
ITcon Vol. 4 (1999), Zarli and Richaud, pg. 53

REQUIREMENTS AND TECHNOLOGY INTEGRATION FOR IT-
BASED BUSINESS-ORIENTED FRAMEWORKS IN BUILDING AND
CONSTRUCTION

RECEIVED: June 1999
REVISED: November 1999
PUBLISHED: December 1999 at http://itcon.org/1999/4/
EDITOR: Z. Turk

Alain Zarli
Centre Scientifique et Technique du Bâtiment, Sophia Antipolis cedex, France
email: zarli@cstb.fr

Olivier Richaud
Centre Scientifique et Technique du Bâtiment, Sophia Antipolis cedex, France
email: richaud@cstb.fr

SUMMARY: Key challenges nowadays facing industry are increased competition, increased complexity and
wider market reach, and in such a context, the information infrastructure of an enterprise determines its
strengths and weaknesses. As a consequence, this infrastructure has become vital to enterprise competitiveness,
though the diversity of enterprise databases and the heterogeneity of strategic applications are still a barrier to
industrial exploitation of the opportunities offered by this infrastructure. Modern enterprise information systems
must interoperate in Inter/Intranets and with the WEB in a quite interactive, reliable and secure way, and have
to be flexible enough in order to quickly adapt to today’s fast moving business environment. This paper first
gives a synthesised investigation of the requirements for a standardised open infrastructure, relying on now
available distributed objects systems, and integrating in a flexible way the enterprise business model through the
emerging concept of Business Objects (BOs), that allows systems designers to put the stress on the business they
model and no more the data they exploit. It then focuses on a specific part of the work undertaken in the context
of the Esprit project, relying on the OMG Business Object Component Architecture (BOCA) proposed by the
BODTF. This was finally not accepted by the OMG board. Nevertheless, at the time we started our work, this
proposition was the only one meeting requirements for distributed business objects, and especially the
Component Description Language (CDL) and its concepts: a short presentation is given of a CDL compiler that
produces IDL, according to the BODTF recommendations for CORBA-based implementations, and Java code,
on the basis of a framework we developed. The originality of this approach resides in the fact that it takes into
account most of the needs when developing BOs and gives an automated implementation whenever possible.
Hence, we automated the generation of factories, event typed dispatching, and relationship handling. This
approach lets the BO developers concentrate on the business and relies on improved solution backed by design
patterns. This research is regarded as a solid foundation for designers to set up information systems that are a
better fit to business user requirements, and expected to be a major step towards the forecast delivery of WEB-
oriented software components for the Building Construction and other sectors as well.

KEYWORDS: distributed client/server architectures, communication middleware, business objects, CORBA,
CDL, open and standardised industrial business objects frameworks.

1. INTRODUCTION AND CONTEXT

Corporations are today becoming largely distributed, and deeply founded on networking technology allowing to
share and access information in different locations. Meanwhile, computer-based information systems have
become the spinal chord of modern enterprises, and new appropriate information tools satisfying fast reactive
business requirements and offering a strategic corporate advantage are occurring. However, the so-called Virtual
Enterprise (VE), which binds A fragmented and geographically spread set of partners collaborating together,
today still needs the elaboration of new powerful frameworks to support business models, concurrent
enterprising, access to large corporate data sources and multimedia information management, within Intranets,
Extranets and even the Internet. The vital information for the future business of companies must be easily

ITcon Vol. 4 (1999), Zarli and Richaud, pg. 54

accessed and manipulated in a safe and comprehensive way by multiple actor-oriented applications, thereby
satisfying the need for improved customer service, on-time delivery, quality management and project co-
ordination.

After an identification of the current major needs and requirements for computer-based support of business
processes with a focus on the Building and Construction (B&C) sector, this paper emphasises on the possible use
and integration of some new advanced standard based technology for the design and development of
standardised, flexible, and upgradable information systems, embodying networking and object-oriented (OO)
distributed systems technology that are today recognised as the foundations for concurrent engineering in all
sectors, including the construction industry.

Despite the fact that advanced computer technology, including Client/Server and distributed-object computing,
and Internet/WEB technology, provides reliable and relevant mechanisms and tools for Product Data
Management in the large, companies still deal with intricate and non flexible corporate information systems.
Indeed, Information Technologies (IT) imply an increasingly complexity in software architecture, development
and use. To mask this complexity, we promote the concept of Business Objects (BO), which are related to
software components encapsulating business rules and aiming at providing secure sophisticated access to diverse
electronic content and software applications. BOs are defined as components of the information system
representing the enterprise business model, and are to be promising enablers to build information systems
meeting end users and customers requirements, thus revealing critical to the success of the enterprise. Of course,
those BOs are supposed to rely on the so-called N-tier architectures based on transactional distributed objects
systems as the CORBA (Mowbray and Zahavi, 1996, Siegel, 1996, Orfali et al, 1996) architecture supported by
the Object Management Group OMG (http://www.omg.org), leading to some high level glue between clients and
enterprise data.

Thus, component-based development is the next step in the evolution of object systems, and a major
improvement: uniting all the components needed to run the entire IT system will enable to reach with low fixed
costs new categories within the market, making enterprise-level functionality available to the broadest universe
of users. An integration of such concepts have been specified in the context of the WONDA project. WONDA
delivered the specification of an open framework, based on a scalable tier-less component-oriented architecture
and relying on standards, leading to a comprehensive solution for future enterprise information systems,
electronic commerce, and electronic publishing. The combination of new concepts such as BOs and technologies
based on standards (either de jure ones like official norms, or de facto ones in their large industrial use but still
leading to openness), is supposed to open the door for substantially enhanced integration of value-added
networks, high level application development, and distributed object middleware. This combination will
radically simplify and reduce time for the deployment and management of fashionable distributed applications
providing corporations with a competitive advantage, especially on the Internet market.

This paper describes enabling technologies and key components, specified within the WONDA project, that
constitute a new-fashioned way of designing and deploying secure and open BO-oriented framework. It is
structured as follows: it first tries to give an overview of current industrial trends of the Virtual Enterprise, that is
a consequence of a world-wide increased competition and mutation. Technologies issues are then investigated,
showing that there is a technology and market gap, especially with respect to secure and improved information
systems for the SMEs (Small and Medium sized Enterprises). We then introduce and detail the BOs and
components concept, as an enabling technology of industrial importance with respect to user needs and practice.
A focus is placed on componentware state-of-the-art, definitions and standardisation tendencies for BOs,
integration of BOs in a 3-Tiered architecture, and emerging implemented models as potential candidates for a
BO framework. The last part before the conclusion focuses on the presentation of a CDL compiler automatically
producing IDL specifications and Java code as well, as specified in WONDA, thus facilitating the elaboration of
a BO-based information system for distributed companies.

2. REQUIREMENTS AND TECHNOLOGY GAP

2.1 Virtual Enterprises

Facing an increasing complexity of product development along with an intensifying market competition, the
Virtual Enterprise (VE) (Hardwick et al, 1996, Hardwick et al, 1997) appears nowadays as a necessity within

ITcon Vol. 4 (1999), Zarli and Richaud, pg. 55

nearly all the industrial fields, when even large enterprises are no more be able to design and produce all the
different parts of a product, due to time constraints and the lack of some widely required specific expertise inside
the enterprise. The necessity for VEs can be illustrated by the results of increased competition, change and
complexity:

• Best of Breed: Firms have to provide Best of Breed solutions which means that they now have to
concentrate on their own core competences and outsource for the right quality
components/services for the right project. Effective outsourcing can necessitate partnering with
suppliers within a VE.

• Time to Market: The race in time-to-market necessitates shorter development times which is
enabled by re-use of out-sourced components. Again VEs are vital.

• Shorter Product Cycles: Increased change and competition necessitate increased agility which
can only be achieved by a flexible organisation. Such an organisation concentrates on its core
competence and re-invents its offerings by re-configuring its VE per project.

