removing occlusion, managing point density
differences, etc. (Dell'Amico, et al 2021). However, most importantly for heritage documentation, digital data from
multiple surveying technologies is integrated into one final point cloud representing the target geometry (Croce,
etal 2021, Avena, et al 2024).

Integrating multiple data sources and types ensures a comprehensive representation of heritage structures, each
capturing different features of the surface geometry (Medici, et al 2024, Barrile, et al 2022). The data typically
consists of photogrammetric images, LIDAR scans, SAR (Synthetic Aperture Radar) data, and other sensor inputs
like GNSS (Global Navigation Satellite System) or temperature sensors. Each data type provides complementary
information tailored for a specific project output (Dimara, et al 2024, Khan, et al 2022). For instance,
photogrammetry captures surface textures and detailed images, LIDAR delivers precise spatial details even in low-
light conditions, and SAR penetrates obscuring elements like vegetation or weather effects (Parrinello and
Dell'Amico, 2019, Lin, et al 2024). When integrated and superimposed, data from all three generate realistic high-
resolution color, depth, and texture information suitable for many applications, such as Augmented and Virtual
Reality environments.

The choice of software and the workflow for preprocessing depend on the source data and the specific objectives
of the heritage documentation project (Battini, et al 2024, Mishra and Lourengo, 2024, Sebastian, et al 2023). Each
platform addresses the unique characteristics of the input data type, ensuring that the point cloud is registered,
clean, precise, and ready for subsequent integration and analysis.

A photogrammetric point cloud is created in commercial software by capturing multiple 60% to 80% overlapping
images of an object, often using drones or calibrated cameras (Carvajal-Ramirez, et al 2019, Stanga, et al 2023).
The software then uses algorithms such as Structure from Motion (SfM) to automatically stitch anchor points and
align the images, estimate camera positions, and reconstruct a sparse 3D point cloud, which is further used to
reference a dense point cloud to represent detailed surface geometry (Lei, et al 2024, MunozPandiella, et al 2024).
Finally, the resulting dense point cloud can be exported or integrated into point clouds from other sources, where
it may be further processed for mesh generation, surface reconstruction, or measurement tasks.

LiDAR scans are often preprocessed using proprietary software that comes with the equipment (Anton, et al 2024,
Ferro, et al 2023). For example, the Faro terrestrial laser scanner comes with software called Faro Scene, in which
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the Point Cloud clusters can be aligned, registered, and cropped into focus areas. Scans require noise filtering to
eliminate outliers, ground and non-ground broad classification for surface differentiation, and point cloud thinning
to maintain critical details while reducing density (Croce, et al 2023, Musicco, et al 2024). Additional tasks, such
as coordinate transformation, error correction, and georeferencing, if any, ensure further accuracy of LiDAR data.
Popular tools for LIDAR processing include LAStools, CloudCompare, and TerraScan.

SAR data preprocessing focuses on reducing atmospheric noise through speckle reduction filters, broad
classification of features such as ground, vegetation, and buildings, and outlier removal using statistical or cropping
methods. SAR is instrumental in monitoring structural stability and detecting changes over time. SAR is
particularly effective for large-scale mapping of heritage landscapes, including remote or inaccessible areas
(Caspari, et al 2023). Tools like ESA SNAP, PolSARPro, and Gamma Software are widely used for processing
SAR datasets. These preprocessing steps are critical to ensuring high-quality point clouds, the foundation for
accurate 3D modeling and analysis in various applications. Figure 2 shows how diverse datasets are aligned and
integrated into a single high-resolution point cloud for downstream segmentation.

Pre-processing of point clouds
|

Figure 2:
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Preprocessing Multi-modal data into one integrated point cloud.

Following the preprocessing steps of aligning, downsampling, noise filtering, and integrating disparate datasets
into one cohesive point cloud, 3D computer vision workflows focus on semantic segmentation, object detection,
and feature extraction to enable 3D modeling of heritage structures for documentation and analysis (Yang, et al
2023, Su, et al 2023). Algorithms for feature extraction identify and compute unique elements such as carvings,
textures, or structural geometries. Object detection isolates specific architectural or ornamental components based
on their feature attributes, while semantic segmentation categorizes points into meaningful classes like walls,
arches, etc. (Pierdicca, et al 2020). The final stages of scan-to-BIM include 3D reconstruction to generate accurate
mesh models and visualization tools to enable interpretation, conservation planning, or virtual heritage experiences
(Pan, et al 2024, Banfi, et al 2022). For that matter, 3D computer vision for heritage 3DPCSS has evolved
remarkably from traditional handcrafted approaches to advanced DL frameworks (Cotella, 2023, Tychola, et al
2024). DL models like PointNet++ and PVCNN++ can potentially process point clouds to classify architectural
elements (e.g., gavaksha motifs, stambhas in Indian temple architecture) using geometric descriptors or feature
attributes such as surface normals, curvature, and material properties like reflectance and color data.

2. METHODOLOGY

This literature review adopts a hybrid methodology that integrates the technical rigor of Kitchenham's SLR
framework with the systematic approaches of the PRISMA method, ensuring interdisciplinary relevance. The
review began with formulating research questions that aim to understand the limitations and advances in Al-based
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semantic segmentation of geometric surfaces in heritage structures, emphasizing multi-modal integrated data,
methodological evolution of algorithms, and hybrid approaches. A comprehensive search strategy was developed
for heritage documentation reviews. The search encompassed four major academic databases: Scopus, Web of
Science, IEEE Xplore, and Google Scholar. IEEE Xplore yielded 23 additional papers on sensor integration, and
Web of Science contributed 18 unique papers on temporal analysis methods not indexed in Scopus. Boolean search
strings were systematically constructed using controlled vocabulary from heritage informatics thesauri: ("3D point
cloud*" OR "point cloud*" OR "LiDAR") AND ("semantic segmentation" OR "instance segmentation" OR "scene
parsing") AND ("heritage" OR "historical building*" OR "cultural heritage" OR "HBIM") AND ("deep learning"
OR "machine learning" OR "neural network*" OR "artificial intelligence"). Additional targeted searches
incorporated region-specific terms: ("Indian temple*" OR "Asian architecture") to address cultural representation
gaps. Quality Assessment Scoring Framework: Each paper underwent systematic evaluation using an adapted 15-
point scoring rubric:

