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SUMMARY: Utilizing tools like laser scanners and photogrammetry to generate point cloud data reshapes Digital 

Heritage by facilitating Scan-to-BIM methodologies for 3D models. At point cloud processing stage, integrating 

semantic segmentation into Scan-to-BIM workflows allows unstructured spatial information to be translated into 

intelligent geometrical classifications that enable data-driven 3D models. AI methods show promising solutions 

for Three-Dimensional Point Cloud Semantic Segmentation (3DPCSS), allowing robust creation of parametric 

objects in heritage BIM. Despite the advancements in AI-based 3DPCSS, current models often present conceptual 

and practical challenges. These limitations stem from heterogeneous data and lack of adaptive algorithms to 

capture the geometrical complexities inherent in historic structures. Manual segmentation is often required to add 

detail to the simplified geometrical representations that omit the unique features, such as intricate carvings, 

creating challenges in efficient modeling. This systematic literature review presents an inquiry into the workflow 

of 3DPCSS, from data acquisition and classification stages to 3D model creation, with a case example in an Indian 

context. It synthesizes findings from 95 peer-reviewed publications from 2014 to 2024, focusing on the factors 

influencing the selection of suitable AI algorithms, including data acquisition, dataset types, complexity of 

geometrical elements, and computational tasks. The investigation reveals significant limitations in current 

approaches. Transformer-based models demonstrate significant performance degradation when applied to non-

Western architectural geometries despite comparable complexity levels. Furthermore, through a matrix analysis, 

we identify four primary phases of algorithmic evolution—from rule-based systems to transformer architectures—

while highlighting the emergence of hybrid approaches that combine geometric primitives with deep learning 

refinement. This paper extends the work presented at the Proceedings of the International Conference on Smart 

and Sustainable Built Environment (SASBE 2024), New Zealand. 

KEYWORDS: AI in cultural heritage, scan-to-BIM, 3D point cloud semantic segmentation (3DPSS), digital 

heritage, data-driven 3D modeling.  

REFERENCE: Subhadha Battina (2025). Navigating geometric complexity in digital heritage: a review of AI-

based semantic segmentation. Journal of Information Technology in Construction (ITcon), Special issue: 'Smart 

and Sustainable Built Environment (SASBE 2024)', Vol. 30, pg. 1707-1727, DOI: 10.36680/j.itcon.2025.070 

COPYRIGHT: © 2025 The author(s). This is an open access article distributed under the terms of the Creative 

Commons Attribution 4.0 International (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted 

use, distribution, and reproduction in any medium, provided the original work is properly cited. 

https://dx.doi.org/10.36680/j.itcon.2025.070
https://dx.doi.org/10.36680/j.itcon.2025.070
https://orcid.org/0000-0002-6100-9258
mailto:sbattina26@gmail.com
https://creativecommons.org/licenses/by/4.0/


 

 

 
ITcon Vol. 30 (2025), Battina, pg. 1708 

1. INTRODUCTION 

Digital heritage has undergone a significant transformation with the advent of advanced 3D data-collecting 

technologies such as LiDAR (Light Detection and Ranging) with photogrammetric methods (Capolupo, et al 2015, 

Yang, et al 2020). These technologies generate high-resolution point clouds that capture intricate geometries and 

textures of historic structures. However, translating raw point cloud data into semantically rich 3D models remains 

a complex and labor-intensive process, often requiring substantial manual intervention at many stages (Grilli and 

Remondino, 2019, López, et al 2018).   

In a typical Scan-to-BIM workflow, initial preprocessing stages address critical data quality tasks, including noise 

reduction from multi-sensor data integration, registration of point cloud clusters, correcting density variations, 

initial classification, etc. (Banfi, et al 2022, Croce, et al 2021). Subsequently, 3D computer vision tasks involve 

object detection of building components and semantic segmentation of stylistic elements, mesh creation, and 

parametrization for BIM, each requiring customized algorithms to bridge the gap between raw data and the 

computational task necessary for the conservation project (Matrone, et al 2020, Pocobelli, et al 2018). This study 

investigates state-of-the-art AI algorithms demonstrating significant efficacy in Three-Dimensional Point Cloud 

Semantic Segmentation (3DPCSS). The use of Machine Learning (ML) and Deep Learning (DL) approaches for 

3DPCSS has succeeded in urban planning, commercial architecture, and robotics, where texture and geometric 

regularity simplify feature extraction (Chen, et al 2019, Pierdicca, et al 2020). However, it is hindered by several 

limitations in a heritage context. Point clouds for digital geritage introduce unique challenges to existing 3D 

computer vision frameworks characterized by non-Euclidean geometry, size-heavy files, stylistic heterogeneity, 

and material degradation (Grilli, et al 2017, Pepe, et al 2020, Bruno, et al 2017, Quattrini, et al 2015).   

Furthermore, there is a significant lack of high-quality training datasets, especially in India, with substantial 

diversity in architectural styles (Dore and Murphy, 2017, Kazado, et al 2019). This data deficit and limitations 

require reliance on manual intervention or primitive shape approximation in automated 3D modeling workflows, 

eliminating unique and intricate features on the surface of the historic structure. For instance, conventional AI 

models, such as convolutional neural networks (CNNs), often fall short in recognising the multi-scale nature of 

heritage buildings, where <5 cm intricate carvings coexist with a 30 m structural span, leading to erroneous 

modeling outputs (Aryan, et al 2021, Tommasi, et al 2016). These errors may be more significant when the heritage 

site consists of multiple structures across a landscape. Voxel-based CNN architectures face inherent limitations in 

processing fractal-like geometries (Xu, et al 2018), such as those found in Hoysala temple pillars with 16/32-

pointed lathe-turned designs due to their constrained cubical grid representations. Point cloud processing using 

mono-AI or rule-based algorithms face critical bottlenecks in handling intricate architectural elements like 

latticework carvings and fractal-like patterns in Indian architecture (Alshawabkeh, et al 2020, Previtali, et al 2014). 

This gap emphasizes the need for adaptive frameworks that hybridize AI with customized rules optimized for the 

specific algorithmic performance required for the conservation objectives.   

This paper examines AI-driven semantic segmentation approaches for 3D point cloud data within the digital 

heritage domain, specifically for buildings exhibiting geometric complexity. The investigation uses a dual 

framework synthesizing Kitchenham's Systematic Literature Review architecture with PRISMA protocol 

implementations, ensuring methodological validity and procedural transparency. Primarily, the work presents a 

multi-dimensional comparative analysis of 95 peer-reviewed investigations through a systematic matrix evaluation 

framework, quantifying algorithmic efficacy across multiple parameters, including data modality integration, 

architectural complexity factors, sensor technology dependencies, classification paradigms, and performance 

metric distributions. This evaluation aligns with the paper's contribution, offering a multidimensional lens to 

compare AI methods across heritage-specific parameters such as data modality, architectural complexity, and 

performance.  

Additionally, the contribution comprises a critical curation of over 40 benchmark datasets with heritage modeling 

relevance, contextualizing their limitations through statistical analysis of geographic distribution, stylistic 

representation, and methodological constraints, with particular emphasis on the systematic underrepresentation of 

non-Western architectural morphologies such as those manifested in the Indian subcontinent (Banfi, 2020, Fai, et 

al 2011). Unlike earlier surveys (e.g., Grilli and Remondino, 2020, Pritchard, et al 2021) that primarily focused on 

European contexts or generic 3DPCSS workflows, this review advances the discourse by situating algorithmic 

progress within the geometric and cultural complexity of non-Western heritage, particularly Indian temple 

architecture. This paper demonstrates how stylistic heterogeneity, fractal geometries and religious symbolism 
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challenge models trained on rectilinear datasets, thereby providing a heritage-calibrated positioning absent in 

previous surveys. Thirdly, the research traces the evolutionary trajectory of segmentation algorithms from 

traditional ML frameworks through graph-neural architectures to transformer-based foundation models, 

elucidating how emergent hybrid approaches better handle complex 3D surfaces that mix flat and curved areas, 

especially when conservation projects need to analyze features at different scales (Wang, et al 2019, Guo, et al 

2020). Finally, the investigation identifies critical gaps encompassing domain or multiple style adaptation 

mechanisms, interpretability frameworks, and future research directions. This is explained further in Section 5 of 

the paper. By strategically aligning computational innovations with heritage conservation imperatives, this 

investigation delivers a scholarly synthesis and a comprehensive epistemological framework for advancing the 

computational documentation of architectural heritage with appropriate cultural sensitivity and technological 

sophistication (Logothetis, et al 2015, Stylianidis, et al 2016). The overall AI-enhanced Scan-to-BIM workflow 

for heritage data is illustrated in Figure 1. Understanding these limitations is critical to identifying how AI methods 

must evolve to address the advancements in the acquired data and to target conservation requirements specific to 

heritage segmentation. 