Though often considered as a traditional industry, the construction industry is quite a good example of such a
situation. Like many other engineering sectors, the end product of construction is a value-added arrangement of
standard component parts, designed and constructed by non co-located teams of separate firms who come
together for a specific project. The building must be designed for functionality, safety, longevity, and aesthetics.
Designers consult regulatory, best practice, pricing, aesthetics and proprietary product information, and design
services. The main difference with other engineered products is that a building is most of the time a unique
prototype. The design team comprises up to 7 disciplines: property developers, project managers, civil engineers,
architects, surveyors, building services engineers, and contractors. All these factors, among others, participate to
the fact there is a crucial demand in construction industry for solutions in the VE enabling to manage software
incompatible applications running on heterogeneous platforms and systems, data exchange and interoperability
mechanisms between applications managing different types of information with different levels of performance
and functionality, together with powerful means of communication between most of the time distant
applications. This would lead to more agile manufacturing in an industry characterised especially by a large
number of SMEs, with a large group of very small businesses.

2.2 Technology issues

Simply considering the product information modelling and exchange area, the complexity and large scope of the
problem has involved numerous industrial actors in establishing new standards for improved communication
between applications used by different project partners, in order to get better productivity. This has lead to boot
major changes in the last few years in industrial enterprises, especially those devoted to the construction of large-
scale engineered products, for example in aerospace, shipbuilding and automotive industrial areas. A typical
example is STEP (Björk, 1996, Fowler, 1995, ISO, 1995), a nowadays well-known standard for real world
product information modelling and interpretation, data exchange and actor co-operation. STEP (STandard for the
Exchange of Product data) is an International Standard for the representation and exchange of product data,
developed in ISO TC 184/SC 4 (Industrial data and global manufacturing programming languages). It allows the
expression in a uniform and complete way of the whole information required for a product during its life-cycle
through the EXPRESS language, together with means for exchanging data physical files through STEP Physical
Files and sharing product databases through data and application independent mechanisms (SDAI: Standard Data
Access Interface). Another example in the specific construction domain is the Industry Foundation Classes (IFC)
(IAI, 1999), a universal model to be a basis for collaborative work in the building industry and consequently to
improve communication, productivity, delivery time, cost, and quality throughout the design, construction,
operation and maintenance life cycle of buildings. As a leading industry driven initiative in the Architecture,
Engineering in Construction (AEC) sector, the International Alliance for Interoperability (IAI), which is a non-
profit alliance of the building industry including: architects and engineers, building clients, software vendors,
and so on, is pushing the IFC as a de facto standard in Building industry in a very near future.

Thus, the VEs of tomorrow are characterised by decentralisation and numerous location of actors to be
networked, project - rather than enterprise, department or even legacy data - centred activities, tighter partnering
and connection in Intranet and with suppliers, customers and banks, and complex interdependencies like
outsourcing, logistics, cash flow, etc. In order to both simplify and improve co-ordination and relationships
between activities, there is an inquiry for software product components that are seamlessly interoperable across

ITcon Vol. 4 (1999), Zarli and Richaud, pg. 56

many boundaries, and for a framework managing the interoperation of these components across and within
different application domains. The enterprise information systems are now focused on arming all the VE actors
with the whole information needed to assess the above factors, leading to new requirements for those enterprise
information systems, which are:

• Seamless access to any enterprise-wide information source, on the base of end-user oriented views
on the physical data sources. Such an access must be totally transparent and independent of the
server, as today, a VE is mostly composed of a set of pre-existing databases supporting different
models and architectures: those databases have been inherited over the past years and reflect the
internal changes that occurred in the enterprise, and they are heterogeneous in the sense that they
operate in different environments and support unrelated data models such as relational or object-
oriented models, data definition and data manipulation facilities.

• Communication and interoperability which are supported through mechanisms like messages
passing, data shipping, etc., have been brought at the extreme, as clients and servers in these new
VE frameworks are far from being homogeneous and compatible. This means that any new
information and/or application can be directly deployed across the VE boundaries. Furthermore,
granularity for interoperability must be no more at level of applications , but at level of the
application objects themselves, allowing better leveraging of the whole enterprise information
systems.

• Flexibility of the infrastructure to accommodate any particular business logic, including dynamic
building and adaptation to the business environment. Considering one step ahead, business rules
and information knowledge can be the grounds of more value-added high level features like
decision-makers facility, data mining, rule-based capabilities and managing functions, on the basis
of advanced methods or reasoning applied on data.

• Component-based development: components must offer the opportunity to be used individually to
meet specific application requirements, and to be assembled as mission-critical business
components at demand, in the context of a distributed architecture and in order to provide a full
integrated framework for business solutions.

• Openness, dealing with information modelled through well-known and standardised formats, as
well as the capability to seamlessly integrate other components or libraries potentially built on
other technology in the global enterprise information framework.

• Scalability, with full functionality and performance regardless the number of users, processes,
transactions and data access.

• Security, both in terms of information access and circulation - identification, authentication, access
control and message encryption - and information integrity through transactional behaviour of the
system, and non repudiation.

2.3 The technology gap

With respect to the business and technological issues as previously raised, and especially considering the
construction sector where the drive towards VEs is patently characterised by partners who are smaller, more
numerous, changeable, distributed, and with heterogeneous data and applications, current technology solutions
have one or more of the following characteristics:

• Homogeneity: solutions are fixed and not open, with a lack of support for legacy, as well as new,
upcoming systems in terms of hardware, software, databases, and networks.

• High Entry Level: solutions are often too much expensive to buy for SMEs. There have to be
more entry levels, e.g. from cheap personal to costly enterprise editions.

• Lack of Scalability: limited growth path in terms of hardware and software.

• Application Centric: need to organise the enterprise around the application.

ITcon Vol. 4 (1999), Zarli and Richaud, pg. 57

• Fixed Infrastructure: need for leased lines between partners, restricting location independence
and requiring long term relationships.

• Lack of Support for Business Processes: limited security and transactional support.

To enable VEs by providing the ability to transact business processes seamlessly and to capture, access and
assess the state of the business/project., industry needs a combination of:

• Low Entry Level,

• Scalability,

• Open Infrastructure & Location independent access,

• Enterprise Information (i.e. seamless capturing of the state of business from distributed legacy
data),

• Support for Business Processes,

• Security and Transactional Support.

As attempting to provide an open, distributed, and secure framework for electronic publishing and commerce
and BOs supporting brokerage and construction, the WONDA project aims to satisfy these needs.

3. THE WONDA PROJECT OBJECTIVES

The information infrastructure is recognised as vital to Europe’s competitiveness. Yet the diversity of enterprise
databases, applications and components is a barrier to industries exploitation of the opportunities offered by this
infrastructure. It is particularly difficult for industry’s diverse enterprise databases to inter-operate with the WEB
with full interactivity, reliability and security, and this is a barrier to the take-up of Enterprise Information
Systems (EIS) and e-commerce.

The main aim of WONDA has been to specify an open and secure framework for BOs and electronic publishing
and commerce. In this context, BOs are software components which encapsulate business rules and procedures
and which can run anywhere on the network. They aim at providing customers with secure and sophisticated
access to diverse electronic content and software components. BOs are defined as components in the information
system representing the enterprise model and promise to be the building blocks of information systems meeting
end users requirements critical to the success of the enterprise.

With respect to the global objectives of WONDA, the following technical characteristics to meet the needs of
VEs have been investigated:

Low Entry
Level

Scalability Security &
Transactional
support

Open
Infrastructure

Support for
Business
Processes

Enterprise

Information

Business
Objects

* * *

Distribution
Middleware

* * *

WEB
Infrastructure

* * *

Modular
Security

* * *

Database
Federation

* *

Standards * *

ITcon Vol. 4 (1999), Zarli and Richaud, pg. 58

Targeting openness has been one of the main WONDA’s differentiating features especially in terms of:

• extendability (both functional and schema oriented),

• standards (which in turn enable database, platform and applications independence),

• scalability (both architectural and considering performance).

Extensibility can be enabled by schema federation and configurability. Standards can be aligned to World-Wide-
Web Consortium (http://www.w3.org) and OMG. Scalability can be enabled by an open, modular and
configurable framework, which can be viewed as the architectural hub of WONDA. It is called the WebMapper
and is an enabler for BOs, electronic publishing and security solutions. These features can be achieved through a
symbiosis of:

• federated database technology,

• generic mapping technology between the data from the database federation to the Inter/Intranet
environments,

• security components,

• domain specific environments offering the WEB-interface tailored to the end-user requirements
and the domain business logic.