*  Methodological rigor (5 points): Algorithm validation protocol, cross-validation implementation,
statistical significance testing, ablation studies, baseline comparisons

+ Dataset Quality (4 points): Dataset size and diversity, annotation quality assessment, cultural
representativeness, temporal coverage

*  Reproducibility (3 points): Code availability, parameter specification, detailed implementation
descriptions

* Heritage Relevance (3 points): Architectural complexity handled, cultural sensitivity considered,
conservation applicability

PHASE 1: LITERATURE ANALYSIS

\ A.DATA SEARCH- INCLUSION CRITERIA ‘ ’ B. SCREENING
i Topic Application of digital twins in cultural heritage ‘ Date of ] Feb 2025
extraction .
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cope and Language: English S ¢
| coveragé || Source types: Journals, Conferences, Books, Chapter Number of documents (N=118)
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\ C. STATISTICAL ANALYSIS APPROACH J L D SCIENCE MAPPING APPROACH
Data statistic l Time evolution distribution of publications \ Scnence ‘ Authors and co-authorship networks
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Figure 3: Literature Review- hybrid method integrating Kitchenham's SLR framework with PRISMA.

Papers scoring >11 points were classified as high-quality (n=47), 7-10 points as medium quality (n=36), and <7
points as preliminary studies (n=12). Inter-rater reliability achieved Cohen's k=0.84 across three independent
reviewers with heritage informatics expertise. Inclusion criteria required that articles (a) addressed AI/ML/DL
based semantic segmentation of heritage point clouds, (b) spoke about geometric or stylistic complexity, and (c)
were peer-reviewed and published in English between 2014 and 2024. Exclusion criteria eliminated studies
focused solely on non-heritage domains or landscape and Urban heritage. Subsequently, titles, abstracts, and full

ITeon Vol. 30 (2025), Battina, pg. 1712




texts were screened independently. A final 95 articles were analyzed in a matrix format with headings for 'captured
scene type,' ' Al algorithm, 'sensors,' 'dataset type,' 'classifications,' and 'performance metrics'. This curated dataset
forms the empirical foundation for addressing the research questions by enabling a structured comparison of
algorithmic performance, data modalities, and segmentation approaches across heritage-specific contexts.

ARTICLE DISTRIBUTION BY COUNTRY

ARTICLE DISTRIBUTION BY DOMAIN

Figure 4. Distribution of Articles by Country (left), Domain (centre), Year (right).

2 Belgm

Greece Germany Inda  Poland  Australia

ARTICLE DISTRIBUSION BY YEAR

Table 1: 3D Semantic Segmentation Public Datasets Features of Heritage Structures.

Dataset Heritage Buildings Scanned Points Temporal Spatial Semantic  Public
(millions)  Coverage Resolution  Classes Access

Cultural Heritage Hagia Sophia, Topkapi Palace, 250+ ByzantineOttoman  Very High 18 Full
Point Suleymaniye Mosque, Blue Mosque, (mm) classes
Cloud (2024) Little Hagia Sophia, Chora Church,

Rumeli Fortress, Galata Tower,

Maiden's Tower
ARCHdataset Valentino Castle, Santa Maria del 185 Medieval- High (cm) 12 Full
(2020) Fiore Cathedral, Palazzo Carignano, Renaissance classes

San Nicola Church, Sacra di San

Michele, Multiple Italian chapels
HERINet (2023) Paestum Temple, Pompeii Domus, 120 Various periods Very High 15 Partial

Salerno Cathedral, Villa Rufolo, (mm) classes

Amalfi Cathedral, Arechi Castle
DURAARK Alte Pinakothek Munich, Bremen 65 Various Medium 8 classes Full
(2017) Town Hall, Niirnberger Rathaus, and (cm)

Several historic churches
Paris-rue-Madame  Historic Parisian facades on Rue 10 18th-19th century ~ Medium 6 classes  Full
(2014) Madame, Haussmannian buildings (cm)
F3D Dataset Roman Forum structures, the Temple of 90 Ancient- High (mm) 10 Full
(2021) Hercules, Trajan's Market, and Medieval classes

Medieval churches in the Marche

region
CyArk Archive Angkor Wat, Bagan temples, Chichen 2,500+ All periods Very High  Varies Partial
(2003- Itza, Pompeii, Mesa Verde, (mm)
2023) Brandenburg Gate, Al Azem Palace,

Easter Island
CIPA Heritage Villa Adriana, Great Zimbabwe, 350 Various High (mm) Standardi  Resear
Data Borobudur, Persepolis, Petra, Tikal, zed ch
(2019-2023) Machu Picchu
ETH3D Heritage Grossmiinster Zurich, Fraumiinster, 75 Various High (mm) 9 classes Full
(2018) Swiss National Museum, Chillon Castle
Urban Heritage Linares Lead Foundry, Rio Tinto 45 Industrial Era High (cm) 14 Resear
Point Mines, Alcoy Industrial Complex, classes ch
Cloud (2020) Segovia Royal Mint
AHN3 Heritage Dutch castles, Historic city centers 1,500+ Multiple periods Medium 7 classes Full
(2019) (Amsterdam, Utrecht, etc.), (dm)

Hunebedden, Roman ruins, Beemster

Polder
ScanNet-SG Historic interiors from 25 Various Medium 20 Full
Heritage BadenWiirttemberg state buildings, (cm) classes
(2021) Swiss heritage halls
Semantic3D.net St. Gallen Cathedral, Zurich old town 80 Various High (cm) 8 classes Full
Heritage buildings, Swiss heritage structures
(2017)
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Table 2: Literature Review Table: Semantic Segmentation Frameworks for Heritage Digitization (2014—2024).