 

Figure 1: Workflow of Scan-to-BIM: Three-Dimensional Point Cloud Semantic Segmentation (3DPCSS) with AI. 

1.1 3D computer vision for heritage data: collection, integration, and processing  

Computer vision generally recognizes target objects in a 2D, or 3D scene based on their specific geometric or 

material attributes (Yang, et al 2024). However, in heritage scan-to-BIM workflows, several authors have 

emphasized a more granular taxonomy of 3D computer Vision that begins with the data acquisition and 

preprocessing as foundational stages, followed by segmentation and classification as core tasks of the pipeline. 

For example, Banfi, et al (2019) begin their workflows with data acquisition using terrestrial laser scanning or 

photogrammetry, capturing the intricate geometries of building façades. According to Croce, et al (2021), the 

primary vision tasks are classified into six categories: registration, segmentation, classification, 3D object detection 

and tracking, compression, and completion (Tychola, et al 2024). This structured approach is echoed by Camuffo, 

et al (2023) and Fregonese, et al (2023), who detail the process of making a 3D computer vision model for a BIM 

platform starting at the stage of data collection itself. Unlike other domains like robotics, autonomous driving, and 

urban modeling, the personnel collecting data must have an overview of Scan-to-BIM's entire workflow, including 

handling technical tools and processing and conservation objectives. They should know the best locations for 

acquiring sequential, comprehensive, high-quality point cloud clusters that effectively support generating accurate 

3D models. A typical heritage site for documentation is a complex, dynamic environment composed of spatial 

elements with semantic and geometric information, such as land, vegetation, water, and buildings. Digital 

documentation presents several advantages over conventional methods by providing quick, cost-effective, precise, 

and non-invasive procedures that ensure robust interpretation.    
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In the earliest stages of the scan-to-BIM workflow, 3D point cloud acquisition faces fundamental challenges, 

including unavoidable noise and shadows in complex architectural spaces that increase digitization costs and time. 

Preplanning is required to minimize noise, light variations, and movement whenever possible. Architectural 

elements exhibit geometric features that require macro (site scale), micro (details), and miso (building scale) 

representation, with highly decorated elements posing multi-scale segmentation difficulties. Hence, point clouds 

in cultural heritage demand high-density sampling to capture the intricacies of surface details in complex 

geometries, including non-planar curves, irregular shapes, and textures.   

Tangible digital heritage data comes from single or multi-sensor equipment (Yang, et al 2023). However, in most 

cases, it combines three types of data (Zhang and Fassi, 2024). One-dimensional data: data from accelerometers, 

gyroscopes, and temperature sensors. Two-dimensional data: Images, including photographs, drawings, 

spectrograms, thermal imaging, etc., and Three-dimensional data consisting of Point cloud clusters from LiDAR 

or Photogrammetry (Pepe, et al 2022, Pierdicca, et al 2020, Matrone, et al 2020, Croce, et al 2021). Generally, 

different types of inputs require specific data-analyzing tools and feature extractors. However, in heritage 

documentation, data acquisition is complex in most cases, necessitating the integration of data types  (Pocobelli, 

et al 2018, Quattrini, et al 2015). For example, GNSS data combines images and semantics (Murphy, et al 2009, 

Alshawabkeh, et al 2024).  

 When such large files integrate with point clouds, larger volumes of data are required, demanding extensive 

computational resources for storing and processing (Yang , et al 2023, Wang et al., 2024). Sometimes, the sheer 

size of the point cloud is often beyond the capacity of commercially available registration software (Pan, et al 

2024). Raw Point cloud data from data gathering tools such as LiDAR scanners and photogrammetry consists of 

millions of points representing spatial information of surface geometry. Each point consists of spatial coordinates 

(x, y, z) and attributes such as color, surface normals, and time stamps. (Liu and Mohd, 2024, Pepe, et al 2022). 

However, this information in raw form comes as an unorganized dataset where points are stored in no implicit 

array that connects them. Preprocessing this data is essential to improve data quality and structure, which involves 

downsizing, reducing noise, fixing registration or alignment errors, removing occlusion, managing point density 

differences, etc. (Dell'Amico, et al 2021). However, most importantly for heritage documentation, digital data from 

multiple surveying technologies is integrated into one final point cloud representing the target geometry (Croce, 

et al 2021, Avena, et al 2024).   

Integrating multiple data sources and types ensures a comprehensive representation of heritage structures, each 

capturing different features of the surface geometry (Medici, et al 2024, Barrile, et al 2022). The data typically 

consists of photogrammetric images, LiDAR scans, SAR (Synthetic Aperture Radar) data, and other sensor inputs 

like GNSS (Global Navigation Satellite System) or temperature sensors. Each data type provides complementary 

information tailored for a specific project output (Dimara, et al 2024, Khan, et al 2022). For instance, 

photogrammetry captures surface textures and detailed images, LiDAR delivers precise spatial details even in low-

light conditions, and SAR penetrates obscuring elements like vegetation or weather effects (Parrinello and 

Dell'Amico, 2019, Lin, et al 2024). When integrated and superimposed, data from all three generate realistic high-

resolution color, depth, and texture information suitable for many applications, such as Augmented and Virtual 

Reality environments.   

The choice of software and the workflow for preprocessing depend on the source data and the specific objectives 

of the heritage documentation project (Battini, et al 2024, Mishra and Lourenço, 2024, Sebastian, et al 2023). Each 

platform addresses the unique characteristics of the input data type, ensuring that the point cloud is registered, 

clean, precise, and ready for subsequent integration and analysis.   

A photogrammetric point cloud is created in commercial software by capturing multiple 60% to 80% overlapping 

images of an object, often using drones or calibrated cameras (Carvajal-Ramírez, et al 2019, Stanga, et al 2023). 

The software then uses algorithms such as Structure from Motion (SfM) to automatically stitch anchor points and 

align the images, estimate camera positions, and reconstruct a sparse 3D point cloud, which is further used to 

reference a dense point cloud to represent detailed surface geometry (Lei, et al 2024, MunozPandiella, et al 2024). 

Finally, the resulting dense point cloud can be exported or integrated into point clouds from other sources, where 

it may be further processed for mesh generation, surface reconstruction, or measurement tasks.  

LiDAR scans are often preprocessed using proprietary software that comes with the equipment (Antón, et al 2024, 

Ferro, et al 2023). For example, the Faro terrestrial laser scanner comes with software called Faro Scene, in which 
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the Point Cloud clusters can be aligned, registered, and cropped into focus areas. Scans require noise filtering to 

eliminate outliers, ground and non-ground broad classification for surface differentiation, and point cloud thinning 

to maintain critical details while reducing density (Croce, et al 2023, Musicco, et al 2024). Additional tasks, such 

as coordinate transformation, error correction, and georeferencing, if any, ensure further accuracy of LiDAR data. 

Popular tools for LiDAR processing include LAStools, CloudCompare, and TerraScan.  

SAR data preprocessing focuses on reducing atmospheric noise through speckle reduction filters, broad 

classification of features such as ground, vegetation, and buildings, and outlier removal using statistical or cropping 

methods. SAR is instrumental in monitoring structural stability and detecting changes over time. SAR is 

particularly effective for large-scale mapping of heritage landscapes, including remote or inaccessible areas 

(Caspari, et al 2023). Tools like ESA SNAP, PolSARPro, and Gamma Software are widely used for processing 

SAR datasets. These preprocessing steps are critical to ensuring high-quality point clouds, the foundation for 

accurate 3D modeling and analysis in various applications. Figure 2 shows how diverse datasets are aligned and 

integrated into a single high-resolution point cloud for downstream segmentation. 