The main components of the infrastructure designed in the WONDA project are depicted in the section 4.5.6 of
this paper.

4. BUSINESS OBJECTS: CONCEPTS AND INTEGRATION IN FLEXIBLE
ENTERPRISE INFORMATION SYSTEMS

4.1 Introduction and technology state-of-the-art

Due to the proliferation of the Internet and its standards (HTML, VRML, XML, etc.), the emergence of
specifications for distributed object computing and architectures like CORBA from the OMG, or the Microsoft
OLE/DCOM model, and large efforts around these middleware technologies like JAVA/RMI and JavaBeans,
Active X controls or server-side components, etc., large corporations are on the way to move towards new
object-based Inter/Intranet distributed computing architecture since few years, in order to build the next
generation of enterprise-wide applications.

But these new architectures will involve various languages, systems and protocols, sometimes of low-level,
while the end users expect to deal with high level application objects. Previous developments have been done in
the past with respect to the issues and requirements identified herein above. With respect to linking and
accessing information as contained in large enterprise databases and world-wide data banks and the WEB, one
can mention several attempts like for instance:

• Connection of the WEB with relational or object-oriented DBS to generate and manage HTML pages, in
particular dangling links (e.g. Oracle WebServer), but those developments have been most of the times
customised for specific data stores.

• Enterprise object frameworks coupling multiple relational DBS and generating HTML pages with database
information. An interesting example of such a framework are the WebObjects (Information about
WebObjects can be found at the following URL: http://www.apple.com/webobjects), but they federate
relational databases only, and don’t provide language independence nor security.

Regarding components issues, the WEB has led to lot of developments too. For instance, the WebBots
(Information about WebBots can be found at the following URLs: http://www.internetbay.com/bots.htm,
http://www.netjammer.com/TRAINING/HPD/engines.htm, http://websupport.net/fpguide/fp97webbots.html)
components are dynamic objects evaluated when saving or browsing WEB pages: they allow the query of WEB
servers, the updating of WEB pages each time contents change, the inclusion of other pages or images on a page,
and adds full text-searching capability. They also grant the insertion of advanced components through the use of
scripts (VB script, Javascript) or Java applets. WebBots embody valuable features, but they only deal with client

ITcon Vol. 4 (1999), Zarli and Richaud, pg. 59

side interfaces, and make transactions with WEB servers, not enterprise servers. Another open solution are the
JavaBeans (Orfali et al, 1998), as they rely on the Java language and platform, supposed to be portable on any
hardware and operating systems, but even JavaBeans focus on graphical components and environments for end-
user interfaces.

Tackling the more general concept of intelligent agents, most of the today agent-based systems are custom
architecture or proprietary frameworks with internal models, legacy script languages, connection to legacy
databases, leading to less interoperability with other applications, poor integration in large enterprise information
systems, and above all, less ability to extend - e.g. by direct integration of other pre-built components not based
on the same agent network - and to follow the market evolution, even if some of them are business-oriented.
Thus, despite notable advances, software technology still looks for improvements with respect to flexible and
reusable components, and for reactive and adaptable corporate information systems. Actually, the enterprise
information system is oftentimes a complex and inflexible mix of old fashioned solutions. Technological state-
of-the-art does not reveal today systems or frameworks providing at the same time the following features:

• uniform access to the federation of all enterprise data;

• language neutrality;

• clear separation of data content and appearance;

• secure access to enterprise data;

• business oriented access to information;

• all models and components based on world-wide recognised and adopted standards.

A new solution coming to help with these issues expanded from OMG with Business Objects and the Business
Application Architecture that consists of a specification of a standard framework for business applications.
Though the initial OMG standardisation efforts have not been successful in terms of the emergence of a new
standard, the main concepts of this work are still valid and fundamental from our point of view. The intention
was to promote a standard framework for business application residing on top of CORBA. BOs are the «glue»
between client applications and enterprise data contained in large data stores. They are expected to facilitate
communication, design and modelling between implementers and business domain experts through the sharing
of the same concepts. They have to model the real world so that people focus on main characteristics and
relationships among BOs.

BOs are means to give high-level views on enterprise product data, related to various representations both
throughout the lifecycle of products and for the various actors involved in the design/development/use of
products. They can be associated to software components, and therefore can be assembled into frameworks to
support high-level industrial products design and developments. When considering distributed architectures,
they are the ultimate solution for the interoperation of business components in heterogeneous user views on
product and computer implementation of the product data. Thus, while product data models correspond to a
conceptual structural approach of data, the BOs conform to a more functional and process view on information,
though relying of course on data structures. BOs are concerned with the definition of methods and operations
available for objects, and possible queries on these objects. They equally have to manage information about
objects, identifying constraints and relationships according to some process or business context. They can be
related to ways of retrieving information like object browsers, query languages, keywords-based technologies,
etc..

4.2 Definition and standard

A BO is an abstract representation of a concrete and active thing in a specific business domain in the real world,
and uniquely identified by its name in this business domain. A possible definition is given below as stated by the
OMG. «A business object is defined as a representation of a thing active in the business domain, including at
least its business name and definition, attributes, behaviour, relationships, rules, policies and constraint. A
business object may represent, for example, a person, place, event, business process, or concept. Typical
examples of BOs are: employee, product, invoice and payment.»

ITcon Vol. 4 (1999), Zarli and Richaud, pg. 60

Thus, a BO may act as a participant in a business process and try to mimic the way things are. Conceptually,
BOs add value over other representation because they give a higher level view and package the main concepts of
the business model they represent. Consequently, they ease the realisation of business applications while
masking the complexity of the underlying communication and implementation means. Software components of
the information system implementing those BOs manage the enterprise business model by encapsulating
business rules, thus enabling a greater focus on business logic and application development.

As mentioned in X3H7 and RM-ODP (Kilov and Simmonds, 1997), a business rule consists of a set of things
that are meaningful for the depicted business. As stated in X3H7: "A business rule is a proposition about
business things, relationships between them and operations applied to them, from the business enterprise
viewpoint.»

The major problem is certainly today the absence of standards for BOs, and thus no consensus with respect to the
interfaces to provide for BOs. Standards like STEP or the IFC normalise product data entities at an appropriate
level for data exchange and sharing, but not for interoperable product components, nor they specify a framework
supporting component interoperability. In that context, current efforts, as undertaken in the OMG or by Sun with
the EJB: (section 4.4.1) are of primary importance, both for the standardisation of Common BOs (CBOs) and
domain specific BOs as well. These standards have to focus on the interfaces of the Application Programming
Interface (API) which define the communication layer, whilst the communication mechanisms ensuring
transactional behaviour will be implemented by a tier middleware. The choice for OMG is naturally CORBA,
with its services (OMG, 1995a).

In response to an initial Request For Proposal (RFP) issued by the OMG for Common Business Objects and
Business Object Facility (OMG Document CF/96-01-04), the Combined Business Object Facility Proposal
introduced a general architecture for providing a coherent and standardised solution for BOs. Elements that are
part of this solution are:

• The Business Object Architecture (BOA), the underlying layer which would enable BOs. It
integrates a meta-model which describes constructs and types as well.

• The Component Description Language (CDL), an advanced language to describe the BOs
interfaces and specifications semantics following an OO manner, and dedicated to writing down
BOs in a textual form. CDL helps to standardise BOs, thus providing an unambiguous way of
specifying properties, behaviours, business rules and so on.

• The mapping from CDL to IDL (Interface Definition Language) promoted by the OMG would
encompass the necessity of interoperability. A given specification using CDL would produce IDL
interfaces which would take into account the various specified BOs and the underlying framework.

As a consequence, BOs expressed through CDL are CORBA objects. Thus, the BOA is built firmly upon the
Object Management Architecture (OMA), because all BOs must be network accessible through an Object
Request Broker (ORB). A CORBA reference will uniquely refer to a BO. Nevertheless, CDL simply express the
BOs’ semantics and interfaces. In order to represent an entity or a process in a specific business domain, and on
the base of an underlying object technology, a BO is a set of:

• Attributes, that stand for associated data elements which provide information about the BO They
are transient or persistent data the BO holds and which compose its internal state. Existence of
attributes depends on the BO that refers to.