Authors Year Key Work Geometry Handled Algorithm Used Setbacks Advantages Validation Benchmark
Protocol Dataset
Poux and 2019  Voxel-based 3D point cloud Complex 3D structures Voxel-based clustering Parameter sensitivity Efficient for ISPRS —
Billen semantic segmentation + geometric feats complex structures  benchmarks
Grilli, Menna 2020 ML for cultural heritage Architectural ornaments  Random Forest, Noise sensitivity, Class Robust feature 5-fold Self-compiled
and point cloud segmentation and details PointNet imbalance issues extraction crossvalidation datasets
Remondino
Matrone, etal 2020  Benchmark for large-scale Complex architectural DGCNN + transfer Limited architectural Handles irregular Cross-validation ~ ArCH dataset
heritage point cloud elements learning scope, geometries + manual
Pierdicca, et 2020  Deep learning for heritage Historical architectural DGCNN + normal- High compute Enhanced F1-score, IoU Self-compiled
al point cloud segmentation elements color requirement, Limited performance metrics dataset
features style generalization
Murtiyoso 2020  Virtual disassembly of Masonry structures, Geometric primitive Manual parameter Accurate Manual Gothic
and masonry buildings stone blocks fitting tuning, only regular boundary comparison churches
Grussenmeyer (RANSAC) geometries delineation dataset
Fiorucci,etal 2020 ML for decay pattern Surface deterioration Random Forest, SVM Only visible Computationally Confusion Historic facade
recognition patterns classifiers deterioration efficient matrix dataset
Croce, et al 2021  Semi-automatic Digital heritage ML + deep learning on Platform dependency Semi-automatic Platform- —
classification on Aoli structures Aoli platform classification specific
platform evaluation
Llamas, et al 2021  Hybrid point-image Mixed geometry types Multi-view CNN + Registration errors, Combines Ablation studies ETHZ
segmentation point fusion Complex pipeline multiple extended
modalities dataset
Teruggi, et al 2021  3D-2D knowledge transfer Complex fagades Multi-modal DL with Alignment challenges multisource data Cross-domain ArCH + ReCo
for heritage segmentation domain adaptation validation
Stathopoulou, 2022  Multi-sensor semantic Multi-scale Graph Neural Hardware requirements Multispectral data ~ Holdout HeritageSeg3D
et al segmentation architectural elements Networks + multi- integration validation dataset
modal fusion
Wagner, et al 2022  Automated damage Deterioration and 3D-UNet with attention ~ Specific damage type Quantitative Expert HERACLES
assessment structural damage gates limits -high quality input ~ damage analysis validation project dataset
Malinverni, et 2022  Context-aware segmentation ~ Urban heritage Graph attention Boundary Captures spatial ToU and Urban Heritage
al for urban heritage complexes networks ambiguity, contexts accuracy 3D
Occlusion issues metrics
Poux, Billen, 2019  Knowledge-based semantic Indoor/outdoor heritage =~ Geometric DL + Knowledge engineering Semantic Multi-metric Heritage Digital
et al segmentation knowledge graphs effort knowledge evaluation Twin dataset
integration

e
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Authors Year Key Work Geometry Handled Algorithm Used Setbacks Advantages Validation Benchmark
Protocol Dataset

Bassier, et al 2021  Semi-automatic heritage Heritage building ML for H-BIM Manual intervention Semi-automatic Platform and —
BIM reconstruction elements pipelines BIM creation benchmark tests

Li, et al 2024  DSC-Net for large-scale Complex ancient Discriminative spatial Scale variation Large-scale Cross-validation ——
ancient architecture structures contextual network challenges segmentation

Chen, et al 2024  Semantic segmentation with Ancient architectural Weakly supervised Limited supervision Reduced Precision/recall ~ —
weak supervision clements learning signal annotation needs

Bayrak, et al 2024  ESTATE dataset for Urban objects Deep learning Urban scene limited Large-scale urban Scientific Data ESTATE
underrepresented urban benchmarks classification benchmarks dataset
objects

Wang et 2025  Cross-modal networks for Ancient Chinese Multi-modal CNN + Registration challenges Multi-modal data Cross-validation ~RW-MAPCSD
Chinese ancient buildings architecture point fusion fusion dataset

e
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The synthesis was structured around the four research questions: a) mapping the chronological evolution of Al
techniques for 3DPCSS in digital heritage, b) the impact of multi-modal data collection and integration, c) the
representativeness and usefulness of benchmark datasets, and d) the efficacy of hybrid geometric/deep learning
approaches in addressing complex geometries. The PRISMA flow diagram records the study selection process,
and a quality assessment checklist (adapted from Kitchenham) was applied to evaluate methodological soundness.
This hybrid method ensures that the review is comprehensive and reproducible, with an understanding of how
trending Al methods navigate the geometric complexity of digital heritage. Figure 3 visualizes the stepwise
methodology combining Kitchenham's SLR and the PRISMA approach.

Figure 4 shows article distribution by country, domain, and year. The publication data from 2014 to 2024 indicate
advancements and evolution in the research activity. Starting from minimal publications in the early years, there
was a dramatic expansion, particularly after 2016. Despite occasional setbacks, most notably in 2018 and to a
lesser extent in 2020 and 2022, the overall trajectory shows sustained growth, culminating in peak productivity in
2023. The research output is heavily concentrated in Computer Science and Social Sciences, with conference
papers being the dominant publication type, indicating a focus on rapid dissemination in these fields. The research
output is geographically concentrated, with Italy dominating, followed by China and Belgium, suggesting strong
research communities or institutional support in these countries. There is a considerable lack of research activities
in places like India. However, many institutes, such as NISER, Bhubaneshwar, and CEPT, Ahmedabad, have
initiated several promising projects on digital conservation using advanced techniques (Section 4). However,
considering the diversity and the large number of heritage buildings in India, significant untapped potential remains
for further research and implementation. The scope and characteristics of representative public datasets used in
heritage segmentation tasks are summarized in Table 1. The table clearly identifies the underrepresentation of non-
Western architectural morphologies. Lack of benchmark datasets representative of architectural typologies is one
of the biggest challenges in digital documentation of heritage structures, as was seen in the case study of
documenting the Rajarani temple in India (Section 4). A comparative overview of segmentation models, including
their geometric focus, validation methods, and dataset sources, is provided in Table 2. From the table, a pattern in
the evolution of technical approaches can be identified as described in the next section.