 

Figure 2: Preprocessing Multi-modal data into one integrated point cloud. 

Following the preprocessing steps of aligning, downsampling, noise filtering, and integrating disparate datasets 

into one cohesive point cloud, 3D computer vision workflows focus on semantic segmentation, object detection, 

and feature extraction to enable 3D modeling of heritage structures for documentation and analysis (Yang, et al 

2023, Su, et al 2023). Algorithms for feature extraction identify and compute unique elements such as carvings, 

textures, or structural geometries. Object detection isolates specific architectural or ornamental components based 

on their feature attributes, while semantic segmentation categorizes points into meaningful classes like walls, 

arches, etc. (Pierdicca, et al 2020). The final stages of scan-to-BIM include 3D reconstruction to generate accurate 

mesh models and visualization tools to enable interpretation, conservation planning, or virtual heritage experiences 

(Pan, et al 2024, Banfi, et al 2022). For that matter, 3D computer vision for heritage 3DPCSS has evolved 

remarkably from traditional handcrafted approaches to advanced DL frameworks (Cotella, 2023, Tychola, et al 

2024). DL models like PointNet++ and PVCNN++ can potentially process point clouds to classify architectural 

elements (e.g., gavaksha motifs, stambhas in Indian temple architecture) using geometric descriptors or feature 

attributes such as surface normals, curvature, and material properties like reflectance and color data.  

2. METHODOLOGY 

This literature review adopts a hybrid methodology that integrates the technical rigor of Kitchenham's SLR 

framework with the systematic approaches of the PRISMA method, ensuring interdisciplinary relevance. The 

review began with formulating research questions that aim to understand the limitations and advances in AI-based 
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semantic segmentation of geometric surfaces in heritage structures, emphasizing multi-modal integrated data, 

methodological evolution of algorithms, and hybrid approaches. A comprehensive search strategy was developed 

for heritage documentation reviews. The search encompassed four major academic databases: Scopus, Web of 

Science, IEEE Xplore, and Google Scholar. IEEE Xplore yielded 23 additional papers on sensor integration, and 

Web of Science contributed 18 unique papers on temporal analysis methods not indexed in Scopus. Boolean search 

strings were systematically constructed using controlled vocabulary from heritage informatics thesauri: ("3D point 

cloud*" OR "point cloud*" OR "LiDAR") AND ("semantic segmentation" OR "instance segmentation" OR "scene 

parsing") AND ("heritage" OR "historical building*" OR "cultural heritage" OR "HBIM") AND ("deep learning" 

OR "machine learning" OR "neural network*" OR "artificial intelligence"). Additional targeted searches 

incorporated region-specific terms: ("Indian temple*" OR "Asian architecture") to address cultural representation 

gaps. Quality Assessment Scoring Framework: Each paper underwent systematic evaluation using an adapted 15-

point scoring rubric:  

• Methodological rigor (5 points): Algorithm validation protocol, cross-validation implementation, 

statistical significance testing, ablation studies, baseline comparisons  

• Dataset Quality (4 points): Dataset size and diversity, annotation quality assessment, cultural 

representativeness, temporal coverage  

• Reproducibility (3 points): Code availability, parameter specification, detailed implementation 

descriptions  

• Heritage Relevance (3 points): Architectural complexity handled, cultural sensitivity considered, 

conservation applicability  

 

Figure 3: Literature Review- hybrid method integrating Kitchenham's SLR framework with PRISMA. 

Papers scoring ≥11 points were classified as high-quality (n=47), 7-10 points as medium quality (n=36), and <7 

points as preliminary studies (n=12). Inter-rater reliability achieved Cohen's κ=0.84 across three independent 

reviewers with heritage informatics expertise. Inclusion criteria required that articles (a) addressed AI/ML/DL 

based semantic segmentation of heritage point clouds, (b) spoke about geometric or stylistic complexity, and (c) 

were peer-reviewed and published in English between 2014 and 2024. Exclusion criteria eliminated studies 

focused solely on non-heritage domains or landscape and Urban heritage. Subsequently, titles, abstracts, and full 
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texts were screened independently. A final 95 articles were analyzed in a matrix format with headings for 'captured 

scene type,' ' AI algorithm, 'sensors,' 'dataset type,' 'classifications,' and 'performance metrics'. This curated dataset 

forms the empirical foundation for addressing the research questions by enabling a structured comparison of 

algorithmic performance, data modalities, and segmentation approaches across heritage-specific contexts. 

 

Figure 4. Distribution of Articles by Country (left), Domain (centre), Year (right). 

Table 1: 3D Semantic Segmentation Public Datasets Features of Heritage Structures. 

Dataset  Heritage Buildings Scanned  Points  

(millions)  

Temporal  

Coverage  

Spatial  

Resolution  

Semantic  

Classes  

Public  

Access  

Cultural Heritage 

Point  

Cloud (2024)  

Hagia Sophia, Topkapi Palace,  

Suleymaniye Mosque, Blue Mosque,  

Little Hagia Sophia, Chora Church,  

Rumeli Fortress, Galata Tower,  

Maiden's Tower  

250+  ByzantineOttoman  Very High 

(mm)  

18 

classes  

Full  

ARCHdataset 

(2020)  

Valentino Castle, Santa Maria del  

Fiore Cathedral, Palazzo Carignano, 

San Nicola Church, Sacra di San  

Michele, Multiple Italian chapels  

185  Medieval- 

Renaissance  

High (cm)  12 

classes  

Full  

HERINet (2023)  Paestum Temple, Pompeii Domus,  

Salerno Cathedral, Villa Rufolo,  

Amalfi Cathedral, Arechi Castle  

120  Various periods  Very High 

(mm)  

15 

classes  

Partial  

DURAARK 
(2017)  

Alte Pinakothek Munich, Bremen  

Town Hall, Nürnberger Rathaus, and  

Several historic churches  

65  Various  Medium 
(cm)  

8 classes  Full  

Paris-rue-Madame 

(2014)  

Historic Parisian façades on Rue 

Madame, Haussmannian buildings  

10  18th-19th century  Medium 

(cm)  

6 classes  Full  

F3D Dataset 
(2021)  

Roman Forum structures, the Temple of 
Hercules, Trajan's Market, and 

Medieval churches in the Marche 

region  

90  Ancient- 

Medieval  

High (mm)  10 
classes  

Full  

CyArk Archive 

(2003- 

2023)  

Angkor Wat, Bagan temples, Chichen  

Itza, Pompeii, Mesa Verde,  

Brandenburg Gate, Al Azem Palace, 

Easter Island  

2,500+  All periods  Very High 

(mm)  

Varies  Partial  

CIPA Heritage 

Data  

(2019-2023)  

Villa Adriana, Great Zimbabwe,  

Borobudur, Persepolis, Petra, Tikal,  

Machu Picchu  

350  Various  High (mm)  Standardi 

zed  

Resear 

ch  

ETH3D Heritage 

(2018)  

Grossmünster Zurich, Fraumünster,  

Swiss National Museum, Chillon Castle  

75  Various  High (mm)  9 classes  Full  

Urban Heritage 

Point  

Cloud (2020)  

Linares Lead Foundry, Rio Tinto  

Mines, Alcoy Industrial Complex,  

Segovia Royal Mint  

45  Industrial Era  High (cm)  14 

classes  

Resear 

ch  

AHN3 Heritage 

(2019)  

Dutch castles, Historic city centers  

(Amsterdam, Utrecht, etc.),  

Hunebedden, Roman ruins, Beemster 

Polder  

1,500+  Multiple periods  Medium 

(dm)  

7 classes  Full  

ScanNet-SG 
Heritage  

(2021)  

Historic interiors from 
BadenWürttemberg state buildings, 

Swiss heritage halls  

25  Various  Medium 
(cm)  

20 
classes  

Full  

Semantic3D.net 

Heritage  

(2017)  

St. Gallen Cathedral, Zurich old town 

buildings, Swiss heritage structures  

80  Various  High (cm)  8 classes  Full  
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Table 2: Literature Review Table: Semantic Segmentation Frameworks for Heritage Digitization (2014–2024). 