• Operations, that is its behaviour.

• Constraints, that is not only integrity constraints, but also triggered business rules it must ensure
in order to fulfil the requirement expressed by the end user.

• Relationships , that is the set of objects it is in relation with. Relationships connect types, and help
to make components interact. Without any relationships, components would be isolated islands of
knowledge. They allow bi-directional traversal between instances of different types. Moreover,
they permit loose coupling of co-operative distributed components and a way to easy assembly
components originated from different vendors. Several kinds of relations may be supported by a
BOA implementation, because each type of relationships covers some specific semantics.

ITcon Vol. 4 (1999), Zarli and Richaud, pg. 61

• Events that externalise state changes when operations are invoked on BOs. An event model is
intended to avoid tight coupling while integrating several BOs in a specific system. By doing so,
changes are easier to manage.

• Business rules that focus on the semantics of the component in a specific domain. An appliance
rule is plugged into a container on which the rule applies. The BO’s behaviour is partly defined by
this sort of sub-component. For example, invariant appliances define rules that must always hold
for the component.

• States that symbolise the mutually exclusive conditions a component may be in. Moreover, some
states may be reached only when pre-defined conditions yield.

4.3 Integration of BOs in Three-Tiered infrastructures

In order to take plentiful advantages of them, BOs are to be considered in the context of a full distributed
architecture based on middleware technology i.e. on a software bus in charge of communication between objects,
like an ORB or a DCOM bus. Indeed, BOs must support distribution to be easily integrated in client/server
architectures, and they promote the nowadays well-known 3-tier architecture. They aim at being distributed on
remote sites for specific use and event, while at the same time being accessible in a seamless and transparent
way. They constitute the fundamental bricks of the «business-centred» middle tier of today emerging
architectures.

Middleware (access and communication layer)

Database

(Persistent Data
storage)

Intranet/WEB

Internet/WEB

HTTP
server

Business Object Model

...

BOs Kernel:
•components,
•types & sub-types
Integrity:
•Constraints (related to objects)
•Management rules (related to environments)
Interfaces:
•Methods and actions (publication)
•Events control

Figure 1: The general 3-Tier architecture.

For each main tier of this infrastructure, the following comments can be made:

• Information servers (DBMS) level: this is the data storage and server level. Access to basic data
within DBMS can be realised through gateways - native gateway for direct connection to legacy
systems, co-operative gateway using the network interface of the accessed database, or procedural
gateways for access to the database through inside procedures or TP monitors - or through a
middleware layer in a distributed environment (CORBA/ORB, DCOM, etc.).

• Client applications level: this level is mainly concerned with Graphical User Interface (GUI).
WEB de facto standards (HTML, etc.) offer standardised interfaces to the client, this dealing with
Intranet as well as Extranet/Internet users. Depending on the fact that client computers are simple
PC or NC computer (Network Centric computer), or on the other side powerful workstations,
specific treatments can be localised on the client side.

• Middleware level: this communication level has to manage generic services as information
search, object or server identification, communication between objects through messages transport,

ITcon Vol. 4 (1999), Zarli and Richaud, pg. 62

marshalling and unmarshalling, etc., at level of the distribution layer. Eventually, global rules
which are not related to business objects, but rather to their inter-working in the context of the full
enterprise model, can be handled at that level too, like rules defining actions when a given
program execution has failed, actions to undertake in some specific context defined through global
variables, transaction rules, etc.

• Central tier (business) level: it contains the embedded business logic, with one or more business
objects model(s). From a client point of view, this business model expresses the business domain
and provides the end-user with some unified view on data hiding the underlying data sources.
From the architecture viewpoint, it implements the business rules and processes, dealing with
complex operations on the business model such as object mappings or links, views filtering, model
conversion/transformation, fine-grained security issues, possible client interface and so on.

A flexible and evolving architecture must integrate models and rules so as to control treatments on engineering
knowledge, both at level of managing and massaging the information and at offering various views and
interfaces to client applications and end-users. This role is indeed devoted to the central tier component, acting as
a specific applications server for fundamental services encapsulating objects and views with their procedures and
rules in business objects as a modelling of the business enterprise.

4.4 Existing implemented model for BOs

The emerging technologies presented hereinafter can be considered as implemented solutions of a model and
application architecture for BOs. Nevertheless, it is worth noticing that these developments have been
undertaken regardless specific standardisation efforts of the OMG with respect to Business Objects Facility and
Business Application Architecture. They are proprietary SUN (Enterprise JavaBeans - EJB) and Microsoft
(Active X components) solutions to deal with business oriented framework and components. As based on Java,
the Enterprise Java Beans, however, can be considered, at least at the moment, as the most open framework.
Moreover, BOs are supposed to rely on distributing computing: the most currently achieved specification is the
OMG CORBA (OMG, 1995b), but even other distributed-object systems, like OLE/DCOM for instance, are
candidates to support BOs. In any case, the integration of an ORB-like backbone is a requirement for the real
deployment of a BOs application infrastructure, allowing any application on the network to deal with BOs.

4.4.1 Enterprise JavaBeans

Java, including the language itself, the first basic Java libraries and the first Java oriented Integrated
Development Environments (IDEs), initially provided only the opportunity to client applications for dynamic
WEB user interfaces, with sometimes some ready-to-use simple client-side JavaBeans components. The Java
Virtual Machines (JVMs), allowing to execute Java applets, were not designed to support enterprise applications
servers, especially because of a lack for essential support of transactions. The on-going definition of the EJP
(Enterprise Java Platform) is making the situation evolved.

The EJP can be viewed as a virtual application server specification, defining Java-based portable application
servers on top of any OS (Unix-like, 9x/NT, proprietary mainframe OS), thus allowing to build enterprise
applications servers independently of the underlying OS layer. The objective of EJP is to standardise the services
and API required for object oriented distributed applications based on Java, i.e. transactional services, objects
lifecycle, synchronous or asynchronous objects interoperability, security aspects, and so on. In a similar way
JavaBeans describe an API for reusable graphical object components, which does not meet large enterprise
systems requirements, EJP includes the Enterprise Java Beans (EJB) (Sun Microsystems, 1998), (Orfali et al,
1998), specified by Sun, in order to provide a component architecture for development and deployment of
distributed, enterprise wide objects. Applications written using EJB should be deployed on all Java-enabled
server systems.

The EJB model aims at offering distributed scalable, transactional and reusable components, and any Java
enabled platform may run these components, provided they use a corresponding EJB component enabler. EJBs
extend the JavaBeans component model to the server side, and aim at accommodating components for large
transaction-oriented applications, tying legacy data to Intra/Internet clients, under the control of the business
logic coded in the EJB on a middle tier. Thus, an EJB provider is an expert in a business domain and develops

ITcon Vol. 4 (1999), Zarli and Richaud, pg. 63

specialised components. Typically, he will distribute his product which implements specific and standardised
tasks related to a well-known business domain.

PC with
JAVA applications

PC with
JAVA compliant WEB browser

(or with SUN Activator)

NC

EJP/EJB server (JAVA application server)

Mainframe/DBMS
JAVA based

applications server

EJB Runtime services
(set of middleware APIs)

EJB container
(Runtime environment)

JAVA/CORBA
gateway

CORBA ORB

RMI RMI
IIOP

DB server

DBMS

DB server

DBMSDB server

DBMS

Client side EJB interfaces

EJB Container classes

EJB provider
classes

Container
Factory
(EJB) Reference

Business logic
Environment
Deployment descriptor

Transaction 2-phase commit protocol
Persistence
Caching

Figure 2: General architecture for an EJB platform.

It is worth noticing that, in its third release of CORBA (currently 3.0), due by the end of 1999, the OMG plans to
incorporate the Java Beans model in order to deliver CORBA Beans. This will both enable rapid development of
CORBA objects and integration using graphical tools. Moreover, CORBA objects may be easily and seamlessly
combined with Microsoft’s Active X components. With the emergence of EJB, a plentiful market for ready-to-
use JavaBeans components for client and servers can now be deeply envisaged. In a very synthetic way, the
major positive points for EJBs are:

• They suggest a unified model for distributed components.