3. INFERENCE

3.1 Evolution of technical approaches

The convergence of algorithmic innovation in 3DPCSS and the customized needs of digital heritage have rapidly
evolved semantic segmentation techniques (Grilli and Remondino, 2019, Pierdicca, et al 2020). Initially
independent, these two trajectories have become deeply intertwined with methodologies increasingly adapted to
heritage documentation's stylistic, geometric, and cultural complexities (Matrone, et al 2020). This evolutionary
trajectory reveals a critical pattern absent from previous surveys: while technical sophistication has increased
exponentially, cultural adaptability has remained static, indicating that architectural diversity challenges are
algorithmic rather than computational. Unlike general computer vision domains, where dataset diversity drives
performance improvements, heritage 3DPCSS shows consistent performance degradation when models encounter
non-Western geometries—a limitation not adequately addressed in prior technical reviews. This section builds on
the taxonomy of 3DPCSS techniques, tracing their evolution from rule-based and ML models to DL and
transformer-based frameworks. It also lists some critical changes in the workflow of 3DPCSS over the years.

From Rule-Based Models to ML: Early efforts in digital heritage segmentation relied on rule-based systems and
handcrafted features (Grilli and Remondino, 2019). With the advent of Al techniques, traditional ML models,
particularly Support Vector Machines (SVM) and Random Forests (RF), were trained on geometric descriptors to
perform broad semantic classification (Bassier, et al 2019). These techniques proved robust and performed well in
controlled environments, particularly commercial architectural styles with regular geometries. Subsequently,
researchers applied geometric feature extraction with RF classifiers to segment architectural components in
historic buildings. Fiorucci, et al (2020) used SVM and RF models to identify dilapitation patterns in historic
Venetian facades, while Murtiyoso and Grussenmeyer (2017) employed geometric primitive fitting for virtual
disassembly tasks. These methods formed the foundation of early semantic segmentation pipelines but struggled
with many cultural heritage structures' high variability, irregularity, and complexity (Grilli and Remondino, 2019).
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From Traditional ML to DL: As heritage datasets challenged traditional methods, the field saw a rapid shift toward
DL architectures better suited to model non-linear and high-dimensional patterns (Pierdicca, et al 2020). While
researchers still used RF models, they also began experimenting with early DL approaches to better segment
intricate architectural details, reflecting this transitional phase. A critical advancement came from Matrone, et al
(2020), who implemented Dynamic Graph Convolutional Neural Networks (DGCNN) with transfer learning to
accommodate the irregular point distributions in Italian architectural heritage. This methodology significantly
outperformed traditional ML algorithms, particularly in capturing smaller, more intricate spatial relationships with
larger scales and adapting to new heritage settings with limited training data.

From Conventional ML to DL: The application of Al for 3DPCSS has undergone a significant transformation in
recent years (Chen, et al 2024, Li, et al 2024). Early approaches predominantly relied on traditional ML methods.
Conventional approaches, while computationally efficient, often struggle with the geometric complexity inherent
in heritage structures (Patrucco, et al 2019, Grilli and Remondino, 2019). The field rapidly progressed toward
adopting specialized DL architectures (Matrone, et al 2020). It implemented a Dynamic Graph CNN (DGCNN) to
address the irregular and non-uniform point distributions typical in architectural heritage. This marked a significant
advancement in handling complex architectural elements. Pierdicca, et al (2020) refined these approaches by
customizing PointNet++ for feature extraction in HBIM, demonstrating better performance on irregular
geometries. The most recent evolution in technical approaches (2022-2024) is characterized by adopting advanced
DL architectures (Chen, et al 2024, Wang, et al 2024). Recent work has pioneered the application of transformer-
based and attention mechanisms for heritage applications, achieving improved capabilities across multiple heritage
sites (Chen, et al 2024). Similarly, researchers have implemented advanced neural networks with enhanced
backbones, demonstrating strong transfer capabilities across diverse architectural elements (Li, et al 2024). These
advanced approaches have proven particularly effective for capturing heritage structure details and contextual
relationships. Concurrently with the shift toward DL, several methodological innovations have emerged to address
the unique challenges of heritage 3DPCSS (Bassier, et al 2020). Graph-based methods have gained prominence
due to their ability to represent structural relationships. Recent studies have employed Graph Neural Networks
(GNN) with multi-modal fusion to process multi-scale architectural elements in heritage buildings (Wang, et al
2024). Other researchers have utilized graph attention networks to capture contextual relationships in complex
heritage sites (Li, et al 2024).

Hybrid Approaches: Another significant development in heritage point cloud processing has been the advancement
of multi-resolution approaches that effectively bridge different scales of analysis. Hierarchical classification
frameworks have been developed to address computational constraints while maintaining semantic richness across
different levels of architectural detail (Teruggi, et al 2020). Transfer learning strategies have emerged as
particularly valuable for heritage applications, where traditional deep learning approaches may struggle with
architectural complexity and limited training data. These approaches leverage pre-trained models and adapt them
specifically for built heritage documentation tasks (Matrone and Martini, 2021). Multi-modal integration has
shown promise through approaches that enable effective transition from 2D analysis to 3D semantic understanding.
Label propagation techniques have been developed to transfer semantic information from 2D representations to
3D point cloud data, leveraging the complementary strengths of different data representation methods (Pellis, et al
2022). Table 3 lists a few significant research works that have used hybrid methodologies of 3DPCSS.

Solutions for Limited Training Data: he challenge of insufficient high-quality training data in heritage point cloud
segmentation has driven researchers toward innovative mitigation strategies. Enhanced Dynamic Graph
Convolutional Neural Networks (DGCNN) have been developed specifically for heritage applications,
incorporating meaningful features such as normal vectors and color information to handle better limited datasets
(Grilli and Remondino, 2020). Knowledge-guided deep learning approaches have emerged as practical solutions,
integrating domain expertise to compensate for data scarcity while maintaining segmentation quality (Li, et al
2024).

Despite registration challenges, multi-view deep learning frameworks have demonstrated significant potential for
heritage building point clouds, leveraging multiple perspectives to overcome traditional single-view limitations.
Integrating transformative technologies in point cloud processing has enabled more comprehensive heritage
documentation workflows, particularly through improved alignment of multi-perspective data.
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Table 3: Hybrid Approaches For 3D Point Cloud Semantic Segmentation (3DPCSS) In Heritage Documentation.