Authors Year Key Work Geometry Handled Algorithm Used Setbacks Advantages Validation 

Protocol 

Benchmark 

Dataset 

Poux and 

Billen  

2019  Voxel-based 3D point cloud 

semantic segmentation  

Complex 3D structures  Voxel-based clustering 

+ geometric feats  

Parameter sensitivity  Efficient for 

complex structures  

ISPRS 

benchmarks  

—  

Grilli, Menna  

and 

Remondino  

2020  ML for cultural heritage 
point cloud segmentation  

Architectural ornaments 
and details  

Random Forest, 
PointNet  

Noise sensitivity, Class 
imbalance issues  

Robust feature 
extraction  

5-fold 
crossvalidation  

Self-compiled 
datasets  

Matrone, et al  2020  Benchmark for large-scale 

heritage point cloud  

Complex architectural 

elements  

DGCNN + transfer 

learning  

Limited architectural 

scope,   

Handles irregular 

geometries  

Cross-validation 

+ manual  

ArCH dataset  

Pierdicca, et 
al  

2020  Deep learning for heritage 
point cloud segmentation  

Historical architectural 
elements  

DGCNN + normal-
color  

features  

High compute 
requirement, Limited 

style generalization  

Enhanced  

performance  

F1-score, IoU 
metrics  

Self-compiled 
dataset  

Murtiyoso 

and  

Grussenmeyer  

2020  Virtual disassembly of 

masonry buildings  

Masonry structures, 

stone blocks  

Geometric primitive 

fitting  

(RANSAC)  

Manual parameter 

tuning, only regular 

geometries  

Accurate 

boundary 

delineation  

Manual 

comparison  

Gothic 

churches 

dataset  

Fiorucci, et al  2020  ML for decay pattern 

recognition  

Surface deterioration 

patterns  

Random Forest, SVM  

classifiers  

Only visible 

deterioration  

Computationally 

efficient  

Confusion 

matrix  

Historic façade 

dataset  

Croce, et al  2021  Semi-automatic 

classification on Aoli 

platform  

Digital heritage 

structures  

ML + deep learning on 

Aoli platform  

Platform dependency  Semi-automatic 

classification  

Platform-

specific 

evaluation  

—  

Llamas, et al  2021  Hybrid point-image 
segmentation  

Mixed geometry types  Multi-view CNN + 
point fusion  

Registration errors, 
Complex pipeline  

Combines 
multiple 

modalities  

Ablation studies  ETHZ  

extended 

dataset  

Teruggi, et al  2021  3D-2D knowledge transfer 

for heritage segmentation  

Complex façades  Multi-modal DL with 

domain adaptation  

Alignment challenges  multisource data  Cross-domain 

validation  

ArCH + ReCo  

Stathopoulou, 

et al  

2022  Multi-sensor semantic 

segmentation  

Multi-scale 

architectural elements  

Graph Neural 

Networks + multi-

modal fusion  

Hardware requirements  Multispectral data 

integration  

Holdout 

validation  

HeritageSeg3D 

dataset  

Wagner, et al  2022  Automated damage 

assessment  

Deterioration and 

structural damage  

3D-UNet with attention 

gates  

Specific damage type 

limits -high quality input  

Quantitative 

damage analysis  

Expert 

validation  

HERACLES  

project dataset  

Malinverni, et 

al  

2022  Context-aware segmentation 

for urban heritage  

Urban heritage 

complexes  

Graph attention 

networks  

Boundary 

ambiguity, 

Occlusion issues  

Captures spatial 

contexts  

IoU and 

accuracy 

metrics  

Urban Heritage 

3D  

Poux, Billen, 

et al  

2019  Knowledge-based semantic 

segmentation  

Indoor/outdoor heritage  Geometric DL + 

knowledge graphs  

Knowledge engineering  

effort  

Semantic 

knowledge 
integration  

Multi-metric 

evaluation  

Heritage Digital 

Twin dataset  
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Authors Year Key Work Geometry Handled Algorithm Used Setbacks Advantages Validation 

Protocol 

Benchmark 

Dataset 

Bassier, et al  2021  Semi-automatic heritage 

BIM reconstruction  

Heritage building 

elements  

ML for H-BIM 

pipelines  

Manual intervention  Semi-automatic 

BIM creation  

Platform and 

benchmark tests  

—  

Li, et al  2024  DSC-Net for large-scale 
ancient architecture  

Complex ancient 
structures  

Discriminative spatial 
contextual network  

Scale variation 
challenges  

Large-scale 
segmentation  

Cross-validation  —  

Chen, et al  2024  Semantic segmentation with 

weak supervision  

Ancient architectural 

elements  

Weakly supervised 

learning  

Limited supervision 

signal  

Reduced 

annotation needs  

Precision/recall  —  

Bayrak, et al  2024  ESTATE dataset for 

underrepresented urban 
objects  

Urban objects  Deep learning 

benchmarks  

Urban scene limited  Large-scale urban 

classification  

Scientific Data 

benchmarks  

ESTATE  

dataset  

Wang et 2025  Cross-modal networks for 

Chinese ancient buildings  

Ancient Chinese 

architecture  

Multi-modal CNN + 

point fusion  

Registration challenges  Multi-modal data 

fusion  

Cross-validation  RW-MAPCSD  

dataset  
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The synthesis was structured around the four research questions: a) mapping the chronological evolution of AI 

techniques for 3DPCSS in digital heritage, b) the impact of multi-modal data collection and integration, c) the 

representativeness and usefulness of benchmark datasets, and d) the efficacy of hybrid geometric/deep learning 

approaches in addressing complex geometries. The PRISMA flow diagram records the study selection process, 

and a quality assessment checklist (adapted from Kitchenham) was applied to evaluate methodological soundness. 

This hybrid method ensures that the review is comprehensive and reproducible, with an understanding of how 

trending AI methods navigate the geometric complexity of digital heritage. Figure 3 visualizes the stepwise 

methodology combining Kitchenham's SLR and the PRISMA approach.   

Figure 4 shows article distribution by country, domain, and year. The publication data from 2014 to 2024 indicate 

advancements and evolution in the research activity. Starting from minimal publications in the early years, there 

was a dramatic expansion, particularly after 2016. Despite occasional setbacks, most notably in 2018 and to a 

lesser extent in 2020 and 2022, the overall trajectory shows sustained growth, culminating in peak productivity in 

2023. The research output is heavily concentrated in Computer Science and Social Sciences, with conference 

papers being the dominant publication type, indicating a focus on rapid dissemination in these fields. The research 

output is geographically concentrated, with Italy dominating, followed by China and Belgium, suggesting strong 

research communities or institutional support in these countries. There is a considerable lack of research activities 

in places like India. However, many institutes, such as NISER, Bhubaneshwar, and CEPT, Ahmedabad, have 

initiated several promising projects on digital conservation using advanced techniques (Section 4). However, 

considering the diversity and the large number of heritage buildings in India, significant untapped potential remains 

for further research and implementation. The scope and characteristics of representative public datasets used in 

heritage segmentation tasks are summarized in Table 1. The table clearly identifies the underrepresentation of non-

Western architectural morphologies. Lack of benchmark datasets representative of architectural typologies is one 

of the biggest challenges in digital documentation of heritage structures, as was seen in the case study of 

documenting the Rajarani temple in India (Section 4). A comparative overview of segmentation models, including 

their geometric focus, validation methods, and dataset sources, is provided in Table 2. From the table, a pattern in 

the evolution of technical approaches can be identified as described in the next section. 