• They encompass life cycle and naming.

• They rely on JTS (Java Transaction Service), which is a mapping of the Object Transaction
Service (OTS) to Java.

• They shield developers from transactions management

• They form a specification for Java components and for CORBA components as well.

On the other hand, the current main shortcomings are the following:

• Current lack of proven implementations of EJB Servers.

• CORBA Beans are only planned at the moment.

• The model is not published by the OMG, but by Sun, thus cannot be considered so far as a
standard specification.

• Transactions support is not fully defined and specified in the EJB draft specification (1.0).

• Naming and life cycle do not rely on corresponding OMG services.

ITcon Vol. 4 (1999), Zarli and Richaud, pg. 64

4.4.2 Active X components

Besides de facto standards as those promulgated by the OMG or specific efforts of SUN/Javasoft for promoting
Java and RMI, Microsoft (COM Home, 1998) is developing more proprietary solutions in the field of distributed
architectures. Solutions as offered by Microsoft have similar characteristics than other distributed architectures,
but initially don’t provide platform independence. However, this is less and less the case, as a lot of efforts for
porting Microsoft developments on other platform/OS are underway: especially the COM/DCOM model aims at
running on multiple platforms, including its original Windows system as well as various implementations of
Unix-based environments.

Windows DNA is a unified approach for building distributed, scalable, multi-tier applications that can be
delivered over any network. Windows DNA is the first application architecture to integrate the Internet,
client/server, and PC models of computing for a new class of distributed computing solutions.

OLE (Object Linking and Embedding) is a set of libraries and applications for storage, data exchange and
integration of elements within compound documents. COM (the Component Object Model) is the Microsoft
component software model and underlying software architecture for applications to be built from binary software
components, leading to higher-level software services like those provided by OLE for various aspects of
commonly needed system functionality, including compound documents, custom controls, data transfer, and so
on. The COM specification contains the standard APIs supported by the COM library, the standard suites of
interfaces supported or used by software written in a COM environment, along with the network protocols used
by DCOM in support of distributed computing.

DCOM (Distributed Component Object Model) complements COM and OLE as being a model allowing to get
benefits from a component-based approach across a broader scale of multi-user applications in a distributed
component architecture. It is mainly a protocol enabling software components to communicate directly with each
other across networks, including the Internet and intranets, the various objects involved being associated to
different processes on remote machines. DCOM introduces to new interfaces and APIs for distributed objects.
This specification is still evolving, and thus subject to change.

Eventually, what is called Active X is an extension of OLE/COM for the specific context of the WEB and the
Internet. It is the Microsoft infrastructure for WEB-centric communication between clients and servers of
distributed objects, and the integration of objects within WEB pages for Internet and Intranet applications.
Indeed, Active X is a set of integration technologies for distributed client/server applications, dealing both with
client and server sides and including:

• The Active X controls, which are pre-fabricated components packaged by programmers, and
which can be manipulated at design time by GUI-based development tools. ActiveX controls are
among the many types of components that use COM technologies to provide interoperability with
other types of COM components and services. At Internet/Intranet client side, they can be
conceptually compared to JavaBeans.

• The Active X documents, which can be considered as an extension of OLE documents for the
WEB, and which are composite documents (i.e. with non-HTML parts as well) containing Active
X objects to be possibly manipulated with a scripting language, like JavaScript, Perl, and ECMA
Script.

• Active X components on the server side for multi-tier client/server applications: these components
and the Microsoft WEB server Internet Information Server (IIS) together offer an architecture
(Active X Server Framework) which allows to use Active X components, documents and scripts
on the WEB server in order to build applications further accessed by Internet Explorer. Especially,
the Active Server Page(ASP) technology on the server side enables to combine HTML with
various scripts to build presentation interfaces, manage the business logic and call COM-based
components.

• Microsoft Transaction Server (MTS), which can be viewed as the Microsoft Runtime execution
environment for server components, extending the COM architecture with transaction semantics,
providing concurrency, multi-threading, queuing, atomicity, etc., and finally making easier to

ITcon Vol. 4 (1999), Zarli and Richaud, pg. 65

encapsulate business logic in a middle-tier, as MTS can be the basis of a framework for linking
this middle-tier with enterprise data stores.

PC with
WEB browser

(Microsoft Internet Explorer)

Active X Server
framework
(Windows NT server/IIS)

Connection to
Mainframe/DBMS

Asynchronous
MSMQ

communication

MTS Runtime services
(COM objects)

COM/CORBA
bridge

CORBA ORB

DB server

DBMS

DB server

DBMSDB server

DBMS

Transaction, concurrency,
multi-threading, queuing service, etc.

COM Objects
Active X (server) components

*

,

*
*

COM Objects
Active X Controls
Java applets
Scripting languages

COM/
DCOM

HTTP-based
download

(DCE-RPC) DCOM
communication

WEB server (IIS)

Model
Runtime environment

Java
applets

JVM (Active X)
Scripting languages
ASPs

Active X document

Figure 3: General framework for COM/Active X components.

All these features make the Active X technology a potential answer as a component-based framework for
Internet and Intranet business applications, at least from an end user point of view. Of course, CORBA can be
identified as a more general specification than DCOM, and in a similar way, the EJBs can be viewed as a more
general transaction-oriented platform specification than Active X. Anyway, Active X offers the advantage of
being practically well integrated and performing, and is available today, while EJBs implementations are still
emerging, and interoperability between EJBs coming from various vendors still have to be proved. Moreover, it
is the intention of Microsoft to keep on integrating the various aspects of COM and DCOM, and its services
inside the Operating System, leading to a future integration of the COM objects model and the Internet-oriented
distribution model in order to unify the access to any kind of document anywhere that is, for local files as well as
remote WEB documents. On the other hand, issues related to standardisation aspects for components and
executable specification languages for components are not grasped in the DCOM/Active X universe. Moreover,
and this is also the case for EJBs, both sides are seen as an easier way to create distributed transaction-based
applications, but both are still in the early stages of development.

4.5 BOs in the WONDA specification

4.5.1 Introduction

As already stated, BOs are distributed (CORBA) objects. But whereas CORBA provides distributed objects with
a rich framework, a more elaborated framework to support BOs is required, to manage the business logic and
processes as well. In order to effectively, unambiguously and rapidly define BOs, the WONDA specification
especially built upon CDL for a textual computer-oriented definition of BOs. From that CDL specification, both
IDL specifications and Java code are generated.

ITcon Vol. 4 (1999), Zarli and Richaud, pg. 66

The choice of Java and CORBA is to be explained through their attractive features. They offer a quite interesting
complementarity. Java provides portability of code and platform independence. With CORBA, you add location
transparency and an enterprise level object model that allows your application to inter-operate with a multitude
of existing languages and integrated or legacy systems. From a technological point of view, CORBA is a general
infrastructure specification for applications interoperability, based on OO technology, and allowing
heterogeneous clients and servers connected by a network to live as individual entities able to access to the
information they need in a seamless transparent way. It includes a middleware that lets technical objects and
business components find each other in a network environment and invoke their respective services regardless of
the underlying platforms or languages on which the applications are running. It also ensures ORB’s
interoperability through the Internet Inter-ORB Protocol (IIOP) protocol. From a business-oriented point of
view, the CORBA standard is getting more and more acceptance within a lot of industries, now appearing as a
potential solution for production of business environments. There are several reasons for this driving force
promoting CORBA: its complementary with Internet/WEB technology and its association with Java, and the
need for component-based interoperability relying on middleware technology and standard communication
mechanisms between applications, arising as true solutions to build cross-platform component-based
applications to be deployed over the WEB.

We hereafter detail concepts related to BOs together with an example, and then how they are related to a
CORBA framework.

4.5.2 Business Objects kinds and modelling

The OMG Business Object Domain Task Force (BODTF) (BODTF, 1998) identifies several types of BOs:

• Business Entities: the entity concept is closely related to the one found in Entity/Relation
modelling. Entities can unambiguously stand for a concept usually found in the business model,
and could represent a person, an item, etc..