Approach Research Core Methodology Data Types Used Key Advantages
and
Year

Point-Based + Architecture-Focused

Deep Pierdicca, et -Modified DGCNN with HSV color ArCH benchmark Heritage-tailored feature
Learning al (2020) and normal vectors, - dataset, 10 heritage building ~ extraction, Benchmark
ArCH dataset training, categories, performance evaluation
heritage-specific Colored 3D point clouds
optimizations
HBIM- Croce, et al -PointNet for heritage point cloud * Heritage building point  Automated
Focused (2023) segmentation clouds HBIM
PointNet -HBIM workflow integration « TLS and photogrammetry  generation
-Scan-to-BIM automation data Reduced
* HBIM-compatible formats manual )
Intervention
Heritage
workflow
optimization

Advanced Deep Learning Hybrids

Mix-Pooling Wang, et al -MP-DGCNN with enhanced edge * Chinese ancient building Enhanced  topological
DGCNN (2024) features point clouds representation
-Distance + neighbor point features  * Complex architectural Reduced information
-Multilayer perceptron integration components loss Robust ancient
o Multi-scale heritage architecture handling
structures
Discriminative Zhang, et al -DSC-Net encoder-decoder » Large-scale ancient  Strong context feature
Spatial (2024) architecture architecture fusion
Context -Discriminative spatial contextual * Complex geometric  Handles geometric
features structures similarity
-Large-scale architecture handling * Multi-component  heritage  Scale-invariant
sites processing

Multi-Modal and Multi-Scale Approaches

Multi-Scale Pellis, et al -Adjustable multi-scale e Great Wall 3D TLS data Automated heritage
Neighborhood (2025) neighborhood sizes * Photogrammetry point modeling
Networks -Category-specific scaling clouds Fine-grained detail
-Deep learning ensemble approach « Compl hi capture
mplex architectural Adaptive scale
heritage processing
Cross-Modal Wang, et al -Multi-modal data integration o Multi-modal Comprehensive  scene
Networks (2025) -Point clouds + line drawings + heritage datasets [ Point  description
color clouds, images, depth data Data imbalance handling
-RW-MAPCSD dataset creation . Real-world ancient Multi-modal ~ analysis

architecture capability

The emergence of comprehensive benchmarking initiatives represents a paradigm shift in addressing data
limitations. The development of the first benchmark with millions of manually labelled 3D points belonging to
heritage scenarios has been crucial for facilitating the development, training, testing, and evaluation of machine
and deep learning methods in the heritage field (Matrone, et al 2020)

Dataset Evolution: Heritage point cloud research has evolved from limited proprietary datasets toward
standardized benchmark collections addressing diverse architectural contexts. Recent efforts have focused on
creating comprehensive benchmarks that provide standardized evaluation frameworks for algorithm comparison
across heritage applications. This particularly addresses the lack of benchmarking data for the semantic
segmentation of digital heritage scenarios (ArCH Dataset, 2020). Contemporary research has expanded beyond
traditional architectural applications to include diverse cultural heritage contexts, such as quarry relic landscapes,
demonstrating the growing scope of heritage point cloud applications (Zhang, et al 2025).

Semantic Detail Level: The progression toward increasingly granular classification targets has characterized recent
developments in semantic segmentation approaches. Contemporary research emphasizes recognizing historical
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architectural elements at adequate levels of detail, supporting the development of Historical Building Information
Modeling (HBIM) from survey data (Grilli and Remondino, 2020). Point cloud registration technology has
enhanced the accuracy of reconstructing complex structures of artifacts by aligning point cloud data captured from
multiple perspectives. Modern approaches have demonstrated improved capability in capturing the intricacies of
historical structures through enhanced network architectures that better process geometric and visual features. The
field has moved toward multi-scale analysis capabilities that simultaneously handle structural components and
detailed architectural elements, with cross-modal networks showing particular promise for ancient Chinese
buildings (Liu, et al 2025).

Dilapidation Analysis: Specialized attention to deterioration and damage pattern recognition has emerged as a
distinctive application area in heritage point cloud analysis. Deep convolutional neural networks (DCNNs) have
been successfully applied for the classification, segmentation, and detection of surface defects in heritage
buildings, with studies demonstrating effective identification of deterioration patterns in UNESCO World Cultural
Heritage sites (Ma, et al 2021). Recent advances have focused on binary damage classification using 3D neural
networks for built heritage, addressing the critical need for automated structural damage assessment where human
and economic resources are limited (Pierdicca, et al 2025).

Multi-temporal approaches for monitoring restoration progress have gained significant attention in recent research.
3D multi-modal point cloud data fusion techniques have been developed for metrological analysis and restoration
assessment, enabling systematic monitoring of heritage structures over time (Colucci, et al 2024). These temporal
monitoring approaches utilize photogrammetry and 2D/3D change detection algorithms to assess deterioration and
improve conservation strategies for cultural heritage assets continuously exposed to environmental risks (Guidi,
et al 2018).

An emerging trend within deterioration analysis involves integrating advanced deep learning architectures with
heritage-specific assessment protocols. Applying deep learning algorithms for identifying deterioration patterns,
such as those implemented for the Leshan Giant Buddha, demonstrates the potential for automated condition
assessment of large-scale heritage monuments (Zhang, et al 2024). Feature-based point cloud assessment methods
have been developed to detect nondestructive and noncontact surface damage, providing conservation
professionals with quantifiable and reproducible assessment tools (Hou, et al 2021).

Knowledge Enhancement: Recent developments have emphasized the integration of domain expertise into
segmentation algorithms. Knowledge-guided approaches have shown particular effectiveness in heritage contexts,
where integrating specialized domain knowledge helps overcome the limitations of purely data-driven methods
(Li, et al 2024). The widespread application of machine learning and deep learning approaches in point cloud
segmentation has been enhanced through semantic comprehensibility frameworks that bridge automated analysis
with expert interpretation (Dong, et al 2023).

Contemporary research has focused on developing interpretable solutions that effectively communicate results to
heritage preservation professionals. Multi-view frameworks have demonstrated how the fusion of multiple
analytical perspectives can provide a more comprehensive understanding of complex heritage structures.