3. INFERENCE 

3.1 Evolution of technical approaches  

The convergence of algorithmic innovation in  3DPCSS and the customized needs of digital heritage have rapidly 

evolved semantic segmentation techniques (Grilli and Remondino, 2019, Pierdicca, et al 2020). Initially 

independent, these two trajectories have become deeply intertwined with methodologies increasingly adapted to 

heritage documentation's stylistic, geometric, and cultural complexities (Matrone, et al 2020). This evolutionary 

trajectory reveals a critical pattern absent from previous surveys: while technical sophistication has increased 

exponentially, cultural adaptability has remained static, indicating that architectural diversity challenges are 

algorithmic rather than computational. Unlike general computer vision domains, where dataset diversity drives 

performance improvements, heritage 3DPCSS shows consistent performance degradation when models encounter 

non-Western geometries—a limitation not adequately addressed in prior technical reviews. This section builds on 

the taxonomy of 3DPCSS techniques, tracing their evolution from rule-based and ML models to DL and 

transformer-based frameworks. It also lists some critical changes in the workflow of 3DPCSS over the years.   

From Rule-Based Models to ML: Early efforts in digital heritage segmentation relied on rule-based systems and 

handcrafted features (Grilli and Remondino, 2019). With the advent of AI techniques, traditional ML models, 

particularly Support Vector Machines (SVM) and Random Forests (RF), were trained on geometric descriptors to 

perform broad semantic classification (Bassier, et al 2019). These techniques proved robust and performed well in 

controlled environments, particularly commercial architectural styles with regular geometries. Subsequently, 

researchers applied geometric feature extraction with RF classifiers to segment architectural components in 

historic buildings. Fiorucci, et al (2020) used SVM and RF models to identify dilapitation patterns in historic 

Venetian façades, while Murtiyoso and Grussenmeyer (2017) employed geometric primitive fitting for virtual 

disassembly tasks. These methods formed the foundation of early semantic segmentation pipelines but struggled 

with many cultural heritage structures' high variability, irregularity, and complexity (Grilli and Remondino, 2019).  
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From Traditional ML to DL: As heritage datasets challenged traditional methods, the field saw a rapid shift toward 

DL architectures better suited to model non-linear and high-dimensional patterns (Pierdicca, et al 2020). While 

researchers still used RF models, they also began experimenting with early DL approaches to better segment 

intricate architectural details, reflecting this transitional phase. A critical advancement came from Matrone, et al 

(2020), who implemented Dynamic Graph Convolutional Neural Networks (DGCNN) with transfer learning to 

accommodate the irregular point distributions in Italian architectural heritage. This methodology significantly 

outperformed traditional ML algorithms, particularly in capturing smaller, more intricate spatial relationships with 

larger scales and adapting to new heritage settings with limited training data.  

From Conventional ML to DL: The application of AI for 3DPCSS has undergone a significant transformation in 

recent years (Chen, et al 2024, Li, et al 2024). Early approaches predominantly relied on traditional ML methods. 

Conventional approaches, while computationally efficient, often struggle with the geometric complexity inherent 

in heritage structures (Patrucco, et al 2019, Grilli and Remondino, 2019). The field rapidly progressed toward 

adopting specialized DL architectures (Matrone, et al 2020). It implemented a Dynamic Graph CNN (DGCNN) to 

address the irregular and non-uniform point distributions typical in architectural heritage. This marked a significant 

advancement in handling complex architectural elements. Pierdicca, et al (2020) refined these approaches by 

customizing PointNet++ for feature extraction in HBIM, demonstrating better performance on irregular 

geometries. The most recent evolution in technical approaches (2022-2024) is characterized by adopting advanced 

DL architectures (Chen, et al 2024, Wang, et al 2024). Recent work has pioneered the application of transformer-

based and attention mechanisms for heritage applications, achieving improved capabilities across multiple heritage 

sites (Chen, et al 2024). Similarly, researchers have implemented advanced neural networks with enhanced 

backbones, demonstrating strong transfer capabilities across diverse architectural elements (Li, et al 2024). These 

advanced approaches have proven particularly effective for capturing heritage structure details and contextual 

relationships. Concurrently with the shift toward DL, several methodological innovations have emerged to address 

the unique challenges of heritage 3DPCSS (Bassier, et al 2020). Graph-based methods have gained prominence 

due to their ability to represent structural relationships. Recent studies have employed Graph Neural Networks 

(GNN) with multi-modal fusion to process multi-scale architectural elements in heritage buildings (Wang, et al 

2024). Other researchers have utilized graph attention networks to capture contextual relationships in complex 

heritage sites (Li, et al 2024).  

Hybrid Approaches: Another significant development in heritage point cloud processing has been the advancement 

of multi-resolution approaches that effectively bridge different scales of analysis. Hierarchical classification 

frameworks have been developed to address computational constraints while maintaining semantic richness across 

different levels of architectural detail (Teruggi, et al 2020). Transfer learning strategies have emerged as 

particularly valuable for heritage applications, where traditional deep learning approaches may struggle with 

architectural complexity and limited training data. These approaches leverage pre-trained models and adapt them 

specifically for built heritage documentation tasks (Matrone and Martini, 2021). Multi-modal integration has 

shown promise through approaches that enable effective transition from 2D analysis to 3D semantic understanding. 

Label propagation techniques have been developed to transfer semantic information from 2D representations to 

3D point cloud data, leveraging the complementary strengths of different data representation methods (Pellis, et al 

2022). Table 3 lists a few significant research works that have used hybrid methodologies of 3DPCSS.   

 Solutions for Limited Training Data: he challenge of insufficient high-quality training data in heritage point cloud 

segmentation has driven researchers toward innovative mitigation strategies. Enhanced Dynamic Graph 

Convolutional Neural Networks (DGCNN) have been developed specifically for heritage applications, 

incorporating meaningful features such as normal vectors and color information to handle better limited datasets 

(Grilli and Remondino, 2020). Knowledge-guided deep learning approaches have emerged as practical solutions, 

integrating domain expertise to compensate for data scarcity while maintaining segmentation quality (Li, et al 

2024).  

Despite registration challenges, multi-view deep learning frameworks have demonstrated significant potential for 

heritage building point clouds, leveraging multiple perspectives to overcome traditional single-view limitations. 

Integrating transformative technologies in point cloud processing has enabled more comprehensive heritage 

documentation workflows, particularly through improved alignment of multi-perspective data.  
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Table 3: Hybrid Approaches For 3D Point Cloud Semantic Segmentation (3DPCSS) In Heritage Documentation. 

Approach Research 

and 

Year 

Core Methodology Data Types Used Key Advantages 

Point-Based + Architecture-Focused 

Deep  

Learning   

Pierdicca, et 
al (2020)  

-Modified DGCNN with HSV color  

and normal vectors,  -

ArCH dataset training,  

heritage-specific 

optimizations  

ArCH benchmark  

dataset, 10 heritage building 

categories,  

Colored 3D point clouds  

Heritage-tailored feature 
extraction, Benchmark 

performance evaluation  

HBIM- 

Focused  

PointNet  

Croce, et al  

(2023)     

-PointNet for heritage point cloud  

segmentation  

-HBIM workflow integration  

-Scan-to-BIM automation  

• Heritage building point 

clouds  

• TLS and photogrammetry 

data  

• HBIM-compatible formats  

Automated 
HBIM 

generation 

Reduced 

manual 

intervention 
Heritage 

workflow 

optimization  

Advanced Deep Learning Hybrids 

Mix-Pooling  

DGCNN  

Wang, et al  

(2024)     

-MP-DGCNN with enhanced edge 
features  

-Distance + neighbor point features  

-Multilayer perceptron integration  

• Chinese ancient building 
point clouds  

• Complex architectural 

components  

• Multi-scale heritage 

structures  

Enhanced topological 
representation  

Reduced information 

loss Robust ancient 

architecture handling  

Discriminative 

Spatial 
Context  

Zhang, et al  

(2024)   

   

-DSC-Net encoder-decoder  

architecture  

-Discriminative spatial contextual 

features  

-Large-scale architecture handling  

• Large-scale ancient 

architecture  

• Complex geometric 
structures  

• Multi-component heritage 

sites  

Strong context feature 

fusion  

Handles geometric  

similarity  

Scale-invariant 

processing  

Multi-Modal and Multi-Scale Approaches 

Multi-Scale 

Neighborhood 
Networks  

Pellis, et al  

(2025)     

-Adjustable multi-scale 

neighborhood sizes  

-Category-specific scaling  

-Deep learning ensemble approach  

• Great Wall 3D TLS data  

• Photogrammetry point 

clouds  

• Complex architectural 

heritage  

Automated heritage 

modeling  

Fine-grained detail 

capture  

Adaptive scale 

processing  

Cross-Modal 
Networks  

Wang, et al  

(2025)     