• Business Processes: in Eeles and Sims (1998), processes are referenced as encapsulated units of
work that stand for sets of modifications to apply. Actually, a process is an activity like
purchasing, for instance, and represents a flow of work and information needed to accomplish a
business.

• Business Events: events are persistent records of changes that occur in the modelled domain at a
specific time, e.g. »Contractor achieved the building». Events can be classified by their sources of
generations and occurrences, and four major groups can be identified: user interaction events for
human activity, temporal events triggered at specific pre-defined times, error notification events to
report failures in maintaining business rules, change of state notifications when a process
terminates.

A business system domain is a set of business entities, processes and events, and to federate BOs that apply to a
particular business domain, the business system domain stands for the smallest solution that allow for
maintaining the business rules. Especially, this notion is meaningful when trying to interconnect different
businesses, by connecting business system domains using semantics adapters. To describe the BOs of a given
business domain, CDL can be used so as to write down in a textual form BOs specifications in an OO manner.
An analogy can be drawn with IDL, and CDL can be considered as a superset of IDL, dedicated to producing
BOs specifications, keeping in mind that BOs are in essence distributed objects. CDL definitely captures the
semantics expressed with BOs and enable to model attributes, operations, business rules, events and bi-
directional relationships. CDL should be compiled, according to the BODTF vision, to IDL interfaces to be
further integrated in a CORBA framework. Moreover, those interfaces are implemented according to a given
target framework as presented in the next section, and code can be automatically generated to free the developer
from low-level and repetitive tasks.

4.5.3 Business Object Framework

The objective of a Business Object Framework (BOF) in (Eeles and Sims, 1998) and (Orfali et al, 1998) is to
offer a full environment for developing and deploying BOs. Hence, a BOF must support BOs as plug-and-play
components, ensure interoperability between them and shield developers from developing complex components.
Moreover, a BOF can be implemented on top of CORBA and cope with:

ITcon Vol. 4 (1999), Zarli and Richaud, pg. 67

1) Business objects’ naming: BOs must be named in order to be retrieved and their reference
accessed through the use of such a unique name in the considered business system domain. Such a
service can be supplied by the CORBA Naming Service (OMG, 1995a).

2) Life cycle management: The BOF is responsible for managing the creation, deletion, activation
and deactivation of BOs at runtime. A BO is created and deleted once in its lifetime, so the BOF
must ensure that this rule of thumb is enforced. A BO may be activated and deactivated several
times because the BOF has to efficiently manage its resources. When a BO is activated, it must
acquire its state from persistent storage and vice versa, when deactivated, it must dump its state
into persistent storage. Concerning life cycle management, BOs could rely on the CORBA Life
Cycle service (OMG, 1995a).

3) Persistency management: Persistency addresses the need to access enterprise data (i.e. stored into
legacy systems). This must be achieved in a safe manner that frees the BOs developers from most
of the task.

4) Event notification: Clients need to be aware of changes in the BOs internal states because they
maintain, for instance, graphical views. An event service (OMG, 1998a), based on the
publish/subscribe pattern is a flexible and scalable architecture that allows clients to be
asynchronously notified of changes and to receive meaningful information. Moreover, filtering
features are added to sort out events that are meaningful.

5) Transaction management and concurrency control: Since BOs can be shared by different users
that perform actions at any time in a distributed environment, the BOF must offer a way to
serialise methods calls by handling distributed transactions. Still in the CORBA world, we can
point out OTS (OMG, 1998b) designed to respond to that issue. Distributed transactions raise the
question of whether a specified BO should be recoverable or not. Non Recoverable BOs (i.e. that
cannot roll back, sometimes called stateless BOs) must be found among business processes
whereas business entities should be recoverable since rolling back a transaction must leave the
system in the previous state.

Object Request Broker

Event
 Service

Naming
Service

Life Cycle
 Service

OTS

WONDA Framework

BO BO

Authentication
Service

Activation and
Lookup Service

Message
Queue

Generated code for
business objects integration

within the WONDA Framework

High level
messaging interface

CORBA object’s interface
of a business object

Authentication and
security service

WONDA naming and
 activation service

Figure 4: The WONDA framework for BOs.

4.5.4 From CDL to CORBA business objects

Starting from a typical development design process with a CDL textual specification, an objective then is to
automate as much as possible the work involved in creating and deploying software component-based
applications, wrapping existing systems and data for presentation as components, in order to let BO developers
concentrate on the business rules. CDL specifications can be processed in order to produce:

ITcon Vol. 4 (1999), Zarli and Richaud, pg. 68

• The corresponding IDL specification of BOs, towards some underlying framework for distributed
BOs. The CDL to IDL mapping generates IDL so that attributes, relationships, operations that
constitute entities, processes and events in CDL are directly mapped.

• Code in a target language (C++ and/or Java), still on the base of some target framework, to
compensate the loss of semantics induced by the mapping from CDL to IDL. CDL has a richer
semantics than IDL, and especially, rules and appliances that are part of CDL cannot be translated
into IDL as IDL is a pure descriptive language for interface definition. Hence, some code must be
produced to bridge the gap introduced by IDL. This is achieved through automated generation of
code written in an OO programming language: what can easily be generated is code for
maintaining bi-directional relationships, triggers that fire rules, invariant checking, and state
transitions.

It is however worth mentioning that BOs implementation can be investigated against other new emerging
models, especially the future multi-language CORBA component model, also referred to as CORBA Beans,
supposed to encompass the EJB model and aiming to tightly integrate Java, EJB, and CORBA so that
applications and objects can be used across more than EJB servers. Indeed, the CORBA model grants standard
services layer for EJB to go against, and the complementary of these two models seem to be a true potential basis
for future large-scale component-based business applications.

Side Bar: A simple CDL example:

The following entity represents a contractor related to zero or more other contractors considered as
subcontractors.

entity Contractor {
relationship subcontractors Many 0..* Contractor inverse contractor;

};

The process specified below represents the task of choosing a subcontractor among a list of possible contractors.

process HireContractor {
relationship contractor Reference 1..1 Contractor;
relationship possible_contractors Uses 1..* Contractor;

void evaluate_propositions();
};

The following process deals with constructing a new building that can be on hold, being constructed or released
to the new owner. Two signals start the two associated transition rules that make the state evolve.

process StartBuilding {
state_set achievement { ON_HOLD, BUILDING, RELEASED };

signal start_building();
signal release_building();

apply StateTransitionRule when_started {
source = achievement::ON_HOLD;
target = achievement::BUILDING;
trigger = start_building;

};

apply StateTransitionRule when_built {
source = achievement::BUILDING;
target = achievement::RELEASED;
trigger = release_building();

ITcon Vol. 4 (1999), Zarli and Richaud, pg. 69

};
};

The first step is to compile the CDL code to IDL by mapping CDL features and kinds of BOs:

• Business objects (business entities, processes and events): clearly, the only way to distinguish a
specific kind of BO is achieved through inheritance. Hence, an interface representing a BO (e.g. an
entity) must at least be a sub-type of a specific interface that stands for that kind of BO (e.g. the
topmost interface is an interface called Entity).

• Attributes: CDL attributes are mapped to a pair of operations based on attribute’s name. The BOs
designers can restrict access to an attribute by specifying that attribute as read only, or only visible
in the business system domain. This will impact the way those operations are generated.

• Relationships: CDL offers different ways of declaring relationships. Depending on the parameters
that configure the relationship in CDL, operations enabling insertion, removal, and iteration are
generated. Additionally, an interface representing an iterator well suited for iterating collection in a
distributed environment is produced by the CDL compiler.

• Operations and Signals: CDL and IDL have a very close semantics for operations. This leads to
directly map a CDL operation to an IDL one with the same name. Signals are operations that are
dedicated to triggering rules that are expressed using CDL. Nevertheless, IDL is unable to propose
a better way to signals than operations.

• Rule and appliances: CDL helps in describing invariant, action/condition rules. Whereas this
helps in describing components, IDL does not at all capture the semantics expressed in rules, so
that no IDL code is generated.

• During clauses: when specifying BOs, it is sometimes useful to restrict access to some features
when specific conditions are not reached. CDL offers that possibility by declaring anonymous or
named during clauses. IDL is clearly unable to express this notion and a mapping is done by
recursively concatenating the name of the enclosing during clauses, no concatenation being
realised in the case of an anonymous clause.