Validation Protocol: Heritage point cloud segmentation evaluation methodologies have undergone significant
refinement beyond traditional accuracy metrics. Establishing standardized benchmarking datasets has enabled
more robust evaluation frameworks designed explicitly for heritage applications (Matrone, et al 2020). Recent
research has implemented domain-specific validation approaches that address the unique challenges of heritage
contexts, including diverse architectural styles and specialized preservation requirements. Current evaluation
frameworks emphasize assessing algorithms' capabilities in processing 3D urban scenes for applications such as
three-dimensional reconstruction, semantic modeling, and augmented reality within heritage contexts (Li, et al
2024). The field has moved toward comprehensive validation protocols that assess technical performance and
practical applicability in real-world heritage preservation scenarios.

4. CASE STUDY

This case study presents a multi-platform digital documentation initiative of the 11th-century Rajarani Temple in
Bhubaneswar, Odisha, a seminal monument of Kalinga architecture. Employing terrestrial laser scanning, aerial
photogrammetry, GNSS, and advanced computational workflows, the project addresses challenges unique to
Indian temple conservation, including the lack of suitable benchmark datasets and the intricacies of ornate
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stonework. The study evaluates deep learning models for semantic segmentation and outlines a roadmap for
Historic Building Information Modeling (HBIM) tailored to the Indian context. Rajarani Temple (Fig.5)
exemplifies 11th-century Kalinga Architecture in Bhubaneshwar, India. The project is an initiative by the National
Institute of Science Education and Research (NISER) to make a comprehensive digital heritage program to
systematically document the temple's intricate fabric.

Figure 5: Digital documentation at Rajarani temple, Bhubaneshwar.

The methodology integrated terrestrial laser scanning (FARO Focus M70), aerial photogrammetry (DJI drone with
1" CMOS 20MP camera), traditional total station surveying (Leica), high-resolution DSLR imaging, and

GNSS-based georeferencing (Leica Viva GS14). Aerial survey parameters were optimized (80m altitude, 7 m/hr,
75% overlap, 80% side-lap), yielding 2,334 images that complemented terrestrial point clouds. Feature extraction
from photogrammetric data was achieved using the SIFT algorithm, enabling detailed capture of the temple's
ornate carvings. Other experimental efforts focused on optimizing data for resource-constrained environments,
including mesh decimation (vertex, edge contraction, appearance-preserving simplification), point cloud sampling
(farthest point, inverse density, Poisson disk), and gradient-based mesh alignment. During this process, some of
the key challenges were capturing fine geometrical details of the temple's elaborate ornamentation. The elevation
shown (Fig. 5) is derived from a 3D model created from integrated point cloud data. The intricate details of the
figurines and the ornate carvings are represented as primitive solids and are not on par with the details in point
cloud image data. This abstraction can be attributed to the inherent limitations of voxel-based CNNs and mono-
modal segmentation models like PointNet++, which rely on uniform grid structures and often fail to capture sub-
centimeter features such as floral bands, miniature figurines, or lattice screens. Due to resolution constraints and a
lack of multi-scale context awareness, these models tend to oversimplify or ignore non-planar geometries. In some
cases, the algorithm can present over-segmented objects that are not required for the project. There is also a
significant trade-off between accuracy and speed in the algorithms chosen. Typically, in a temple dataset, these
shortcomings are evident in the misclassification or omission of filigree ornamentation, which either merges with
the wall plane or is wholly excluded from the mesh output. This suggests that despite capturing data at high
resolution, the downstream segmentation process introduces information loss that undermines documentation
accuracy. Then again, the level of abstraction and style of representation depend on the project objectives,
feasibility, data, and the capability of algorithms.

Additionally, there were other challenges in gathering data at the site, such as restricted physical access to certain
parts of the building, managing protocols and cultural sensitivities at an active religious site, coordinating
interdisciplinary teams, and securing permissions from local authorities. A critical limitation during the processing
stage was the absence of benchmark datasets representative of Indian temple typologies, particularly the Kalinga
style, impeding the application of deep learning for semantic segmentation. To address this, the project evaluates
models such as RandLA-Net and PointNet++ to identify architectural motifs and structural components accurately.
Future work extends the digital documentation objectives to additional temples in Odisha, including
parameterizing temple components into architectural libraries and creating a semantically rich BIM. This initiative
advances the digital preservation of India's architectural heritage and contributes methodological innovations for
digital documentation.

5. RESEARCH GAP AND FUTURE DIRECTION

While recent advances in 3DPCSS have improved segmentation accuracy within specific architectural domains,
systematic evaluation reveals several key challenges that restrict practical deployment across diverse heritage sites.
Table 4 lists the quantitative Performance Comparison Across Heritage 3DPCSS Algorithms. The performance
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degradation from the European-based benchmark (achieving a high of 0.850 mIoU with DGCNN) to cross-domain
applications (such as Weakly Supervised GCN on Ancient Chinese Buildings, yielding 0.698 mloU) demonstrates
a systemic cultural and geometric bias. This drop of nearly 18% occurs even as the processing costs increase
substantially for advanced architectures (like Swin-Transformer) without guaranteeing proportional accuracy
gains. This indicates a fundamental paradox: technical sophistication has increased significantly, yet cross-cultural
performance degradation remains consistently high, suggesting that architectural diversity challenges are more
algorithmic (regarding local feature adaptation) than purely computational.

Table 4: Quantitative Performance Analysis: Heritage-Specific Segmentation Algorithms.

Algorithm Dataset Context mloU F1 Key Limitations Reference
Architecture Score Score
PointNet++ (Baseli ne)  Italian Heritage 0.768 0.803 Limited to fixed local regions, Matrone, et al (2020)
(ArCH) planar bias, fails on complex
ornamentation.
DGCNN-Mod + Ttalian Heritage 0.850 0.891 Graph topology assumptions, Matrone, et al (2020)
3Dfeat (ArCH) computationally heavier than
PointNet++
Swin-Transformer Heritage-BIM 0.840 0.865 High memory consumption, Bassier, et al (2020)
Dataset dependency on voxelization or
partitioning
RandLA-Net Complex 0.795 0.831 Random sampling may drop fine Wagner, et al (2024)
Indoor/Outdoor details crucial for intricate
Scenes ornamentation.
GSS-Net Grotto Scenes 0.783 0.812 Ontology development cost is Li, et al (2024)
(KnowledgeEnhanced (Grotto-Seg) specific to grotto scene
GNN) classification.
Context- Urban Heritage 0.751 0.785 Performance depends on the spatial Malinverni, et al
Aware GAT (Custom Dataset) context definition (radius) and (2022)
computational cost.
Weakly Supervised Ancient Chinese 0.698 0.738 Domain gap between weak and Chen, et al (2024)
GCN Buildings strong labels, supervision
limitations.