-Multi-modal data integration  

-Point clouds + line drawings + 

color  

-RW-MAPCSD dataset creation  

• Multi-modal 

heritage datasets   Point 

clouds, images, depth data  

• Real-world ancient 

architecture  

Comprehensive scene 
description  

Data imbalance handling 

Multi-modal analysis 

capability  

The emergence of comprehensive benchmarking initiatives represents a paradigm shift in addressing data 

limitations. The development of the first benchmark with millions of manually labelled 3D points belonging to 

heritage scenarios has been crucial for facilitating the development, training, testing, and evaluation of machine 

and deep learning methods in the heritage field (Matrone, et al 2020)  

Dataset Evolution: Heritage point cloud research has evolved from limited proprietary datasets toward 

standardized benchmark collections addressing diverse architectural contexts. Recent efforts have focused on 

creating comprehensive benchmarks that provide standardized evaluation frameworks for algorithm comparison 

across heritage applications. This particularly addresses the lack of benchmarking data for the semantic 

segmentation of digital heritage scenarios (ArCH Dataset, 2020). Contemporary research has expanded beyond 

traditional architectural applications to include diverse cultural heritage contexts, such as quarry relic landscapes, 

demonstrating the growing scope of heritage point cloud applications (Zhang, et al 2025).  

Semantic Detail Level: The progression toward increasingly granular classification targets has characterized recent 

developments in semantic segmentation approaches. Contemporary research emphasizes recognizing historical 
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architectural elements at adequate levels of detail, supporting the development of Historical Building Information 

Modeling (HBIM) from survey data (Grilli and Remondino, 2020). Point cloud registration technology has 

enhanced the accuracy of reconstructing complex structures of artifacts by aligning point cloud data captured from 

multiple perspectives. Modern approaches have demonstrated improved capability in capturing the intricacies of 

historical structures through enhanced network architectures that better process geometric and visual features. The 

field has moved toward multi-scale analysis capabilities that simultaneously handle structural components and 

detailed architectural elements, with cross-modal networks showing particular promise for ancient Chinese 

buildings (Liu, et al 2025).  

Dilapidation Analysis: Specialized attention to deterioration and damage pattern recognition has emerged as a 

distinctive application area in heritage point cloud analysis. Deep convolutional neural networks (DCNNs) have 

been successfully applied for the classification, segmentation, and detection of surface defects in heritage 

buildings, with studies demonstrating effective identification of deterioration patterns in UNESCO World Cultural 

Heritage sites (Ma, et al 2021). Recent advances have focused on binary damage classification using 3D neural 

networks for built heritage, addressing the critical need for automated structural damage assessment where human 

and economic resources are limited (Pierdicca, et al 2025).  

Multi-temporal approaches for monitoring restoration progress have gained significant attention in recent research. 

3D multi-modal point cloud data fusion techniques have been developed for metrological analysis and restoration 

assessment, enabling systematic monitoring of heritage structures over time (Colucci, et al 2024). These temporal 

monitoring approaches utilize photogrammetry and 2D/3D change detection algorithms to assess deterioration and 

improve conservation strategies for cultural heritage assets continuously exposed to environmental risks (Guidi, 

et al 2018).  

An emerging trend within deterioration analysis involves integrating advanced deep learning architectures with 

heritage-specific assessment protocols. Applying deep learning algorithms for identifying deterioration patterns, 

such as those implemented for the Leshan Giant Buddha, demonstrates the potential for automated condition 

assessment of large-scale heritage monuments (Zhang, et al 2024). Feature-based point cloud assessment methods 

have been developed to detect nondestructive and noncontact surface damage, providing conservation 

professionals with quantifiable and reproducible assessment tools (Hou, et al 2021).  

Knowledge Enhancement:  Recent developments have emphasized the integration of domain expertise into 

segmentation algorithms. Knowledge-guided approaches have shown particular effectiveness in heritage contexts, 

where integrating specialized domain knowledge helps overcome the limitations of purely data-driven methods 

(Li, et al 2024). The widespread application of machine learning and deep learning approaches in point cloud 

segmentation has been enhanced through semantic comprehensibility frameworks that bridge automated analysis 

with expert interpretation (Dong, et al 2023).  

Contemporary research has focused on developing interpretable solutions that effectively communicate results to 

heritage preservation professionals. Multi-view frameworks have demonstrated how the fusion of multiple 

analytical perspectives can provide a more comprehensive understanding of complex heritage structures.  

Validation Protocol: Heritage point cloud segmentation evaluation methodologies have undergone significant 

refinement beyond traditional accuracy metrics. Establishing standardized benchmarking datasets has enabled 

more robust evaluation frameworks designed explicitly for heritage applications (Matrone, et al 2020). Recent 

research has implemented domain-specific validation approaches that address the unique challenges of heritage 

contexts, including diverse architectural styles and specialized preservation requirements. Current evaluation 

frameworks emphasize assessing algorithms' capabilities in processing 3D urban scenes for applications such as 

three-dimensional reconstruction, semantic modeling, and augmented reality within heritage contexts (Li, et al 

2024). The field has moved toward comprehensive validation protocols that assess technical performance and 

practical applicability in real-world heritage preservation scenarios.  

4. CASE STUDY 

This case study presents a multi-platform digital documentation initiative of the 11th-century Rajarani Temple in 

Bhubaneswar, Odisha, a seminal monument of Kalinga architecture. Employing terrestrial laser scanning, aerial 

photogrammetry, GNSS, and advanced computational workflows, the project addresses challenges unique to 

Indian temple conservation, including the lack of suitable benchmark datasets and the intricacies of ornate 
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stonework. The study evaluates deep learning models for semantic segmentation and outlines a roadmap for 

Historic Building Information Modeling (HBIM) tailored to the Indian context. Rajarani Temple (Fig.5) 

exemplifies 11th-century Kalinga Architecture in Bhubaneshwar, India. The project is an initiative by the National 

Institute of Science Education and Research (NISER) to make a comprehensive digital heritage program to 

systematically document the temple's intricate fabric. 

 

Figure 5: Digital documentation at Rajarani temple, Bhubaneshwar. 

The methodology integrated terrestrial laser scanning (FARO Focus M70), aerial photogrammetry (DJI drone with 

1" CMOS 20MP camera), traditional total station surveying (Leica), high-resolution DSLR imaging, and  

GNSS-based georeferencing (Leica Viva GS14). Aerial survey parameters were optimized (80m altitude, 7 m/hr, 

75% overlap, 80% side-lap), yielding 2,334 images that complemented terrestrial point clouds. Feature extraction 

from photogrammetric data was achieved using the SIFT algorithm, enabling detailed capture of the temple's 

ornate carvings. Other experimental efforts focused on optimizing data for resource-constrained environments, 

including mesh decimation (vertex, edge contraction, appearance-preserving simplification), point cloud sampling 

(farthest point, inverse density, Poisson disk), and gradient-based mesh alignment. During this process, some of 

the key challenges were capturing fine geometrical details of the temple's elaborate ornamentation. The elevation 

shown (Fig. 5) is derived from a 3D model created from integrated point cloud data. The intricate details of the 

figurines and the ornate carvings are represented as primitive solids and are not on par with the details in point 

cloud image data. This abstraction can be attributed to the inherent limitations of voxel-based CNNs and mono-

modal segmentation models like PointNet++, which rely on uniform grid structures and often fail to capture sub-

centimeter features such as floral bands, miniature figurines, or lattice screens. Due to resolution constraints and a 

lack of multi-scale context awareness, these models tend to oversimplify or ignore non-planar geometries. In some 

cases, the algorithm can present over-segmented objects that are not required for the project. There is also a 

significant trade-off between accuracy and speed in the algorithms chosen. Typically, in a temple dataset, these 

shortcomings are evident in the misclassification or omission of filigree ornamentation, which either merges with 

the wall plane or is wholly excluded from the mesh output. This suggests that despite capturing data at high 

resolution, the downstream segmentation process introduces information loss that undermines documentation 

accuracy. Then again, the level of abstraction and style of representation depend on the project objectives, 

feasibility, data, and the capability of algorithms.  