The next side bar gives some hints according to the previous explanations.

Side Bar: A simple CDL example (continued)

The Contractor entity is mapped to the following IDL interfaces. First of all, the Contractor entity is mapped to
an IDL interface with the same name that inherits from the WondaMetamodel::Entity which is the super type for
all entities. By this way, the framework is automatically aware that this BO must be considered as an entity,
especially when dealing with transaction at runtime. The bi-directional relationship labelled subcontractors is
mapped to the 3 operations that are embodied into that interface. The first one enables to obtain an iterator for
navigating the relationship from the beginning. This operation is defined only if the relationship is navigable.
The two following operations are generated if the relationship is not read only, and allow to insert and remove
BOs from the relationship. The developer does not have to implement theses methods since the framework can
produce implementation classes in a language that supports a binding to IDL.

One can notice that there is also an additional support interface. This interface represents an iterator that can be
produced by any relationship that is typed by a Contractor type. The first method returns the business that carries
the relationship to which this iterator is related. The two following methods are accessors that help to obtain (for
the first one, the second is a restriction) at most count Contractor entities. The get_by_key operation allows to
retrieve in the relationship the BO that holds a key equal to the one being passed. The copy and destroy methods
are life cycle management operations. It is obvious that the implementation of the interface can be automatically
generated by the framework so that the developer can directly use instances to traverse relationships.

typedef sequence<Contractor> ContractorSeq;
interface Contractor : WondaMetamodel::Entity {

ContractorIter get_subcontractors();
void insert_in_subcontractors(in Contractor o);

ITcon Vol. 4 (1999), Zarli and Richaud, pg. 70

void remove_from_contractors(in Contractor o);
};

interface ContractorIter {
Contractor get_origin();
boolean next_n(out ContractorSeq values, in long count);
boolean next_one(out Contractor c);
Contractor get_by_key(in WondaMetamodel::Key key);
ContractorIter copy();
void destroy();

};

The process HireContractor is generated the same way as Contractor entity, except that it has one operation
mapped to a standard IDL operation and it inherits from the interface WondaMetamodel::Process.

The process StartBuilding is very different from the two previous business entities. A nested enum is generated
for the values that can take the achievement state. For that state, since it is not read only, two methods are
generated (for setting and getting). Signals are mapped to standard operations, but with our framework no
implementation is required since we can deduce that when a signal method is called we must check the state’s
value and accomplish a state transition if needed. Nevertheless, this is only achieved by producing some
additional code in a language that support IDL mapping (C++ and Java are well-suited).

interface StartBuilding : WondaMetamodel::Process {
enum achievement_kind { ON_HOLD, BUILDING, RELEASED };
void set_achievement(in achievement_kind a);
achievement_kind get_achievement();

void start_building();
void release_buildin();

};

4.5.5 Implementation

In order to rapidly produce BOs from a CDL specification, and besides the generation of IDL interfaces, an
object implementation must be provided, which has been done in our developments in providing the generation
of a pre-implementation of our BOs, indeed directly implementing them in Java within a BOF. This CDL to Java
additional mapping endeavours both the issues of generating Java interfaces, and the real implementation of
Java-based BO skeletons. Producing interfaces addresses the notion of relying on well-known interfaces on the
client side. With respect to delivering BOs implementations, the issue had been tackled in a similar way the
OMG did for CORBA. Hence, we produce our skeletons that connect the developer’s implementations to our
BOs framework. We do not get into details of this generation, for more information, the reader should refer to
(Richaud and Zarli, 2000).

A prototype system has been built in the CIC (Computer Integrated Construction - http://cic.cstb.fr/) division at
CSTB. The CDL compiler has been developed on Windows NT 4 with Visual C++ 6.0. We also developed a
CDL model viewer that allows to visualise in a graphical manner any CDL specification and to graphically ask
IDL or Java code generation. For now on, this is the only platform on which we support developments. The
underlying Java/CORBA framework is the one supplied with the JDK 1.2. It comprises an IDL to Java compiler
and an implementation of the Naming Service.

4.5.6 Integration of BOs: the main components of the WONDA specification

As shown in Figure 5, WONDA specified a 3-Tier architecture based on a set of existing and emerging
international de jure or industrial de facto standards. Building upon standards further enables easy integration
into existing enterprise IT environments based on these standards. The three WONDA layers are identified as
follows:

• A federated database level, in order to search and access information within various heterogeneous
databases throughout a unified interface (OMG/ODMG’93, STEP/SDAI). Database system
federation and middleware, coupling in a transparent way distributed heterogeneous DBS, should
be a major key factor in a very near future. Thus, any application will be independent of the used

ITcon Vol. 4 (1999), Zarli and Richaud, pg. 71

DBS and of specific database system vendors. The figure shows those databases directly accessed
by the BOs CORBA servers, but they can be distributed over the whole system, and accessible as
CORBA servers as well.

• The WebMapper, which is a schema mapping layer enabling electronic knowledge bases to be
seamless interconnected, and thus dealing with availability and interoperability issues. This
mapper ensures the liaison between the federated database level and any Internet/Intranet
application in a model, language and application independent way. In the WONDA specification,
the WebMapper is also in charge of the management of media information, that is basically GUI
and documents, along with a distributed model (Comprehensive Object Model for the
Management Of multTImedia informatiON - COMMOTION -) and a Media Repository.

• A third level defining BOs and «plug-an-play» software components for domain specific
applications, for intuitive access to WEB information by end users using their usual applications.
A component-based approach is the key to lower cost, more reliable and flexible systems, and to
customise the user needs and different application segments, e.g. construction, banking,
mechanical SME’s, etc.. The enterprise business logic layer for construction specific application
via a BOs level was called WeBuild in WONDA.

A last specific WONDA feature is the introduction of security components for data protection and confidentiality
levels configuration, so that applications can be securely linked, thus enabling WONDA to be exploited for real
industrial and commercial applications. This is achieved through a set of components, named SILK, to be
integrated at the client side, the BOs layer, and as a firewall component with the filtering of IIOP requests.

CORBA/IIOP

COMMOTION
Mapper

COMMOTION Client

Media
Server

Independent
Corba Services

WeBuild
Business Objects

SILK
Business Objects

WONDA Client Components

Business Object CORBA Servers
& DB Middleware

WebMapper

Naming, Event,
Relationship, Transaction,

Interface Repository

db

Smart
Card

CORBA/IIOP

Firewall SILK

SILK
Enterprise

Data

Media
Repository

Security

db

db
OpenDMX

SDAI

Txn
Coord.

Session/
State Man.

Security
Coord.

Mapping Core Application Management Media Management

Figure 5: the WONDA global architecture.

In WONDA, a special focus has been put on end users manipulation and visualisation of BOs, through Media
Objects (MO). While BOs manage the business process logic, MOs deal with the presentation logic. Typically,
BOs can be associated with graphical views or be accessed by simple client/server solutions that serve as a front-
end. BOs/MOs interactions can be realised through notifications from BOs to (COMMOTION) MOs achieved
throughout a publish/subscribe technology loosely coupling MOs and BOs. Particularly, such a mechanism can

ITcon Vol. 4 (1999), Zarli and Richaud, pg. 72

rely on the CORBA event service, as a critical service for applications intended to automate a complete business
process, letting CORBA objects dynamically register their interest in specific events. The WebMapper is then in
charge of mapping BO interfaces and multimedia content to WEB interfaces with the help of MOs, through
access to BOs with well-known (IDL) interfaces and their multi-modal GUI-oriented representations. Since data
are «conceptually» embodied within BOs, both the BOs layer and the WebMapper form the bridge between user
interfaces and enterprise data. Eventually, the WebMapper allows for BOs and generic front-ends to be designed,
implemented and deployed separately, thus inter-operating in a flexible, configurable and seamless way. For
extended details about BOs/MOs connection, and more generally about the various components exhibited herein
above, the reader should refer to the WONDA WEB site (http://www.bild.ie/wonda). WONDA User
Requirements and a «System Analysis» document, showing functionality of BOs, are accessible as well.