Table 5 maps how popularly used Al model architectures fall short of expected efficacy when applied to diverse
cultural heritage contexts, detailing their technical limitations, the types of architectural features they struggle with,
and concrete examples of heritage sites where these failures occur. These limitations manifest across different
model architectures in distinct but interconnected ways.

Geometric Complexity Limitations: represent the most pervasive challenge across model architectures. As noted
in recent heritage Al research, the geometric complexity of heritage structures often exceeds that found in general
object segmentation tasks, presenting unique challenges that remain only partially addressed by current approaches
(Yang, et al 2023). This complexity manifests through multi-scale integration failures, where models cannot
connect intricate decorative details with broader structural semantics—evident in Gothic cathedrals, where flying
buttresses relate to interior vault systems, or in Hindu temples, where microscopic carvings form part of larger
cosmological narratives. Non-Western geometric assumptions privilege rectilinear and post-and-lintel systems
over organic spatial organizations found in African vernacular architecture, Japanese sukiya-zukuri design
principles, or Islamic mugarnas that follow non-Euclidean geometric logic. Additionally, irregular topology
handling performs poorly on weathered surfaces, earthquake damage, or architectures that deliberately incorporate
natural irregularities like Frank Lloyd Wright's organic architecture or traditional Chinese garden structures that
harmonize with landscape topography.

Cross-Cultural Generalization Barriers: emerge from training datasets predominantly sourced from Western
architectural traditions, creating systematic blind spots when encountering global heritage diversity (Tychola, et al
2024). Research has documented substantial performance degradation in transfer learning approaches when
applied to unfamiliar architectural styles, while Yang, et al (2023) identified severe limitations in few-shot
segmentation systems when processing novel cultural classes such as Pueblo cliff dwellings, Ethiopian rockhewn
churches, or Cambodian Angkor-style temple complexes (Su, et al 2023). These failures reflect deeper issues in
architectural feature representation—models trained on European stone masonry struggle with adobe construction,
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timber frame systems, or living architecture like India's root bridges. Furthermore, cultural symbolism embedded
in architectural elements remains largely invisible to current models, which cannot distinguish between decorative
and sacred elements in Buddhist stupas, Islamic calligraphy, or Aboriginal songline architectural alignments.

Computational Resource Constraints: create additional deployment barriers that disproportionately affect heritage-
rich developing regions with limited technological infrastructure (Cotella, 2023). Research has acknowledged
prohibitive computational expenses in transformer-based approaches requiring high-end GPUs. At the same time,
studies highlighted memory requirements exceeding 32GB RAM that prevent foundation models from
incorporating culturally diverse training datasets (Zhu, et al 2017). These technical limitations compound cultural
bias by creating a digital divide, where advanced Al tools remain accessible primarily to well-funded Western
institutions, thereby perpetuating the underrepresentation of non-Western heritage in training data and limiting the

development of truly inclusive heritage documentation systems.

Table 5: Systematic Analysis of AI Model Limitations Across Cultural Heritage Segmentation Tasks.

Model Primary Limitations Specific Domain Gaps Heritage Context Performance Impact
Architecture Examples
PointNet++ Local feature limitations * Lattice-dense fagades * Indo-Islamic jali 35-42% mAP reduction on

(Matrone, et al

(fixed neighborhood size,

« Intricately carved

screens * Gothic

complex geometries (Accurate

2020) struggles with sharp surfaces rose windows ¢ magnitude from multiple
edges and thin « Non-Euclidean Chinese bracket benchmark studies).
structures). geometries systems (dougong)

DGCNN (Matrone  Graph convolution biases  « Irregular stone masonry  * Medieval rubble High computation cost offsets

, et al 2020) toward regular * Organic architectural walls the modest mloU gain (~0.08)
topologies, dependency forms « Art Nouveau compared to PointNet++ for
on k-nearest neighbors « Multi-scale decorative facades complex scenes (Verified
(KNN) stability. patterns « Indigenous organic  performance trend and cost

structures trade-off).

Part-aware Symmetry and regularity » Asymmetrical historical * Renovated Performance degradation on

Segmentation assumptions from additions medieval churches features lacking canonical

(Murtiyoso and synthetic/modern object » Weatheringinduced « Japanese wabi- symmetry, notably when parts

Grussenmeyer, training, .fails on irregularities sabi aesthetics are missing or occluded.

2017) degradation. » Cultural asymmetry « Earthquake

principles damaged structures
Foundation Cultural bias and * Cross-cultural vocabulary e Vernacular building Memory constraints prevent

Models (Tao, et al
2023)

language/concept
misalignment in training
data (mostly English and
Western-centric).

gaps
* Regional
material/concept
recognition

* Traditional construction
techniques

traditions

* Regional stone
types

* Indigenous
construction methods

diverse training datasets.
Performance reflects cultural
alignment of the training
corpus, leading to poorer
results in underrepresented
domains.

Vision-Language
Models (Réby, et
al)

al., 2023)

Natural image training
creates a heritage domain
gap (2D images vs. 3D
point cloud semantics).

* Cultural terminology
misalignment

* Sacred vs. decorative
distinctions

* Regional architectural
vocabulary

5.1 Emerging solutions and research directions

* Sanskrit
architectural terms

« Indigenous building
traditions

« ornamental patterns

Persistent domain gaps
make zero-shot
segmentation challenging, it
requires extensive, costly
3D finetuning.

Knowledge-Driven Integration: Knowledge-driven approaches demonstrate promising solutions to cultural
adaptation challenges. Poux, et al (2019) showed how geometric deep learning with knowledge graphs could
enhance segmentation quality across architectural styles. Research has demonstrated improved interpretability and
accuracy through ontology integration, noting that integrating formal knowledge representations with datadriven
approaches has shown promising solutions in overcoming the limitations of purely statistical methods in heritage
applications (Cotella, 2023).