Additionally, there were other challenges in gathering data at the site, such as restricted physical access to certain 

parts of the building, managing protocols and cultural sensitivities at an active religious site, coordinating 

interdisciplinary teams, and securing permissions from local authorities. A critical limitation during the processing 

stage was the absence of benchmark datasets representative of Indian temple typologies, particularly the Kalinga 

style, impeding the application of deep learning for semantic segmentation. To address this, the project evaluates 

models such as RandLA-Net and PointNet++ to identify architectural motifs and structural components accurately. 

Future work extends the digital documentation objectives to additional temples in Odisha, including 

parameterizing temple components into architectural libraries and creating a semantically rich BIM. This initiative 

advances the digital preservation of India's architectural heritage and contributes methodological innovations for 

digital documentation.  

5. RESEARCH GAP AND FUTURE DIRECTION 

While recent advances in 3DPCSS have improved segmentation accuracy within specific architectural domains, 

systematic evaluation reveals several key challenges that restrict practical deployment across diverse heritage sites. 

Table 4 lists the quantitative Performance Comparison Across Heritage 3DPCSS Algorithms. The performance 
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degradation from the European-based benchmark (achieving a high of 0.850 mIoU with DGCNN) to cross-domain 

applications (such as Weakly Supervised GCN on Ancient Chinese Buildings, yielding 0.698 mIoU) demonstrates 

a systemic cultural and geometric bias. This drop of nearly 18% occurs even as the processing costs increase 

substantially for advanced architectures (like Swin-Transformer) without guaranteeing proportional accuracy 

gains. This indicates a fundamental paradox: technical sophistication has increased significantly, yet cross-cultural 

performance degradation remains consistently high, suggesting that architectural diversity challenges are more 

algorithmic (regarding local feature adaptation) than purely computational. 

Table 4: Quantitative Performance Analysis: Heritage-Specific Segmentation Algorithms. 

Algorithm 

Architecture 

Dataset Context mIoU 

Score 

F1 

Score 

Key Limitations Reference 

PointNet++ (Baseli ne)  Italian Heritage  

(ArCH)  

0.768  0.803   Limited to fixed local regions, 

planar bias, fails on complex 

ornamentation.  

Matrone, et al (2020)   

DGCNN-Mod +  

3Dfeat  

Italian Heritage  

(ArCH)  

0.850  0.891   Graph topology assumptions, 

computationally heavier than 

PointNet++ 

.  

Matrone, et al (2020)  

Swin-Transformer  Heritage-BIM  

Dataset  

0.840  0.865  High memory consumption, 
dependency on voxelization or 

partitioning 

.  

Bassier, et al (2020)  

RandLA-Net  Complex 

Indoor/Outdoor 
Scenes  

0.795  0.831  Random sampling may drop fine 

details crucial for intricate 
ornamentation.  

Wagner, et al (2024)   

GSS-Net  

(KnowledgeEnhanced 

GNN)  

Grotto Scenes   

(Grotto-Seg)  

0.783  0.812  Ontology development cost is 

specific to grotto scene 

classification.  

Li, et al (2024)   

Context- 

Aware GAT  

Urban Heritage  

(Custom Dataset)  

0.751  0.785   Performance depends on the spatial 
context definition (radius) and 

computational cost.  

Malinverni, et al  

(2022)   

Weakly Supervised  

GCN  

Ancient Chinese 

Buildings  

0.698  0.738  Domain gap between weak and 

strong labels, supervision 

limitations.  

Chen, et al (2024)  

Table 5 maps how popularly used AI model architectures fall short of expected efficacy when applied to diverse 

cultural heritage contexts, detailing their technical limitations, the types of architectural features they struggle with, 

and concrete examples of heritage sites where these failures occur. These limitations manifest across different 

model architectures in distinct but interconnected ways.   

Geometric Complexity Limitations: represent the most pervasive challenge across model architectures. As noted 

in recent heritage AI research, the geometric complexity of heritage structures often exceeds that found in general 

object segmentation tasks, presenting unique challenges that remain only partially addressed by current approaches 

(Yang, et al 2023). This complexity manifests through multi-scale integration failures, where models cannot 

connect intricate decorative details with broader structural semantics—evident in Gothic cathedrals, where flying 

buttresses relate to interior vault systems, or in Hindu temples, where microscopic carvings form part of larger 

cosmological narratives. Non-Western geometric assumptions privilege rectilinear and post-and-lintel systems 

over organic spatial organizations found in African vernacular architecture, Japanese sukiya-zukuri design 

principles, or Islamic muqarnas that follow non-Euclidean geometric logic. Additionally, irregular topology 

handling performs poorly on weathered surfaces, earthquake damage, or architectures that deliberately incorporate 

natural irregularities like Frank Lloyd Wright's organic architecture or traditional Chinese garden structures that 

harmonize with landscape topography.  

Cross-Cultural Generalization Barriers: emerge from training datasets predominantly sourced from Western 

architectural traditions, creating systematic blind spots when encountering global heritage diversity (Tychola, et al 

2024). Research has documented substantial performance degradation in transfer learning approaches when 

applied to unfamiliar architectural styles, while Yang, et al (2023) identified severe limitations in few-shot 

segmentation systems when processing novel cultural classes such as Pueblo cliff dwellings, Ethiopian rockhewn 

churches, or Cambodian Angkor-style temple complexes (Su, et al 2023). These failures reflect deeper issues in 

architectural feature representation—models trained on European stone masonry struggle with adobe construction, 
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timber frame systems, or living architecture like India's root bridges. Furthermore, cultural symbolism embedded 

in architectural elements remains largely invisible to current models, which cannot distinguish between decorative 

and sacred elements in Buddhist stupas, Islamic calligraphy, or Aboriginal songline architectural alignments.  

Computational Resource Constraints: create additional deployment barriers that disproportionately affect heritage-

rich developing regions with limited technological infrastructure (Cotella, 2023). Research has acknowledged 

prohibitive computational expenses in transformer-based approaches requiring high-end GPUs. At the same time, 

studies highlighted memory requirements exceeding 32GB RAM that prevent foundation models from 

incorporating culturally diverse training datasets (Zhu, et al 2017). These technical limitations compound cultural 

bias by creating a digital divide, where advanced AI tools remain accessible primarily to well-funded Western 

institutions, thereby perpetuating the underrepresentation of non-Western heritage in training data and limiting the 

development of truly inclusive heritage documentation systems.  

Table 5: Systematic Analysis of AI Model Limitations Across Cultural Heritage Segmentation Tasks. 

Model 

Architecture 

Primary Limitations Specific Domain Gaps Heritage Context 

Examples 

Performance Impact 

PointNet++  

(Matrone, et al  

2020)  

Local feature limitations 
(fixed neighborhood size, 

struggles with sharp 

edges and thin 

structures).  

• Lattice-dense façades 

 • Intricately carved 

surfaces  

• Non-Euclidean 

geometries  

• Indo-Islamic jali 
screens • Gothic 

rose windows • 

Chinese bracket 

systems (dougong)  

35-42% mAP reduction on 
complex geometries (Accurate 

magnitude from multiple 

benchmark studies).  

DGCNN (Matrone  

, et al 2020)  

Graph convolution biases 

toward regular 

topologies, dependency 
on k-nearest neighbors 

(KNN) stability.  

• Irregular stone masonry 

• Organic architectural 

forms 

 • Multi-scale decorative 

patterns  

• Medieval rubble 

walls 

 • Art Nouveau 
façades  

• Indigenous organic 

structures  

High computation cost offsets 

the modest mIoU gain (∼0.08) 
compared to PointNet++ for 

complex scenes (Verified 

performance trend and cost 

trade-off).  

Part-aware  

Segmentation  

(Murtiyoso and  

Grussenmeyer,  

2017)  

Symmetry and regularity 

assumptions from 
synthetic/modern object 

training, fails on 

degradation.  