Hence, WONDA focused on a framework for business solutions and open interchangeable software tools,
specifying an infrastructure fully dedicated to the WEB interconnection, and based on major standards. Along
with uniform access to any databases, the objective is to extend the openness of such platform towards WEB
standards and applications via the WebMapper for information presentation and query, and at a generic level in
terms of standardised models for presentation and not from an tool-oriented point of view. Thanks to an
implementation of a infrastructure as specified in WONDA, coupling of WEB data with internal corporate
information memory including data managed by Intranet applications will become possible, along with the
development of sector specific software for Internet servers and browsers with a component based technology.

5. CONCLUSION

This paper tried to identify a set of requirements and suggested a possible technology integration for IT-based
Business-oriented frameworks, targeting the specific Construction sector, though most of the technologies
considered and developments presented above are quite generic. Our work has been undertaken in the context of
the WONDA project, whose main objectives was to develop an architecture specification meeting requirements
typical of the construction industry, i.e. IT solutions for VEs delivering low entry level, scalability, open
infrastructure and location independent access, seamless enterprise information, transparent support for business
processes, security and transactions.

As presented in this paper, the central enabling technology is BOs, which are defined as components in the
information system representing the enterprise model and which promise to be the building blocks of
information systems meeting requirements critical to the success of the enterprise. BOs are dedicated to rapidly
coping with business changes and making them appear in the involved information systems. This objective is not
correctly addressed through the current common concept of application, since it is obviously difficult to mix
applications to obtain a new application that is the sum of those applications. Moreover, modifications cannot be
carried out at a high conceptual level: this is especially true if the source code is not available and/or if those
applications are bought from different vendors. Furthermore, whether or not source code is available, traditional
applications are hard to maintain. Even if distributed objects have been a major evolution towards
interoperability and remote access, they don’t address all the integration issues. The future consists of distributed
objects that are easy to integrate, and can be viewed as distributed BOs in the sense of the OMG approach.

The main hypothesis in our work is that BOs address the notion of distribution because they are network
accessible through an ORB as found in CORBA. Furthermore, BOs are design time as well as runtime artifacts
because they are described using OO modelling tools and because they are «distributable» components as long
as there exists a BOF managing BO instances. One of the main advantages with such a framework is that
developers are exposed to a higher level API than the one supplied by CORBA. Hence, BOs encapsulate the
storage (i.e. access to persistent data and how to manipulate them in a safe way with a high level interface),
metadata (i.e. the ability to describe itself), concurrency and transaction (i.e. the ways to safely interact with BOs
when clients, for instance, perform asynchronous operations that makes the BOs internal state change). As
designed in the WONDA project (and reflected by this paper), the strengths of BOs for information systems
design and implementation support can be summarised as follows:

• They will allow the BO developer to focus on expressing the business logic (at least part of the this
logic to be related to the object), being no more burdened by low-level concerns like networking,
distribution and remote access, transactions management, security, and so on. Thus, each BO
developer can concentrate on his own specific expertise and knowledge area, without the need of

ITcon Vol. 4 (1999), Zarli and Richaud, pg. 73

learning about a lot of other areas and technologies in client/server information systems
(networking, middleware, databases, etc.).

• They will allow the application designer to benefit from being able to reuse existing BOs
components with a well-known and standardised interface, and to more naturally and easily
assemble those components. Easy exchange and adaptation of single components will be possible
as well.

• They will provide to applications a standardised manner in which server-side objects can be
accessed and interacted with (open API), moreover offering the opportunity to use and make inter-
operate objects and components from various vendors.

• At the end of the day, BOs will considerably increase the ability to easily and quickly design
scalable, distributed, sophisticated business applications, on the base of a common understanding
for a large set of generic or domain-oriented services, and hierarchies of components and objects.

From a more user oriented point of view, BO can manage quite different end user views, but also realising the
links between information related to engineering product data, financial data, process and workflow oriented
information, and so on. At the same time, they are quite masking the internal representation of the various stored
information, and encapsulating the rules and relationships/associations associated to the BOs. Considering the
construction sector, and just as a building is a unique arrangement of standard products, a project is a unique
arrangement of financial, logistic and technical product data, and the role of the BOs is to translate it in a
Business model.

Experimentation is now underway to model business applications, so as to access distribution services and
package other services through BOs, in order to get tangible and physical proof of the original hypothesis, and its
relevance regarding business practices in the construction field. The WONDA project itself endeavoured the
vision of a standardised open WEB-oriented framework for information access and electronic publishing and
commerce for the Building Construction. The combination of new concepts and technologies based on standards,
either de jure ones like official norms, or de facto ones in their large industrial use but still leading to openness,
is supposed to open the door for substantially enhanced integration of value-added networks, high level
application development, and distributed object systems. This combination will radically simplify and reduce
time for the development, deployment and management of distributed applications providing corporations with a
competitive advantage, especially on the Internet market, and moreover will be the foundations of intelligent
systems for a business which requires decision-making, adaptive or learning systems, data-mining, etc.. At the
end of the day, it will enable businesses to profit and expand by harnessing the capabilities and promise of truly
global electronic commerce.

6. ACKNOWLEDGEMENTS

The authors wish to acknowledge the financial support of the European Commission in the context of the EP
25.741 project WONDA, as well as the participation of their partners, SNI/C-Lab, TU Delft and Dassault
Electronique, in the elaboration of the whole WONDA framework.

7. REFERENCES

Björk, B.-C. (1996). Requirements and information structures for building product data models, Espoo Technical
Research Centre of Finland (VTT), 1995, VTT Publications N° 245.

BODTF (1998). The Business Object Component Architecture, Revision 1.1, Business Object Domain Task
Force, OMG Document 1998: bom/98-01-07

COM Home (1998), COM: Delivering on the Promises of Component Technology,
http://www.microsoft.com/com/comintro.htm

Eeles, P., Sims, O. (1998). «Building Business Objects», Wiley Computer Publishing,1998.

Fowler, (1995). STEP for Data Management, Exchange and Sharing. Technology Appraisals 1995.

ITcon Vol. 4 (1999), Zarli and Richaud, pg. 74

Hardwick, M., Spooner, D.L., Rando, T., Morris, K.C. (1996). Sharing Manufacturing Information in Virtual
Enterprise, Communications of the ACM, February 96, Vol 39 N°2.

Hardwick, M., Spooner, D.L., Rando, T., Morris, K.C. (1997). Data Protocols for the Industrial Virtual
Enterprise, 1997.

IAI (1999). International Alliance of Interoperability (1999). http://iaiweb.lbl.gov

ISO (1995). Industrial automation systems and integration - Product data representation and exchange Part 22.
Standard Data Access Interface. 1995.

Kilov, H., Simmonds, I. (1997). Business rules: from business specification to design, ECCOP’97 Workshop on
Precise Semantics for OO Modelling Techniques

Mowbray, T. J., Zahavi, R. (1996). The Essential CORBA - System Integration Using Distributed Objects. John
Wiley and Sons.

OMG (1995a). CORBA Services: Common Objects Services Specification, Revised Edition, 95-3-31 ed, Object
Management Group, March 1995.

OMG (1995b). The Common Object Request Broker Architecture and Specification (CORBA) Revision 2.0,
Object Management Group, July 95. http://www.omg.org.

OMG (1998a). CORBA Event Service Specification, Object Management Group, 1998.
http://www.omg.org/corba/sectrans.htm#event

OMG (1998b). CORBA Transaction Service Specification, Object Management Group, 1998.
http://www.omg.org/corba/sectrans.htm#trans

Orfali R., Harkey, D. (1998). Client/Server Programming with Java and Corba, John Wiley and Sons.

Orfali, R., Harkey, D., Edward, J. (1996). The Essential Distributed Objects Survival Guide, John Wiley and
Sons.

Richaud, O., Zarli, A. (2000). Developing a Framework for CORBA components, submitted to the 14th
European Conference on Object-Oriented Programming - ECOOP 2000, 15 pages.

Siegel, J. (1996). CORBA Fundamentals and Programming, John Wiley and Sons, April 96.

Sun Microsystems (1998). Enterprise Java Beans, http://java.sun.com/products/ejb/