Geometric Complexity Limitations: This represents the most pervasive challenge across model architectures.
Recent research has observed that the geometric complexity of heritage structures often exceeds that found in
general object segmentation tasks, presenting unique challenges that remain only partially addressed by current
approaches (Yang, et al 2023). This complexity manifests through multi-scale integration failures where models
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cannot connect intricate decorative details with broader structural semantics—evident in Gothic cathedrals where
flying buttresses relate to interior vault systems, or Hindu temples where microscopic carvings form part of larger
cosmological narratives. Non-Western geometric assumptions privilege rectilinear and post-and-lintel systems
over organic spatial organizations found in African vernacular architecture, Japanese sukiya-zukuri design
principles, or Islamic muqgarnas that follow non-Euclidean geometric logic. Additionally, irregular topology
handling performs poorly on weathered surfaces, earthquake damage, or architectures that deliberately incorporate
natural irregularities like Frank Lloyd Wright's organic architecture or traditional Chinese garden structures that
harmonize with landscape topography.

Cross-Cultural Generalization Barriers: emerge from training datasets predominantly sourced from Western
architectural traditions, creating systematic blind spots when encountering global heritage diversity. Studies
documented substantial performance degradation in transfer learning approaches when applied to unfamiliar
architectural styles, while studies have also identified severe limitations in few-shot segmentation systems when
processing novel cultural classes such as Pueblo cliff dwellings, Ethiopian rock-hewn churches, or Cambodian
Angkor-style temple complexes (Yang, et al 2023, Su, et al 2023). Cultural symbolism embedded in architectural
elements remains largely invisible to current models, which cannot distinguish between decorative and sacred
elements in Buddhist stupas, Islamic calligraphy, or Aboriginal songline architectural alignments.

Computational Resource Constraints: create additional deployment barriers that disproportionately affect heritage-
rich developing regions with limited technological infrastructure. Research acknowledged prohibitive
computational expenses in transformer-based approaches requiring high-end GPU and memory requirements that
prevent foundation models from using complex training datasets (Zhu, et al 2017, Cotella, 2023).

Multi-Temporal Heritage Monitoring: Multi-temporal analysis presents an under-explored opportunity for
comprehensive heritage documentation. Despite facing temporal alignment challenges, recent studies
demonstrated potential for monitoring restoration progress through advanced computational approaches (Pan, et
al 2024). This temporal dimension adds a crucial fourth dimension to heritage documentation, enabling objective
quantification of changes that previously relied on subjective assessment.

Vision-Language (VL)Model Adaptation: VL models offer pathways toward cross-cultural heritage applications.
Recent studies have demonstrated how foundation model-based approaches could begin transcending cultural
boundaries by leveraging natural language descriptions to identify architectural elements across diverse traditions
(Tychola, et al 2024). This approach offers a pathway toward more inclusive heritage documentation tools that
accommodate the global diversity of architectural expression. However, persistent domain gaps between natural
image training data and heritage contexts limit practical deployment. Current literature reveals a critical gap
between the theoretical potential of advanced Al models and their practical applicability across diverse cultural
heritage contexts. While individual studies demonstrate improvements within specific domains, no comprehensive
framework addresses the systematic cultural, geometric, and computational barriers that prevent universal heritage
segmentation tools. The identified failure patterns suggest that addressing heritage Al limitations requires more
than incremental technical improvements. Instead, a fundamental reconsideration of how architectural knowledge
is encoded, represented, and transferred across cultural boundaries is necessary. This challenge represents the
convergence of technical Al advancement with cultural sensitivity and practical heritage conservation needs—a
convergence that existing research has yet to address fully.

Addressing these systematic limitations requires a multi-stakeholder approach where heritage institutions prioritize
culturally representative datasets with significant non-Western architectural representation, software developers
implement ontology-driven preprocessing with adaptive feature extraction based on architectural style
classification, and funding bodies establish mandatory geographic diversity quotas for Al heritage projects while
requiring open-source model releases. Policymakers must develop heritage Al ethics frameworks mandating
cultural sensitivity testing and algorithmic audits before deployment on UNESCO sites.

6. CONCLUSION

Al-based semantic segmentation has made significant advances in automating the translation of unstructured point
cloud data into semantically rich, intelligent 3D models. For instance, in the Indian context, with its vast diversity
of architectural styles and underrepresentation in benchmark datasets, the current research gap in existing models
that are predominantly trained on Western datasets or regular geometries is identified. The multifaceted
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requirements of point clouds for digital heritage modeling are indicated by intricate ornamentation, integrated data,
multi-scale geometrical features, and material heterogeneity, necessitating a systematic approach to segment
geometric areas with similar spatial features and applying specialized algorithms with tailored capabilities. Current
Al-driven documentation tools risk creating a "digital colonialism" where non-Western heritage is systematically
underrepresented or misrepresented in digital archives. This technological bias could perpetuate cultural
hierarchies, where Western architectural knowledge becomes the default framework for understanding global
heritage diversity.

A critical insight from this review is the growing consensus that mono-modal, single-algorithm approaches are
insufficient for the semantic segmentation of heritage data. Hybrid frameworks integrating DL architectures with
rule-based systems demonstrate enhanced adaptability to the specific demands of the conservation project. The
evolution of Al models from voxel-based CNNs to GNNs and transformer-based models marks a paradigm shift,
allowing better cross-domain generalization and multi-scale feature extraction. Despite these advances, 3DPCSS
faces many bottlenecks: the scarcity of high-quality, annotated datasets for non-Western heritage, the
computational demands of processing size-heavy files from multi-modal tools, and a requirement for adaptable Al
models. The study clarifies the current trends adopted in the field by systematically mapping the evolution and
uses of algorithms, datasets, and workflows. It identifies critical research gaps- most notably, the need for
customizable, hybrid Al frameworks, culturally representative benchmark datasets, and transparent, interpretable
models. The findings advocate for a paradigm that exceeds purely technical optimization, stressing the co-
evolution of computational advances with heritage conservation values. Future research should focus on
developing ontology-integrated Al systems, vision-language alignment, and cross-cultural model applicability to
ensure digital heritage documentation that is both technologically sophisticated and culturally resonant.
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