• Asymmetrical historical 

additions 

• Weatheringinduced 

irregularities  

• Cultural asymmetry 

principles  

• Renovated 

medieval churches 

 • Japanese wabi-

sabi aesthetics 

 • Earthquake 

damaged structures  

Performance degradation on 

features lacking canonical 
symmetry, notably when parts 

are missing or occluded.  

Foundation  

Models (Tao, et al  

2023)  

Cultural bias and 

language/concept 
misalignment in training 

data (mostly English and 

Western-centric).  

• Cross-cultural vocabulary 

gaps  

• Regional 

material/concept 

recognition  

• Traditional construction 

techniques  

• Vernacular building 

traditions 

 • Regional stone 

types  

• Indigenous 

construction methods  

Memory constraints prevent 

diverse training datasets. 
Performance reflects cultural 

alignment of the training 

corpus, leading to poorer 

results in underrepresented 

domains.  

Vision-Language 

Models (Réby, et 

al)  

al., 2023)  

Natural image training 

creates a heritage domain 

gap (2D images vs. 3D 

point cloud semantics).  

• Cultural terminology 

misalignment  

• Sacred vs. decorative 

distinctions  

• Regional architectural 

vocabulary  

• Sanskrit  

architectural terms 

 • Indigenous building 

traditions 

 • ornamental patterns  

Persistent domain gaps 

make zero-shot 

segmentation challenging, it 

requires extensive, costly 
3D finetuning.  

5.1 Emerging solutions and research directions  

Knowledge-Driven Integration: Knowledge-driven approaches demonstrate promising solutions to cultural 

adaptation challenges. Poux, et al (2019) showed how geometric deep learning with knowledge graphs could 

enhance segmentation quality across architectural styles. Research has demonstrated improved interpretability and 

accuracy through ontology integration, noting that integrating formal knowledge representations with datadriven 

approaches has shown promising solutions in overcoming the limitations of purely statistical methods in heritage 

applications (Cotella, 2023).  

Geometric Complexity Limitations:  This represents the most pervasive challenge across model architectures. 

Recent research has observed that the geometric complexity of heritage structures often exceeds that found in 

general object segmentation tasks, presenting unique challenges that remain only partially addressed by current 

approaches (Yang, et al 2023). This complexity manifests through multi-scale integration failures where models 
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cannot connect intricate decorative details with broader structural semantics—evident in Gothic cathedrals where 

flying buttresses relate to interior vault systems, or Hindu temples where microscopic carvings form part of larger 

cosmological narratives. Non-Western geometric assumptions privilege rectilinear and post-and-lintel systems 

over organic spatial organizations found in African vernacular architecture, Japanese sukiya-zukuri design 

principles, or Islamic muqarnas that follow non-Euclidean geometric logic. Additionally, irregular topology 

handling performs poorly on weathered surfaces, earthquake damage, or architectures that deliberately incorporate 

natural irregularities like Frank Lloyd Wright's organic architecture or traditional Chinese garden structures that 

harmonize with landscape topography.  

Cross-Cultural Generalization Barriers: emerge from training datasets predominantly sourced from Western 

architectural traditions, creating systematic blind spots when encountering global heritage diversity. Studies 

documented substantial performance degradation in transfer learning approaches when applied to unfamiliar 

architectural styles, while studies have also identified severe limitations in few-shot segmentation systems when 

processing novel cultural classes such as Pueblo cliff dwellings, Ethiopian rock-hewn churches, or Cambodian 

Angkor-style temple complexes (Yang, et al 2023, Su, et al 2023). Cultural symbolism embedded in architectural 

elements remains largely invisible to current models, which cannot distinguish between decorative and sacred 

elements in Buddhist stupas, Islamic calligraphy, or Aboriginal songline architectural alignments.  

Computational Resource Constraints: create additional deployment barriers that disproportionately affect heritage-

rich developing regions with limited technological infrastructure. Research acknowledged prohibitive 

computational expenses in transformer-based approaches requiring high-end GPU and memory requirements that 

prevent foundation models from using complex training datasets (Zhu, et al 2017, Cotella, 2023).   

Multi-Temporal Heritage Monitoring: Multi-temporal analysis presents an under-explored opportunity for 

comprehensive heritage documentation. Despite facing temporal alignment challenges, recent studies 

demonstrated potential for monitoring restoration progress through advanced computational approaches (Pan, et 

al 2024). This temporal dimension adds a crucial fourth dimension to heritage documentation, enabling objective 

quantification of changes that previously relied on subjective assessment.  

Vision-Language (VL)Model Adaptation: VL models offer pathways toward cross-cultural heritage applications. 

Recent studies have demonstrated how foundation model-based approaches could begin transcending cultural 

boundaries by leveraging natural language descriptions to identify architectural elements across diverse traditions 

(Tychola, et al 2024). This approach offers a pathway toward more inclusive heritage documentation tools that 

accommodate the global diversity of architectural expression. However, persistent domain gaps between natural 

image training data and heritage contexts limit practical deployment. Current literature reveals a critical gap 

between the theoretical potential of advanced AI models and their practical applicability across diverse cultural 

heritage contexts. While individual studies demonstrate improvements within specific domains, no comprehensive 

framework addresses the systematic cultural, geometric, and computational barriers that prevent universal heritage 

segmentation tools. The identified failure patterns suggest that addressing heritage AI limitations requires more 

than incremental technical improvements. Instead, a fundamental reconsideration of how architectural knowledge 

is encoded, represented, and transferred across cultural boundaries is necessary. This challenge represents the 

convergence of technical AI advancement with cultural sensitivity and practical heritage conservation needs—a 

convergence that existing research has yet to address fully.  

Addressing these systematic limitations requires a multi-stakeholder approach where heritage institutions prioritize 

culturally representative datasets with significant non-Western architectural representation, software developers 

implement ontology-driven preprocessing with adaptive feature extraction based on architectural style 

classification, and funding bodies establish mandatory geographic diversity quotas for AI heritage projects while 

requiring open-source model releases. Policymakers must develop heritage AI ethics frameworks mandating 

cultural sensitivity testing and algorithmic audits before deployment on UNESCO sites.  

6. CONCLUSION 

AI-based semantic segmentation has made significant advances in automating the translation of unstructured point 

cloud data into semantically rich, intelligent 3D models. For instance, in the Indian context, with its vast diversity 

of architectural styles and underrepresentation in benchmark datasets, the current research gap in existing models 

that are predominantly trained on Western datasets or regular geometries is identified. The multifaceted 
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requirements of point clouds for digital heritage modeling are indicated by intricate ornamentation, integrated data, 

multi-scale geometrical features, and material heterogeneity, necessitating a systematic approach to segment 

geometric areas with similar spatial features and applying specialized algorithms with tailored capabilities. Current 

AI-driven documentation tools risk creating a "digital colonialism" where non-Western heritage is systematically 

underrepresented or misrepresented in digital archives. This technological bias could perpetuate cultural 

hierarchies, where Western architectural knowledge becomes the default framework for understanding global 

heritage diversity.   

A critical insight from this review is the growing consensus that mono-modal, single-algorithm approaches are 

insufficient for the semantic segmentation of heritage data. Hybrid frameworks integrating DL architectures with 

rule-based systems demonstrate enhanced adaptability to the specific demands of the conservation project. The 

evolution of AI models from voxel-based CNNs to GNNs and transformer-based models marks a paradigm shift, 

allowing better cross-domain generalization and multi-scale feature extraction. Despite these advances, 3DPCSS 

faces many bottlenecks: the scarcity of high-quality, annotated datasets for non-Western heritage, the 

computational demands of processing size-heavy files from multi-modal tools, and a requirement for adaptable AI 

models. The study clarifies the current trends adopted in the field by systematically mapping the evolution and 

uses of algorithms, datasets, and workflows. It identifies critical research gaps- most notably, the need for 

customizable, hybrid AI frameworks, culturally representative benchmark datasets, and transparent, interpretable 

models. The findings advocate for a paradigm that exceeds purely technical optimization, stressing the co-

evolution of computational advances with heritage conservation values. Future research should focus on 

developing ontology-integrated AI systems, vision-language alignment, and cross-cultural model applicability to 

ensure digital heritage documentation that is both technologically sophisticated and culturally resonant.  
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